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1 CNRS, Laboratoire LIP, Lyon, France
benoit.libert@ens-lyon.fr

2 ENS de Lyon, Laboratoire LIP (U. Lyon, CNRS, ENSL, INRIA, UCBL),
Lyon, France

3 Bitdefender, Bucharest, Romania

Abstract. In distributed pseudorandom functions (DPRFs), a PRF
secret key SK is secret shared among N servers so that each server
can locally compute a partial evaluation of the PRF on some input X.
A combiner that collects t partial evaluations can then reconstruct the
evaluation F (SK,X) of the PRF under the initial secret key. So far, all
non-interactive constructions in the standard model are based on lattice
assumptions. One caveat is that they are only known to be secure in
the static corruption setting, where the adversary chooses the servers
to corrupt at the very beginning of the game, before any evaluation
query. In this work, we construct the first fully non-interactive adap-
tively secure DPRF in the standard model. Our construction is proved
secure under the LWE assumption against adversaries that may adap-
tively decide which servers they want to corrupt. We also extend our
construction in order to achieve robustness against malicious adversaries.
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1 Introduction

A pseudorandom function (PRF) family [35] is a set F of keyed functions with
common domain Dom and range Rng such that no ppt adversary can distinguish
a real experiment, where it has oracle access to a random member f ←↩ F of the
PRF family, from an ideal experiment where it is interacting with a truly random
function R : Dom → Rng. To be useful, a PRF should be efficiently computable
– meaning that Fs(x) must be deterministically computable in polynomial time
given the key s and the input x ∈ Dom – and the key size must be polynomial.

Pseudorandom functions are fundamental objects in cryptography as most
central tasks of symmetric cryptography (like secret-key encryption, message
authentication or identification) can be efficiently realized from a secure PRF
family. Beyond their use for cryptographic purposes, they can also be used to
prove circuit lower bounds [56] and they are strongly connected to the hardness
of certain tasks in learning theory [62].
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Goldreich, Goldwasser and Micali (GGM) [35] showed how to build a PRF
from any length-doubling pseudorandom generator (PRG). In turn, PRGs are
known [39] to exist under the sole assumption that one-way functions exist.
However, much more efficient constructions can be obtained by relying on specific
number theoretic assumptions like the Decision Diffie-Hellman assumption [51]
and related variants [17,21,28,44] or the hardness of factoring [51,52].

In the context of lattice-based cryptography, the noisy nature of hard-on-
average problems, like Learning-With-Errors (LWE) [57], makes it challenging
to design efficient PRF families. The LWE assumption for a modulus q states
that, given a random matrix A ∈ Z

m×n
q with m > n, the vector A · s + e is

computationally indistinguishable from a uniform vector over Z
m
q when s ∈ Z

n
q

is uniformly chosen in Z
n
q and e ∈ Z

m is a small-norm noise vector sampled from
a Gaussian distribution. In order to design PRFs with small-depth evaluation
circuits, several works [7,8,16] rely on the Learning-With-Rounding (LWR) tech-
nique [8], which is a “de-randomization” of LWE where noisy vectors A ·s+e are
replaced by rounded vectors �(p/q) · (A · s)� ∈ Z

m
p for a smaller modulus p < q.

An appealing advantage of lattice-based techniques is that they enable the
design of key-homomorphic PRF families [7,16]. Namely, assuming that their
range and key space form an additive group, for any input x and keys s, t, we
have Fs+t(x) ≈ Fs(x) + Ft(x). In turn, key-homomorphic PRFs provide simple
and non-interactive constructions of distributed pseudorandom functions [50].
In a (threshold) distributed PRF (DPRF), secret keys are broken into N shares
s1, . . . , sN , each of which is given to a different server. Using its secret key
share si, the i-th server can locally compute a partial evaluation Fsi

(x) of the
function. A dedicated server can then gather at least t ≤ N correct partial evalu-
ations Fsi1

(x), . . . , Fsit
(x) and reconstruct the evaluation Fs(x) for the long-term

key s. As such, threshold PRFs inherit the usual benefits of threshold cryptog-
raphy [25]. First, setting t < N allows for fault-tolerant systems that can keep
running when some server crashes. Second, the adversary is forced to break into t
servers to compromise the security of the whole scheme. Ideally, servers should be
able to generate their partial evaluations without interacting with one another.

Boneh et al. [16] gave a generic construction of non-interactive DPRF from
any almost key homomorphic PRF (where “almost” means that Fs+t(x) only
needs to be sufficiently “close” to Fs(x) + Ft(x)). Their construction, however,
is only proved to be secure under static corruptions. Namely, the adversary has
to choose the corrupted servers all-at-once and before making any evaluation
query.

Contribution. We consider the problem of proving security in the stronger
adaptive corruption model, where the adversary chooses which servers it wants
to corrupt based on the previously obtained information. In particular, an adap-
tive adversary is allowed to obtain partial evaluations before corrupting any
server.

In this stronger adversarial model, we provide the first realization of non-
interactive distributed pseudorandom function with a security proof under
a polynomial reduction. We prove the security of our construction in the
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standard model under the Learning-With-Errors (LWE) assumption [57] with
super-polynomial approximation factors.

In its basic version, our DPRF is only secure against passive adversaries.
However, robustness against malicious adversaries can be readily achieved using
leveled homomorphic signatures [37], as was suggested by earlier works on thresh-
old lattice-based cryptography [14,15]. To our knowledge, we thus obtain the first
DPRF candidate which is simultaneously: (i) secure under adaptive corruptions
in the standard model under a well-studied assumption; (ii) robust against mali-
cious adversaries; (iii) non-interactive (i.e., each server only sends one message
to the combiner that reconstructs the final output of the PRF).

Techniques. For a polynomial N and when t ≈ N/2, proving adaptive secu-
rity is considerably more challenging as a trivial complexity leveraging argument
(i.e., guessing the set of corrupted servers upfront) makes the reduction super-
polynomial. Moreover, we show that allowing a single partial evaluation query
before the first corruption query already results in a definition which is strictly
stronger than that of static security. In the adaptive corruption setting, the dif-
ficulty is that, by making N partial evaluation queries before corrupting any
server, the adversary basically commits the challenger to all secret key shares.
Hence, a reduction that only knows t − 1 ≈ N/2 shares is unlikely to work as it
would have to make up its mind on which set of t − 1 shares it wants to know
at the outset of the game. In particular, this hinders a generic reduction from
the security of an underlying key-homomorphic PRF. This suggests to find a
reduction that knows all shares of the secret key, making it easier to consistently
answer adaptive corruption queries.

To this end, we turn to lossy trapdoor functions [54], which are function
families that contain both injective and lossy functions with computationally
indistinguishable evaluation keys. We rely on the fact that the LWE function and
its deterministic LWR variant [8] are both lossy trapdoor functions (as shown
in [6,9,36]). Namely, the function that maps s ∈ Z

n to �A · s�p is injective
when A ∈ Z

m×n
q is a random matrix and becomes lossy when A is of the form

Ā · C + E, where Ā ∈ Z
m×n′
q , C ∈ Z

n′×n
q are uniformly random and E ∈ Z

m×n

is a small-norm matrix. Our idea is to first construct a PRF which maps an
input x to �A(x) · s�p, where s ∈ Z

n is the secret key and A(x) ∈ Z
m×n
q is

derived from public matrices. We thus evaluate a lossy trapdoor function on an
input consisting of the secret key using a matrix that depends on the input. In
the security proof, we use admissible hash functions [13] and techniques from
fully homomorphic encryption [33] to “program” A(x) in such a way that, with
non-negligible probability, it induces a lossy function in all evaluation queries
and an injective function in the challenge phase.1 (We note that this use of lossy
trapdoor functions is somewhat unusual since their injective mode is usually
used to handle adversarial queries while the lossy mode comes into play in the
challenge phase.) By choosing a large enough ratio q/p, we can make sure that
1 We use a “find-then-guess” security game where the adversary obtains correct eval-

uation for inputs of its choice before trying to distinguish a real function evaluation
from a random element of the range.
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evaluation queries always reveal the same information about the secret s. Since
�A(x�) · s�p is an injective function in the challenge phase, we can argue that
it has high min-entropy, even conditionally on responses to evaluation queries.
At this point, we can extract statistically uniform bits from �A(x�) · s�p using a
deterministic randomness extractor: analogously to the deterministic encryption
case [55], we need to handle a source that may be correlated with the seed.

We note that the above approach bears resemblance with key-homomorphic
PRFs [7,16] which also evaluate functions of the form �A(x) · s�p. However, our
proof method is very different in that it relies on the lossy mode of LWE and the
homomorphic encryption scheme of [33]. The advantage of our approach is that
the challenger knows the secret key s at all steps of the security proof. In the
distributed setting, this makes it easier to handle adaptive adversaries because
the reduction can always correctly answer corruption queries. In order to share
the secret key s among N servers, we rely on the Linear Integer Secret Sharing
(LISS) schemes of Damg̊ard and Thorbek [24], which nicely fit the requirements
of our security proof. Among other properties, they allow secret key shares to
remain small with respect to the modulus, which helps us making sure that
partial evaluations – as lossy functions of their share – always reveal the same
information about uncorrupted shares. Moreover, they also enable small recon-
struction constants: the secret s can be recovered as a linear combination of
authorized shares with coefficients in {−1, 0, 1}, which is useful to avoid blow-
ing up error terms when partial evaluations are combined together. A notable
difference with [24] is that our DPRF uses a LISS scheme with Gaussian entries
(instead of uniform ones), which makes it easier to analyze the remaining entropy
of the key in the final step of the proof.

Related Work. Distributed pseudorandom functions were initially suggested
by Micali and Sidney [47] and received a lot of attention since then [27,29,50,51,
53]. They are motivated by the construction of distributed symmetric encryption
schemes, distributed key distribution centers [50], or distributed coin tossing and
asynchronous byzantine agreement protocols [18]. They also provide a distributed
source of random coins that allows removing interaction from threshold decryption
mechanisms, such as the one of Canetti and Goldwasser [20].

As mentioned in [16], the early DPRF realizations [47] were only efficient when
the threshold t was very small or very large with respect to N . Before 2010, other
solutions [27,29,50,51,53] either required random oracles [50] or multiple rounds
of interaction [27,29,51,53]. Boneh, Lewi, Montgomery and Raghunathan [16]
(BLMR) suggested a generic construction of non-interactive DPRF from key-
homomorphic PRFs. They also put forth the first key-homomorphic PRF in the
standard model assuming the hardness of LWE. Banerjee and Peikert [7] gener-
alized the BLMR construction and obtained more efficient constructions under
weaker LWE assumptions. Boneh et al. [14,15] described another generic DPRF
construction from a general “universal thresholdizer” tool, which allows distribut-
ing many cryptographic functionalities. So far, none of these solutions is known to
provide security under adaptive corruptions.
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In the context of threshold cryptography, adaptive security has been addressed
in a large body of work [1,5,19,30,42,46]. These techniques, however, require inter-
action (except in some cases when all players always correctly provide their con-
tribution to the computation) and none of them is known to be compatible with
existing non-interactive DPRFs. While lattice-based threshold protocols were
studied by Bendlin et al. back in 2010 [11,12], they focused on distributing decryp-
tion operations or sharing lattice trapdoors and it is not clear how to apply them in
our setting. Boneh et al. [14,15] showed how to generically compile cryptographic
functionalities into threshold functionalities using distributed FHE. However, they
do not consider adaptive corruptions and proceed by generically evaluating the
circuit of the functionality at hand. While we follow their approach of using fully
homomorphic signatures to acquire robustness, our basic PRF is a direct and more
efficient construction.

To our knowledge, the approach of using lossy trapdoor functions to con-
struct advanced PRFs was never considered before. In spirit, our construction is
somewhat similar to a random-oracle-based threshold signature proposed in [45],
which also relies on the idea of always revealing the same information about the
key in all evaluation queries. This DDH-based threshold signature can be turned
into an adaptively secure DPRF in the random oracle model (like a variant of the
Naor-Pinkas-Reingold DPRF [50]) but it has no standard-model counterpart.

The idea of using randomness extraction as part of the security proof of a
PRF appears in [38, Sect. 6.2], where the function only needs to be secure in a
model without evaluation queries. Here, we have to handle a different setting
which prevents us from using the standard Leftover Hash Lemma.

Organization. Sect. 2 recalls some relevant material about lattices, pseudoran-
dom functions and integer secret sharing. A centralized version of our DPRF is
presented in Sect. 3 as a warm-up. We describe its distributed variant in Sect. 4.
In the full version of the paper, we explain how the techniques of [14,15] apply
to obtain robustness without using interaction nor random oracles.

2 Background

For any q ≥ 2, we let Zq denote the ring of integers with addition and multipli-
cation modulo q. We always set q as a prime integer. For 2 ≤ p < q and x ∈ Zq,
we define �x�p := �(p/q) · x� ∈ Zp. This notation is readily extended to vectors
over Zp. If x is a vector over R, then ‖x‖ denotes its Euclidean norm. If M is a
matrix over R, then ‖M‖ denotes its induced norm. We let σn(M) denote the
least singular value of M, where n is the rank of M. For a finite set S, we let U(S)
denote the uniform distribution over S. If X is a random variable over a countable
domain, the min-entropy of X is defined as H∞(X) = minx(− log2 Pr[X = x]).
If X and Y are distributions over the same domain, then Δ(X,Y ) denotes their
statistical distance.
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2.1 Lattices

Let Σ ∈ R
n×n be a symmetric positive definite matrix, and c ∈ R

n. We define
the Gaussian function on R

n by ρΣ,c(x) = exp(−π(x − c)�Σ−1(x − c)) and if
Σ = σ2 · In and c = 0 we denote it by ρσ.

For a lattice Λ, we define ηε(Λ) as the smallest r > 0 such that ρ1/r( ̂Λ \
0) ≤ ε with ̂Λ denoting the dual of Λ, for any ε ∈ (0, 1). In particular, we
have η2−n(Zn) ≤ O(

√
n). We define λ∞

1 (Λ) = min(‖x‖∞ : x ∈ Λ \ 0).
For a matrix A ∈ Z

n×m
q , we define the lattices Λ⊥(A) = {x ∈ Z

m : A · x =
0 mod q} and Λ(A) = A� · Zn + qZm.

Lemma 2.1 ([32, Lemma 5.3]). Let m ≥ 2n · log q and q ≥ 2 prime and let
A ←↩ U(Zn×m

q ). With probability ≥ 1 − 2−Ω(n), we have λ∞
1 (Λ(A)) ≥ q/4.

Lemma 2.2 (Adapted from [49, Lemma 4.4]). For any n-dimensional lat-
tice Λ, x′, c ∈ R

n and symmetric positive definite Σ ∈ R
n×n satisfying

σn(
√

Σ) ≥ η2−n(Λ), we have

ρΣ,c(Λ + x′) ∈ [1 − 2−n, 1 + 2−n] · det(Σ)1/2
/det(Λ).

Lemma 2.3. For c ∈ R and σ > 0 such that σ ≥ √

ln 2(1 + 1/ε)/π, we have

H∞(DZ,σ,c) ≥ log(σ) + log(1 + 2e−πσ2
) − log

(

1 +
2ε

1 − ε

)

Proof. From [49, Lemma 3.3] we know that ηε(Z) ≤ √

ln 2(1 + 1/ε)/π. So
σ ≥ ηε(Z). By [48, Lemma 2.5], this implies that 1−ε

1+ε · ρσ(Z) ≤ ρσ,c(Z), which
translates into

H∞(DZ,σ,c) ≥ H∞(DZ,σ) − log
(

1 + ε

1 − ε

)

From [58, Claim 8.1], we have ρσ(Z) ≥ σ · (1 + 2e−πσ2
), so

H∞(DZ,σ) ≥ log σ + log(1 + 2e−πσ2
)

�

Remark 2.4. For σ = Ω(

√
n), we get H∞(DZ,σ,c) ≥ log(σ) − 2−n.

Definition 2.5 (LWE). Let m ≥ n ≥ 1, q ≥ 2 and α ∈ (0, 1) be functions of
a security parameter λ. The LWE problem consists in distinguishing between the
distributions (A,As+ e) and U(Zm×n

q ×Z
m
q ), where A ∼ U(Zm×n

q ), s ∼ U(Zn
q )

and e ∼ DZm,αq. For an algorithm A : Zm×n
q × Z

m
q → {0, 1}, we define:

AdvLWE
q,m,n,α(A) = |Pr[A(A,As + e) = 1] − Pr[A(A,u) = 1| ,

where the probabilities are over A ∼ U(Zm×n
q ), s ∼ U(Zn

q ), u ∼ U(Zm
q ) and

e ∼ DZm,αq and the internal randomness of A. We say that LWEq,m,n,α is hard
if for all ppt algorithm A, the advantage AdvLWE

q,m,n,α(A) is negligible.
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Micciancio and Peikert [48] described a trapdoor mechanism for LWE. Their
technique uses a “gadget” matrix G ∈ Z

n×m
q for which anyone can publicly

sample short vectors x ∈ Z
m such that G · x = 0. As in [48], we call R ∈ Z

m×m

a G-trapdoor for a matrix A ∈ Z
n×2m
q if A · [R� | Im]� = H · G for some

invertible matrix H ∈ Z
n×n
q which is referred to as the trapdoor tag. If H = 0,

then R is called a “punctured” trapdoor for A.

Lemma 2.6 ([48, Section 5]). Assume that m ≥ 2n log q. There exists a ppt
algorithm GenTrap that takes as inputs matrices Ā ∈ Z

n×m
q , H ∈ Z

n×n
q and

outputs matrices R ∈ {−1, 1}m×m and

A = [Ā | −ĀR + HG] ∈ Z
n×2m
q

such that if H ∈ Z
n×n
q is invertible, then R is a G-trapdoor for A with tag H;

and if H = 0, then R is a punctured trapdoor.
Further, in case of a G-trapdoor, one can efficiently compute from A,R

and H a basis (bi)i≤2m of Λ⊥(A) such that maxi ‖bi‖ ≤ O(m3/2).

Micciancio and Peikert also showed that a G-trapdoor for A ∈ Z
n×2m
q can

be used to invert the LWE function (s, e) �→ A� · s + e, for any s ∈ Z
n
q and any

sufficiently short e ∈ Z
2m.

2.2 Admissible Hash Functions

Admissible hash functions were introduced by Boneh and Boyen [13] as a com-
binatorial tool for partitioning-based security proofs for which Freire et al. [31]
gave a simplified definition. Jager [41] considered the following generalization in
order to simplify the analysis of reductions under decisional assumption.

Definition 2.7 ([41]). Let �(λ), L(λ) ∈ N be functions of a security parameter
λ ∈ N. Let AHF : {0, 1}	 → {0, 1}L be an efficiently computable function. For
every K ∈ {0, 1,⊥}L, let the partitioning function PK : {0, 1}	 → {0, 1} be
defined as

PK(X) :=
{

0 if ∀i ∈ [L] (AHF(X)i = Ki) ∨ (Ki =⊥)
1 otherwise

We say that AHF is a balanced admissible hash function if there exists
an efficient algorithm AdmSmp(1λ, Q, δ) that takes as input Q ∈ poly(λ) and a
non-negligible δ(λ) ∈ (0, 1] and outputs a key K ∈ {0, 1,⊥}L such that, for all
X(1), . . . , X(Q),X� ∈ {0, 1}	 such that X� �∈ {X(1), . . . , X(Q)}, we have

γmax(λ) ≥ Pr
K

[

PK(X(1)) = · · · = PK(X(Q)) = 1 ∧ PK(X�) = 0
]

≥ γmin(λ),

where γmax(λ) and γmin(λ) are functions such that

τ(λ) = γmin(λ) · δ(λ) − γmax(λ) − γmin(λ)
2

is a non-negligible function of λ.
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Intuitively, the condition that τ(λ) be non-negligible requires γmin(λ) to be
noticeable and the difference of γmax(λ) − γmin(λ) to be small.

It is known [41] that balanced admissible hash functions exist for �, L = Θ(λ).

Theorem 2.8 ([41, Theorem 1]). Let (C	)	∈N be a family of codes C	 :
{0, 1}	 → {0, 1}L with minimal distance c · L for some constant c ∈ (0, 1/2).
Then, (C	)	∈N is a family of balanced admissible hash functions. Furthermore,
AdmSmp(1λ, Q, δ) outputs a key K ∈ {0, 1,⊥}L for which η = � ln(2Q+Q/δ)

− ln((1−c)) �
components are not ⊥ and

γmax = 2−η, γmin =
(

1 − Q(1 − c)
)η · 2−η,

so that τ = (2δ − (2δ + 1) · Q · (1 − c)η)/2η+1 is a non-negligible function of λ.

Lemma 2.9 ([43, Lemma 8], [2, Lemma 28]). Let an input space X and con-
sider a mapping γ that maps a (Q+1)-tuple of elements (X�,X1, . . . , XQ) in X
to a probability value in [0, 1]. We consider the following experiment where we
first execute the PRF security game, in which the adversary eventually outputs
a guess b̂ ∈ {0, 1} of the challenger’s bit b ∈ {0, 1} and wins with advantage ε.
We denote by X� ∈ X the challenge input and X1, . . . , XQ ∈ X the evaluation
queries. At the end of the game, we flip a fair random coin b′′ ←↩ U({0, 1}).
With probability γ = γ(X�,X1, . . . , XQ), we define b′ = b̂ and, with probability,
1 − γ, we define b′ = b′′. Then, we have

|Pr[b′ = b] − 1/2| ≥ γmin · ε − γmax − γmin

2
,

where γmin and γmax are the maximum and minimum of γ(X) for any X ∈ X Q+1.

2.3 (Deterministic) Randomness Extractors

A consequence of the Leftover Hash Lemma was used by Agrawal et al. [2] to
re-randomize matrices over Zq by multiplying them with small-norm matrices.
We also rely on the following generalization of [2, Lemma 13].

Lemma 2.10. Let integers m,n, � such that m > 2(n + �) · log q, for some
prime q > 2. Let B, ˜B ←↩ U(Zm×	

q ) and R ←↩ U({−1, 1}m×m). For any matrix
F ∈ Z

m×n
q , the distributions (B,R ·B,R ·F) and (B, ˜B,R ·F) are within 2−Ω(n)

statistical distance.

In our security proof, we will need to extract statistically uniform bits from a
high-entropy source. Here, we cannot just apply the Leftover Hash Lemma since
the source may not be independent of the seed. For this reason, we will apply
techniques from deterministic extraction [26,60] and seeded extractors with seed-
dependent sources [55]. In particular, we will apply a result of Dodis [26] which
extends techniques due to Trevisan and Vadhan [60] to show that, for a suffi-
ciently large ξ > 0, a fixed ξ-wise-independent functions can be used to deter-
ministically extract statistically uniform bits.
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Lemma 2.11 ([26, Corollary 3]). Fix any integers n̄, m, M , any real ε < 1
and any collection X of M distributions over {0, 1}m̄ of min-entropy n̄ each.
Define

ξ = n̄ + log M, k̄ = n̄ −
(

2 log
1
ε

+ log log M + log n̄ + O(1)
)

,

and let F be any family of ξ-wise independent functions from m̄ bits to k̄ bits.
With probability at least (1−1/M), a random function f ←↩ U(F) is a good deter-
ministic extractor for the collection X . Namely, f(X) is ε-close to U({0, 1}k̄) for
any distribution X ∈ X .

It is well-known that ξ-wise independent function can be obtained by choos-
ing random polynomials of degree ξ − 1 over GF (2m̄) (which cost O(ξm̄) bits to
describe) and truncating their evaluations to their first k̄ bits.

2.4 Linear Integer Secret Sharing

This section recalls the concept of linear integer secret sharing (LISS), as defined
by Damg̊ard and Thorbek [24]. The definitions below are taken from [59] where
the secret to be shared lives in an interval [−2l, 2l] centered in 0, for some l ∈ N.

Definition 2.12. A monotone access structure on [N ] is a non-empty collec-
tion A of sets A ⊆ [N ] such that ∅ �∈ A and, for all A ∈ A and all sets B such
that A ⊆ B ⊆ [N ], we have B ∈ A. For an integer t ∈ [N ], the threshold-t
access structure Tt,N is the collection of sets A ⊆ [N ] such that |A| ≥ t.

Let P = [N ] be a set of shareholders. In a LISS scheme, a dealer D wants to
share a secret s in a publicly known interval [−2l, 2l]. To this end, D uses a share
generating matrix M ∈ Z

d×e and a random vector ρ = (s, ρ2, . . . , ρe)�, where s
is the secret to be shared {ρi}e

i=2 are chosen uniformly in [−2l0+λ, 2l0+λ]e, for a
large enough l0 ∈ N. The dealer D computes a vector s = (s1, . . . , sd)� of share
units as

s = (s1, . . . , sd)� = M · ρ ∈ Z
d.

Each party in P = {1, . . . , N} is assigned a set of share units. Letting ψ :
{1, . . . , d} → P be a surjective function, the i-th share unit si is assigned to
the shareholder ψ(i) ∈ P , in which case player ψ(i) is said to own the i-th row
of M . If A ⊆ P is a set of shareholders, MA ∈ Z

dA×e denotes the set of rows
jointly owned by A. Likewise, sA ∈ Z

dA denotes the restriction of s ∈ Z
d to

the coordinates jointly owned by the parties in A. The j-th shareholder’s share
consists of sψ−1(j) ∈ Z

dj , so that it receives dj = |ψ−1(j)| out of the d =
∑n

j=1 dj

share units. The expansion rate μ = d/N is defined to be the average number
of share units per player. Sets A ∈ A are called qualified and A /∈ A are called
forbidden.

Definition 2.13. A LISS scheme is private if, for any two secrets s, s′, any
independent random coins ρ = (s, ρ2, . . . , ρe), ρ′ = (s′, ρ′

2, . . . , ρ
′
e) and any for-

bidden set A of shareholders, the distributions {si(s,ρ) = Mi · ρ | i ∈ A} and
{si(s′,ρ′) = Mi · ρ′ | i ∈ A} are 2−Ω(λ) apart in terms of statistical distance.



400 B. Libert et al.

Damg̊ard and Thorbek [24] showed how to build LISS scheme from integer
span programs [23].

Definition 2.14 ([23]). An integer span program (ISP) is a tuple M =
(M,ψ, ε), where M ∈ Z

d×e is an integer matrix whose rows are labeled by a
surjective function ψ : {1, . . . , d} → {1, . . . , N} and ε = (1, 0, . . . , 0) is called
target vector. The size of M is the number of rows d in M .

Definition 2.15. Let Γ be a monotone access structure and let M = (M,ψ, ε)
an integer span program. Then, M is an ISP for Γ if it computes Γ : namely,
for all A ⊆ {1, . . . , N}, the following conditions hold:

1. If A ∈ Γ , there exists a reconstruction vector λ ∈ Z
dA such that λ�·MA = ε�.

2. If A �∈ Γ , there exists κ = (κ1, . . . , κe)� ∈ Z
e such that MA · κ = 0 ∈ Z

d and
κ� · ε = 1 (i.e., κ1 = 1). In this case, κ is called a sweeping vector for A.

We also define κmax = max{|a| | a is an entry in some sweeping vector}.
Damg̊ard and Thorbek showed [24] that, if we have an ISP M = (M,ψ, ε)

that computes the access structure Γ , a statistically private LISS scheme for Γ
can be obtained by using M as the share generating matrix and setting l0 =
l + �log2(κmax(e − 1))� + 1, where l is the length of the secret.

A LISS scheme L = (M = (M,ψ, ε), Γ,R,K) is thus specified by an ISP for
the access structure Γ , a space R of reconstruction vectors satisfying Condition 1
of Definition 2.15, and a space K of sweeping vectors satisfying Condition 2.

Lemma 2.16 ([59, Lemma 3.1]). Let l0 = l + �log2(κmax(e − 1))� + 1.
If s ∈ [−2l, 2l] is the secret to be shared and ρ is randomly sampled
from [−2l0+λ, 2l0+λ]e conditionally on 〈ρ, ε〉 = s, the LISS scheme derived
from M is private. For any arbitrary s, s′ ∈ [−2l, 2l] and any forbid-
den set of shareholders A ⊂ [N ], the two distributions {sA = MA · ρ |
ρ ←↩ U([−2l0+λ, 2l0+λ]e) s.t. 〈ρ, ε〉 = s}, and {s′

A = MA · ρ | ρ ←↩
U([−2l0+λ, 2l0+λ]e) s.t. 〈ρ, ε〉 = s′} are within statistical distance 2−λ.

In the following, we do not rely on the result of Lemma 2.16 as we will
share vectors sampled from Gaussian (instead of uniform) distributions using
Gaussian random coins. We also depart from Lemma 2.16 in that the random
coins (ρ2, . . . , ρe) are not sampled from a wider distribution than the secret:
the standard deviation of (ρ2, . . . , ρe) will be the same as that of s. While this
choice does not guarantee the LISS to be private in general, we will show that
it suffices in our setting because we only need the secret to have sufficient min-
entropy conditionally on the shares observed by the adversary. Aside from the
distribution of secrets and random coins, we rely on the technique of Damg̊ard
and Thorbek [24] for building share generating matrices.

It was shown in [24] that LISS schemes can be obtained from [10,23]. While
the Benaloh-Leichter (BL) secret sharing [10] was initially designed to work over
finite groups, Damg̊ard and Thorbek generalized it [24] so as to share integers
using access structures consisting of any monotone Boolean formula. In turn,
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this implies a LISS scheme for any threshold access structure by applying a
result of Valiant [34,61]. Their LISS scheme built upon Benaloh-Leichter [10]
comes in handy for our purposes because the reconstruction coefficients and the
sweeping vectors are small: as can be observed from [24, Lemmas 4], the entries
of λ live in {−1, 0, 1} and [24, Lemma 5] shows that κmax = 1. For a monotone
Boolean f , the BL-based technique allows binary share distribution matrices
M ∈ {0, 1}d×e such that d, e = O(size(f)) and which have at most depth(f) + 1
non-zero entries, so that each share unit si has magnitude O(2l0+λ · depth(f)).

Valiant’s result [61] implies the existence of a monotone Boolean formula of
the threshold-t function Tt,N , which has size d = O(N5.3) and depth O(log N).
Since each player receives d/N rows of M on average, the average share size is
thus O(N4.3 · (l0 + λ + log log N)) bits. Valiant’s construction was improved by
Hoory et al. [40] who give a monotone formula of size O(N1+

√
2) and depth

O(log N) for the majority function.2 This reduces the average share size to
O(N

√
2 · (l0 + λ + log log N)) bits.

2.5 Some Useful Lemmas

Lemma 2.17 ([49, Lemma 4.4]). For σ = ω(
√

log n) there is a negligible func-
tion ε = ε(n) such that:

Pr
x∼DZn,σ

[‖x‖ > σ
√

n
] ≤ 1 + ε

1 − ε
· 2−n

Lemma 2.18 ([6, Lemma 2.7]). Let p, q be positive integers such that p < q.
Given R > 0 an integer, the probability that there exists e ∈ [−R,R] such that
�y�p �= �y + e�p, when y ←↩ U(Zq), is smaller than 2Rp

q .

Lemma 2.19. If q is prime and M be a distribution over Zm×n
q , and V a distri-

bution over Z
n
q such that Δ

(M, U(Zm×n
q )

) ≤ ε. We have Δ
(M · V,U(Zm

q )
) ≤

ε + α · (1 − 1
qm

)

, where α := Pr[V = 0].

2.6 (Distributed) Pseudorandom Functions

A pseudorandom function family is specified by efficient algorithms
(Keygen,Eval), where Keygen a randomized key generation algorithm that takes
in a security parameter 1λ and outputs a random key K ←↩ K from a key space
K. Eval is a deterministic evaluation algorithm, which takes in a key K ∈ K and
an input X in a domain D = {0, 1}	 and evaluates a function F (K,X) in a range
R = {0, 1}μ. The standard security definitions for PRFs are recalled in the full
version of the paper.

2 Note that a threshold-t function can be obtained from the majority function by
fixing the desired number of input bits, so that we need a majority function of size
≤ 2N to construct a threshold function Tt,N .



402 B. Libert et al.

A distributed pseudorandom function (DPRF) is a tuple of algorithms (Setup,
Share,PEval,Eval,Combine) of efficient algorithms with the following specifica-
tion. Setup takes as input a security parameter 1λ, a number of servers 1N , a
threshold 1t and a desired input length 1	 and outputs public parameters pp.
The key sharing algorithm Share : K → KN inputs a random master secret
key SK0 ∈ K and outputs a tuple of shares (SK1, . . . , SKN ) ∈ KN , which
form a (t,N)-threshold secret sharing of SK0. The partial evaluation algorithm
Eval : K × D → R takes as input a key share SKi and an input X and outputs
a partial evaluation Yi = PEval(SKi,X) ∈ R. Algorithm Combine : S ×Rt → R
takes in a t-subset S ⊂ [N ] together with t partial evaluations {Yi}i∈S , where
Yi ∈ R for all i ∈ S, and outputs a value Y ∈ R. The centralized evaluation
algorithm Eval : K × D → R operates as in a ordinary PRF and outputs a value
Y = Eval(SK0,X) ∈ R on input of X ∈ D and a key SK0 ∈ K.

Consistency. A DPRF is consistent if, for any pp ← Setup(1λ, 1	, 1t, 1N ), any
master key SK0 ←↩ K shared according to (SK1, . . . , SKN ) ← Share(SK0), any
t-subset S = {i1, . . . , it} ⊂ [N ] and any input X ∈ D, if Yij

= PEval(SKij
,X)

for each j ∈ [t], then we have Eval(SK0,X) = Combine(S, (Yi1 , . . . , Yit
)) with

overwhelming probability over the random coins of Setup and Share.
We say that a DPRF provides adaptive security if it remains secure against

an adversary that can adaptively choose which servers it wants to corrupt. In
particular, the adversary can arbitrarily interleave evaluation and corruption
queries as long as they do not allow it to trivially win.

Definition 2.20 (Adaptive DPRF security). Let λ be a security parameter
and let integers t,N ∈ poly(λ). We say that a (t,N)-DPRF is pseudorandom
under adaptive corruptions if no PPT adversary has non-negligible advantage in
the following game:

1. The challenger generates pp ← Setup(1λ, 1	, 1t, 1N ) and chooses a random key
SK0 ←↩ K, which is broken into N shares (SK1, . . . , SKN ) ← Share(SK0).
It also initializes an empty set C ← ∅ and flips a random coin b ←↩ U({0, 1}).

2. The adversary A adaptively interleaves the following kinds of queries.
Corruption: A chooses an index i ∈ [N ]\C. The challenger returns SKi to

A and sets C := C ∪ {i}.
Evaluation: A chooses a pair (i,X) ∈ [N ] × D and the challenger returns

Yi = PEval(SKi,X).
3. The adversary chooses an input X�. At this point, the challenger randomly

samples Y0 ←↩ U({0, 1}μ) and computes Y1 = Eval(SK0,X
�). Then, it returns

Yb to the adversary.
4. The adversary A adaptively makes more queries as in Stage 2 under the

restriction that, at any time, we should have |C ∪ E| < t, where E ⊂ [N ]
denotes the set of indexes for which an evaluation query of the form (i,X�)
was made in Stage 2 or in Stage 4.

5. A outputs a bit b̂ ∈ {0, 1} and wins if b̂ = b. Its advantage is defined to be
AdvDPRF

A (λ) := |Pr[b̂ = b] − 1/2|.
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Definition 2.20 is a game based definition, which may not imply security in the
sense of simulation-based definitions. Still, we show it is strictly stronger than the
definition of static security used in [16]. It is well-known that static security does
not imply adaptive security in distributed threshold protocols (see, e.g., [22]). In
the case of DPRFs, we show in the full version of the paper that allowing even
a single evaluation query before any corruption query already gives a stronger
game-based definition than the game-based security definition of static security.

Theorem 2.21. For any t,N ∈ poly(λ) such that t < N/2, there is a DPRF
family which is secure in the sense of Definition A.1 (in Appendix A) but insecure
in the sense of Definition 2.20.

Note that the above separation still holds for small non-constant values of t
and N if we assume polynomial or slightly super-polynomial adversaries.

3 A Variant of the BLMR PRF

Before describing our distributed PRF, we present its centralized version which
can be seen as a variant of the key-homomorphic PRFs described by Boneh
et al. [16] and Banerjee-Peikert PRFs [7]. However, the security proof is very
different in that it does not use a hybrid argument over the input bits. Instead,
it applies the strategy of partitioning the input space into disjoint subspaces
(analogously to proof techniques for, e.g., identity-based encryption [63]) and
builds on the lossy mode of LWE [36].

In [7,16], a PRF evaluation of an input x is of the form y = �A(x)�·s�p ∈ Z
m
p ,

where s ∈ Z
n
q is the secret key and A(X) ∈ Z

n×m
q is an input-dependent matrix

obtained from public matrices A0,A1 ∈ Z
n×m
q . Our variant is similar at a high

level, with two differences. First, we derive A(x) from a set of 2L public matrices
{Ai,0,Ai,1}L

i=1. Second, �A(x)� · s�p is not quite our PRF evaluation. Instead,
we obtain the PRF value by using �A(x)� · s�p as a source of entropy for a
deterministic randomness extractor.

The security proof departs from [7,16] by exploiting the connection between
the schemes and the Gentry-Sahai-Waters FHE [33]. For each i ∈ [L] and b ∈
{0, 1}, we interpret Ai,b ∈ Z

n×m
q as a GSW ciphertext Ai,b = A ·Ri,b + μi,b ·G,

where Ri,b ∈ {−1, 1}m×m, μi,b ∈ {0, 1} and G ∈ Z
n×m
q is the gadget matrix

of [48]. Before evaluating the PRF on an input X, we encode X ∈ {0, 1}	 into
x ∈ {0, 1}L using an admissible hash function. Then, we homomorphically derive
A(x) as a GSW ciphertext A(x) = A · Rx + (

∏L
i=1 μi,x[i]) · G, for some small-

norm Rx ∈ Z
m×m. By carefully choosing {μi,b}i∈[L],b∈{0,1}, the properties of

admissible hash functions ensure that the product
∏L

i=1 μi,x[i] cancels out in all
evaluation queries but evaluates to 1 on the challenge input X�.

In the next step of the proof, we move to a modified experiment where the
random matrix A ∈ Z

n×m
q is replaced by a lossy matrix A� = Ā� ·C+E, where

Ā ←↩ U(Zn′×m
q ), C ←↩ U(Zn′×n

q ) and E ∈ Z
m×n is a short Gaussian matrix. This

modification has the consequence of turning �A(x)� · s�p into a lossy function
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of s on all inputs X for which
∏L

i=1 μi,x[i] = 0. At the same time, the function
remains injective whenever

∏L
i=1 μi,x[i] = 1. Using the properties of admissible

hash functions, we still have a noticeable probability that the function be lossy in
all evaluation queries and injective in the challenge phase. Moreover, by using a
small-norm secret s ∈ Z

n and setting the ratio q/p large enough, we can actually
make sure that evaluation queries always reveal the same information (namely,
the product C · s) about s. As long as we have

∏L
i=1 μi,x�[i] = 1 for the challenge

input X�, the value z̃ = �A(x�)� · s�p = �(A · Rx� + G)� · s�p is guaranteed
to have a lot of entropy as an injective function of an unpredictable s. At this
point, we can extract statistically uniform bits from the source z̃. Since the
latter depends on x� (which can be correlated with the seed included in public
parameters), we need an extractor that can operate on seed-dependent sources.
Fortunately, deterministic extractors come in handy for this purpose.

3.1 Decomposing Random Matrices into Invertible Binary Matrices

In the following, we set k = n�log q� and m = 2k and define

G = [ In ⊗ (1, 2, 4, . . . , 2�log q�−1) | In ⊗ (1, 2, 4, . . . , 2�log q�−1)] ∈ Z
n×m
q

which is a variant of the gadget matrix of [48]. We also define G−1 : Zn×m
q →

Z
m×m to be a deterministic algorithm that inputs A ∈ Z

n×m
q and outputs a

binary matrix G−1(A) ∈ {0, 1}m×m such that G ·G−1(A) = A. We will require
that, for any A ∈ Z

n×m
q , G−1(A) be invertible over Zq with sufficiently high

probability. The next lemma shows a function G−1(·) satisfying this condition.

Lemma 3.1 (Adapted from [16, Lemma A.3]). Let k = n�log q�. If q ≥
2k/n · (1 − 1

2n ), there exists an efficient algorithm that samples a statistically
uniform matrix A ←↩ U(Zn×m

q ) such that G−1(A) ∈ {0, 1}m×m is Zq-invertible.

Proof. We first show how to sample a sequence of k = n�log q� uniform vectors
over Zn

q whose binary decompositions form a full-rank binary matrix over Zq. In
turn, this will allow us to sample a random A ←↩ U(Zn×m

q ), where m = 2k, such
that G−1(A) ∈ {0, 1}m×m is invertible. As in the proof of [16, Lemma A.3], we
use the observation that, for any i linearly independent vectors v1, . . . ,vi ∈ Z

k
q

over Zq, if V = span
Zq

(v1, . . . ,vi), we have |V ∩ {0, 1}k| ≤ 2i.
For an index i ∈ [k−1], suppose that we have chosen Zq-independent vectors

b1, . . . ,bi ∈ {0, 1}k and that bi+1 ∈ {0, 1}k is obtained as the binary decompo-
sition of a random ai+1 ←↩ U(Zn

q ). The probability that bi+1 is independent of
b1, . . . ,bi is ≥ (qn − 2i)/qn. If we sample a1, . . . ,ak ←↩ U(Zn

q ), the probability
that their binary decompositions are linearly independent over Zq is

k−1
∏

i=0

Pr[bi+1 �∈ span
Zq

(b1, . . . ,bi)] =
k−1
∏

i=0

qn − 2i

qn
(1)

Note that the factors the right-hand-side member of (1) are all positive: indeed,
we have 2k/n · (1− 1

2n ) ≤ q ≤ 2k/n. Since (1− 1
2n )n ≈ exp(−1/2) for large values
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of n, this implies 2k/
√

exp(1) ≤ qn ≤ 2k and thus 2k−1/qn ≤ √

exp(1)/2 < 1.
We now proceed to bound (1) as

k−1
∏

i=0

(

1 − 2i

qn

)

= exp
(

k−1
∑

i=0

ln
(

1 − 2i

qn

)

)

≥ exp
(

− 3
qn

·
k−1
∑

i=0

2i
)

= exp
(

− 3
qn

· 2k
)

= exp(−3 ·
√

exp(1)),

where the inequality holds because ln(1 − x) ≥ −3x for all x ∈ (

0,
√

exp(1)/2
)

.
Hence, if we sample 141 · k > k/ exp(−3 · √exp(1)) vectors ai ←↩ U(Zn

q )
and stack up the binary decompositions of a�

i , the probability that the resulting
matrix contains a Zq-invertible sub-matrix over {0, 1}k is at least 1 − 2−Ω(k).

We can thus sample a random matrix A = [AL|AR] ←↩ U(Zn×m
q ) that

satisfies the required conditions by defining G−1(A) ∈ {0, 1}m×m so that it
contains the binary decomposition BD(AL) ∈ {0, 1}k×k in its upper-left corner
and BD(AR) ∈ {0, 1}k×k in its lower-right corner. �


3.2 A Centralized Construction

Let λ be a security parameter and let � ∈ Θ(λ), L ∈ Θ(λ). We use parameters
consisting of prime moduli p and q such that q/p > 2L+λ ·r, dimensions n,m, k ∈
poly(λ) such that m ≥ 2n·�log q�, an integer β > 0, α > 0 and r = mL+2 ·n·β ·αq.
We rely on the following ingredients.

• A balanced admissible hash function AHF : {0, 1}	 → {0, 1}L.
• A family Πλ of ξ-wise independent hash functions πi : Zm

p → Z
k
p for a suitable

ξ > 0 that will be determined later on. Let a random member π of Πλ. For
example, the function π can be a random polynomial π(Z) ∈ GF (pm)[Z] of
degree ξ − 1 with outputs truncated to their k first coordinates.

We also choose a Gaussian parameter σ > 0, which will specify an interval
[−β, β] = [−σ

√
n, σ

√
n] where the coordinates of the secret will be confined (with

probability exponentially close to 1). We also need a rounding parameter r > 0,
set as indicated above.

The pseudorandom function family assumes the availability of public param-
eters

pp :=
(

q, π, A0, {Ai,0,Ai,1 ∈ Z
n×m
q }L

i=1, AHF, r, σ
)

,

where A0 ∼ U(Zn×m
q ) and Ai,0,Ai,1 ∼ U(Zn×m

q ) for each i ∈ [L]. Importantly,
{Ai,0,Ai,1}L

i=1 should be chosen in such a way that G−1(Ai,b) ∈ Z
m×m is Zq-

invertible for all i ∈ [L] and b ∈ {0, 1}.

Keygen(pp): Given pp, sample a vector s ←↩ DZn,σ so that ‖s‖∞ < β = σ
√

n
with overwhelming probability. The secret key is SK := s ∈ [−β, β]n.



406 B. Libert et al.

Eval(pp, SK,X): Given SK = s ∈ Z
n and an input X ∈ {0, 1}	,

1. Compute x = AHF(X) ∈ {0, 1}L and parse it as x = x1 . . . xL.
2. Compute

z =
⌊

(

A(x)
)� · s

⌋

p
∈ Z

m
p , (2)

where

A(x) = A0 ·
L
∏

i=1

G−1
(

Ai,xi

)

,

and output y = π(z) ∈ Z
k
p.

We remark that the way to compute z ∈ Z
m
p in (2) is reminiscent of the key-

homomorphic PRFs of [7,16]. Unlike [7,16], our security proof requires the secret
s to have small entries. Also, our PRF is not key-homomorphic as the output is
y = π(z) ∈ Z

k
p instead of z ∈ Z

m
p . Fortunately, losing the key-homomorphic prop-

erty does not prevent us from building a DPRF since the randomness extraction
step is only applied to the result of combining t partial evaluations.

Theorem 3.2. Set an entropy lower bound n̄ = �n · log σ − n′ · log q� − 1 as
Ω(λ). If we choose the output length k̄ = k · log p in such a way that

ξ = n̄ + �, k̄ = n̄ − 2 · (λ + log � + log n̄),

then the construction above is a secure PRF family under the LWEq,m,n′,α
assumption.

The proof is given in the full version of the paper. It may be inferred as a
sub-proof of the security proof of the upcoming DPRF construction.

4 The DPRF Construction

We design the distributed PRF by using a LISS inside the PRF construction of
Sect. 3. As mentioned earlier, the latter is well-suited to our purposes because,
in the security proof, the secret key is known to the challenger at any time.
When the secret key s is shared using a LISS, the challenger is always able to
consistently answer corruption queries because it has all shares at disposal.

In the construction, we rely on the specific LISS construction of Damg̊ard
and Thorbek [24], which is based on the Benaloh-Leichter secret sharing [10].
This particular LISS scheme is well-suited to our needs for several reasons. First,
it has binary share generating matrices, which allows obtaining relatively short
shares of s ∈ Z

n: in the security proof, this is necessary to ensure that the adver-
sary always obtains the same information about uncorrupted shares in partial
evaluation queries. Another advantage of the Benaloh-Leichter-based LISS is
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that its reconstruction constants live in {−1, 0, 1}, which avoids blowing up the
homomorphism errors when partial evaluations are combined together. Finally,
its sweeping vectors also have their coordinates in {−1, 0, 1} (whereas they may
be exponentially large in the number N of servers in the construction based on
Cramer-Fehr [23]) and we precisely need sweeping vectors κ to be small in the
proof of our Lemma 4.4.

4.1 Description

Setup(1λ, 1	, 1t, 1N ): On input of a security parameter λ, a number of servers N ,
a threshold t ∈ [1, N ] and an input length � ∈ Θ(λ), set d, e = O(N1+

√
2).

Then, choose a real α > 0, a Gaussian parameter σ =
√

e ·Ω(
√

n), which will
specify an interval [−β, β] = [−σ

√
n, σ

√
n] where the coordinates of the secret

will live (with probability exponentially close to 1). Next, do the following.

1. Choose prime moduli p, q and u such that p/u > d · 2λ+L and q/p >
2L+λ · r, where dimensions n,m, k ∈ poly(λ) such that m ≥ 2n · �log q�,
and r = mL+2 · n · β∗ · αq with β∗ = O(β · log N).

2. Choose a balanced admissible hash function AHF : {0, 1}	 → {0, 1}L, for
a suitable L ∈ Θ(λ). Choose a family Πλ of ξ-wise independent hash
functions πi : Zm

u → Z
k
u, for a suitable integer ξ > 0, with π ←↩ U(Πλ).

3. Choose random matrices A0 ←↩ U(Zn×m
q ) and Ai,b ←↩ U(Zn×m

q ), for each
i ∈ [L], b ∈ {0, 1}, subject to the constraint that G−1(Ai,b) ∈ Z

m×m be
Zq-invertible for all i ∈ [L] and b ∈ {0, 1}.

Output

pp :=
(

q, p, u, π, A0, {Ai,0,Ai,1 ∈ Z
n×m
q }L

i=1, AHF
)

,

Share(pp, SK0): Given pp and a key SK0 = s consisting of an integer vector
s sampled from the Gaussian distribution DZn,σ, return ⊥ if s �∈ [−β, β]n,
where β = σ

√
n. Otherwise, generate a LISS of s as follows.

1. Using the BL-based LISS scheme, construct the matrix M ∈ {0, 1}d×e

that computes the Boolean formula associated with the Tt,N threshold
function. By using [40], we obtain a matrix M ∈ {0, 1}d×e, so that each
row of M contains O(log N) non-zero entries.

2. For each k ∈ [n], generate a LISS of the k-th coordinate sk of s ∈ Z
n. To

this end, define a vector ρk = (sk, ρk,2, . . . , ρk,e)�, with Gaussian entries
ρk,2, . . . , ρk,e ←↩ DZ,σ, and compute

sk = (sk,1, . . . , sk,d)� = M · ρk ∈ Z
d,

whose entries are smaller than ‖sk‖∞ ≤ β∗ = O(β · log N).
3. Define the matrix S = [s1 | . . . | sn] ∈ Z

d×n. For each j ∈ [N ], define the
share of server Pj to be the sub-matrix SIj

= MIj
· [ρ1 | . . . | ρn] ∈ Z

dj×n,
where Ij = ψ−1(j) ⊂ {1, . . . , d} is the set of indexes such that Pj owns
the sub-matrix MIj

∈ {0, 1}dj×e.
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For each j ∈ [N ], the share SKj = SIj
∈ Z

dj×n is privately sent to Pj .

PEval(pp, SKj ,X): Given SKj = SIj
∈ Z

dj×n and an input X ∈ {0, 1}	,

1. Compute x = AHF(X) ∈ {0, 1}L and parse it as x = x1 . . . xL.
2. Parse S�

Ij
= [ρ1 | . . . | ρn]� · M�

Ij
∈ Z

n×dj as [s̄j,1 | . . . | s̄j,dj
]. For each

θ ∈ {1, . . . , dj}, compute

zj,θ =
⌊

(

A(x)
)� · s̄j,θ

⌋

p
∈ Z

m
p , (3)

where

A(x) = A0 ·
L
∏

i=1

G−1
(

Ai,xi

)

,

and output the partial evaluation Yj = [zj,1 | . . . | zj,dj
] ∈ Z

m×dj
p .

Eval(pp, SK0,X): Given SK0 = s ∈ Z
n and an input X ∈ {0, 1}	,

1. Compute x = AHF(X) ∈ {0, 1}L and write it as x = x1 . . . xL.
2. Compute

z̃ =
⌊

(

A(x)
)� · s

⌋

p
∈ Z

m
p ,

where A(x) = A0 ·∏L
i=1 G−1

(

Ai,xi

)

, and output y = π(�z̃�u) ∈ Z
k
u.

Combine(S, (Yj1 , . . . ,Yjt
)): Write S = {j1, . . . , jt} and parse each Yjκ

∈
Z

m×djκ
p as [zjκ,1 | . . . | zjκ,djκ

] for all κ ∈ [t].

1. Determine the vector λS ∈ {−1, 0, 1}dS such that λ�
S · MS =

(1, 0, . . . , 0)�, where MS ∈ {0, 1}dS×e is the sub-matrix of M owned by
the parties in S and dS =

∑t
κ=1 djκ

with djκ
= |ψ−1(jκ)| for all κ ∈ [t].

Then, parse λS as [λ�
j1 | . . . | λ�

jt
]�, where λjκ

∈ {−1, 0, 1}djκ for all
κ ∈ [t].

2. Compute z̃ =
∑t

κ=1 Yjκ
· λjκ

∈ Z
m
p , which equals

z̃ =
⌊

(

A(x)
)� · s

⌋

p
+ ez ∈ Z

m
p ,

for some ez ∈ {−2dS , . . . , 2dS}m.
3. Compute z = �z̃�u ∈ Z

m
u , which equals

z =
⌊

⌊

(

A(x)
)� · s

⌋

p

⌋

u

∈ Z
m
u

with overwhelming probability. Finally, output y = π(z) ∈ Z
k
u.
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By setting σ =
√

e · n = O(N
1+

√
2

2 )·√n as allowed by [40], we have share units
of magnitude β∗ = Θ(σ

√
n log N) = O

(

N
1+

√
2

2 log N
)

· n. Since d = O(N1+
√
2),

the average share size amounts to d·n·log β�

N = n · N
√
2 · (log n + O(log N)) bits.

Regarding the parameters, Theorem 4.2 allows us to rely on the presumed
hardness of LWEq,m,n′,α for n′ which may be set as Θ(n(log Nn)/(log q)) if
n(log Nn) = Ω(λ). To make sure that the best known attacks on LWE require 2λ

bit operations, it suffices that αq = Ω(
√

n′) and n′ log q/ log2 α = Ω(λ/ log λ).
We may set n = poly(λ) (for a small degree polynomial) and q = 2Ω(λ log λ) since
r contains a term mL = poly(λ)Θ(λ) = 2O(λ log λ).

We remark that our modulus q is exponential in the input length L, but not
in the number of servers N . In contrast, the DPRF of [16] requires an exponential
modulus in N incurred by the use of Shamir’s secret sharing and the technique
of clearing out the denominators [3].

4.2 Security and Correctness

We now show that the construction provides statistical consistency.

Lemma 4.1. Let pp ← Setup(1λ, 1	, 1t, 1N ) and let a secret key SK0 = s ←
DZn,σ, which is shared as (SK1, . . . , SKN ) ← Share(pp, SK0). For any t-subset
S = {j1, . . . , jt} ⊂ [N ] and input X ∈ {0, 1}	, if Yjk

= PEval(pp, SKjk
,X) for

all κ ∈ [t], we have

Combine(S, (Yj1 , . . . , Yjt
)) = Eval(pp, SK0,X)

with probability exponentially close to 1.

Proof. Let λS ∈ {−1, 0, 1}dS such that λ�
S · MS = (1, 0, . . . , 0) ∈ Z

e. If we parse
λS as [λ�

j1 | . . . | λ�
jt

]� we have

s = [ρ1 | · · · | ρn]� · M�
S · λS =

t
∑

k=1

S�
Ijk

· λjk
.

In turn, this implies

�A(x)� · s�p =

⌊

t
∑

k=1

A(x)� · S�
Ijk

· λjk

⌋

p

=
t
∑

k=1

⌊

A(x)� · S�
Ijk

⌋

p
· λjk

+ e, (4)

where the last equality of (4) stems from fact that, for any two vectors v1,v2 ∈
Z

m
q , we have �v1 + v2�p = �v1�p + �v2�p + e+, for some vector e+ ∈ {0, 1}m,

and �v1 − v2�p = �v1�p − �v2�p + e−, where e− ∈ {−1, 0}m. The error vector e
of (4) thus lives in {−dS , . . . , dS}m. By the definition of Yjk

= �A(x)� · S�
Ijk

�p,

if we define z̃ :=
∑t

k=1 Yjk
· λjk

and ez := −e ∈ {−dS , . . . , dS}m, we have

z̃ =
⌊

(

A(x)
)� · s

⌋

p
+ ez ∈ Z

m
p .
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Then, we observe that A(x)� · s is of the form Tq · A�
0 · s, for some matrix

Tq = (
∏L

i=1 G−1(Ai,xi
))� which is a product of Zq-invertible matrices. By

Lemma 2.19, A�
0 · s is statistically close to the uniform distribution U(Zm

q ).
Since Tq is invertible, the vector A(x)� · s is itself statistically close to U(Zm

q ).
Hence, the vector �A(x)� ·s�p is statistically close to U(Zm

p ) since the statistical
distance between �U(Zm

q )�p and U(Zm
p ) is at most m · (p/q). Therefore we can

apply Lemma 2.18, which implies that
⌊�A(x)� · s�p

⌋

u
=
⌊�A(x)� · s�p + ez

⌋

u

except with probability 2L · m · 4dS ·u
p ≤ 2L · m · 4d·u

p ≤ m · 2−λ.
This shows that the equality �z̃�u =

⌊�A(x)� · s�p

⌋

u
holds with overwhelm-

ing probability if the vector z̃ :=
∑t

k=1 Yjk
· λjk

in the left-hand-side member
is computed by the Combine algorithm and the right-hand-side member is the
�z̃�u computed by Eval. �

Theorem 4.2. Assume that an entropy lower bound n̄ = �n · log σ − n

2 · log e −
n′ · log q� − 1 is Ω(λ). If we set the output length k̄ = k · log u so as to have

ξ = n̄ + �, k̄ = n̄ − 2 · (λ + log � + log n̄),

then the construction above is an adaptively secure DPRF family under the
LWEq,m,n′,α assumption.

Proof. The proof considers a sequence of hybrid games. In each game, we call
Wi the event that b′ = b.

Game0: This is the experiment, as described by Definition 2.20. Namely, the
challenger initially samples a secret Gaussian vector SK0 = s ←↩ DZn,σ,
which is shared by computing

SIj
= MIj

· [ρ1 | . . . | ρn] = MIj
· Γ ∈ Z

dj×n ∀j ∈ [N ],

where

Γ =
[

ρ1 | . . . | ρn

]

=

⎡

⎢

⎢

⎢

⎣

s�

ρ1,2 . . . ρn,2

...
. . .

...
ρ1,e . . . ρn,e

⎤

⎥

⎥

⎥

⎦

∈ Z
e×n,

with ρk,ν ←↩ DZ,σ for all (k, ν) ∈ [1, n] × [2, e]. At each partial evaluation
query (j,X(i)) ∈ [N ] × {0, 1}	, the adversary A obtains

Yj =
⌊

(A(x))� · S�
Ij

⌋

p
∈ Z

m×dj
p . (5)

In the challenge phase, the adversary chooses an input X� ∈ {0, 1}	. It obtains
a random vector y� ←↩ U(Zk

u) if the challenger’s bit is b = 0. If b = 1, it
obtains the real evaluation y� = π(�z̃��u) ∈ Z

k
u, where

z̃� =
⌊

(

A(x�)
)� · s

⌋

p
∈ Z

m
p ,
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with A(x�) = A0 · ∏L
i=1 G−1

(

Ai,x�
i

)

and x� = AHF(X�) ∈ {0, 1}L. At the
end of the game, we define C� ⊂ [N ] to the set of servers that were corrupted
by A or such that an evaluation query of the form (i,X�) was made. By
hypothesis, we have |C�| < t. When the adversary halts, it outputs b̂ ∈ {0, 1}
and the challenger defines b′ := b̂. The adversary’s advantage is Adv(A) :=
|Pr[W0] − 1/2|, where W0 is event that b′ = b.

Game1: This game is identical to Game0 with the following changes. First, the
challenger runs K ← AdmSmp(1λ, Q, δ) to generate a key K ∈ {0, 1,⊥}L

for a balanced admissible hash function AHF : {0, 1}	 → {0, 1}L, with δ :=
Adv(A) and Q is an upper bound on the number of queries that the adversary
makes. When the adversary halts and outputs b̂ ∈ {0, 1}, the challenger checks
if the conditions

PK(X(1)) = · · · = PK(X(Q)) = 1 ∧ PK(X�) = 0 (6)

are satisfied, where X� is the challenge input and X(1), . . . , X(Q) are the
adversarial queries. If these conditions do not hold, the challenger ignores A’s
output b̂ ∈ {0, 1} and overwrites it with a random bit b′′ ←↩ {0, 1} to define
b′ = b′′. If conditions (6) are satisfied, the challenger sets b′ = b̂. By Lemma
2.9, we have

|Pr[W1] − 1/2| = |Pr[b′ = b] − 1/2|
≥ γmin · Adv(A) − 1

2
· (γmax − γmin) = τ,

where τ(λ) is a noticeable function.
Game2: In this game, we modify the generation of pp in the following way.

Initially, the challenger samples a uniformly random matrix A ←↩ U(Zn×m
q ).

Next, for each i ∈ [L], it samples Ri,0,Ri,1 ←↩ U({−1, 1})m×m and defines
{Ai,0,Ai,1}L

i=1 as follows for all i ∈ [L] and j ∈ {0, 1}:

Ai,j :=
{

A · Ri,j if (j �= Ki) ∧ (Ki �=⊥)
A · Ri,j + G if (j = Ki) ∨ (Ki =⊥) (7)

It also defines A0 = A · R0 + G for a randomly sampled R0 ←↩
U({−1, 1}m×m). Since A ∈ Z

n×m
q was chosen uniformly, the Leftover Hash

Lemma ensures that {Ai,0,Ai,1}L
i=1 are statistically independent and uni-

formly distributed over Z
n×m
q . It follows that |Pr[W2] − Pr[W1]| ≤ L · 2−λ

since the distribution of pp is statistically unchanged.

We note that, at each query X, we can view A(x) as a GSW encryption

A(x) = A · Rx + (
n
∏

i=1

μi) · G,

for some small norm Rx ∈ Z
m×m, where

μi :=
{

0 if (AHF(X)i �= Ki) ∧ (Ki �=⊥)
1 if (AHF(X)i = Ki) ∨ (Ki =⊥)
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If conditions (6) are satisfied, at each query X(i), the admissible hash function
ensures that x(i) = AHF(X(i)) satisfies

A(x(i)) = A · Rx(i) , (8)

for some small norm Rx(i) ∈ Z
m×m. Moreover, the admissible hash function

maps the challenge input X� to an L-bit string x� = AHF(X�) such that

A(x�) = A · Rx� + G. (9)

Game3: In this game, we modify the distribution of pp and replace the uniform
matrix A ∈ Z

n×m
q by a lossy matrix such that

A� = Ā� · C + E ∈ Z
m×n
q , (10)

where Ā ←↩ U(Zn′×m
q ), C ←↩ U(Zn′×n

q ) and E ←↩ DZm×n,αq, for n′ signif-
icantly smaller than n. The matrix in (10) is thus “computationally close”
to a matrix Ā� · C of much lower rank than n. Under the LWE assump-
tion with in dimension n′, this change should not significantly alter A’s
behavior and a straightforward reduction B shows that |Pr[W3] − Pr[W2]| ≤
n · Adv

LWEq,m,n′,α

B (λ), where the factor n comes from the use of an LWE
assumption with n secrets.

The modification introduced in Game3 has the following consequence. Assuming
that conditions (6) are satisfied, for each partial evaluation query X(i) such that
X(i) �= X�, the response is of the form Yj = [zj,1 | . . . | zj,dj

] ∈ Z
m×dj
p , where

zj,θ = �(A · Rx(i)

)� · s̄j,θ�p

= �(R�
x(i) · Ā� · C + R�

x(i) · E) · s̄j,θ�p ∀θ ∈ [dj ].

Game4: In this game, we modify the evaluation oracle and introduce a bad
event. We define BAD to be the event that the adversary makes a partial
evaluation query (j,X) such that the AHF-encoded input x = AHF(X) ∈
{0, 1}L corresponds to a matrix A(x) = A · Rx, for some small-norm Rx ∈
Z

m×m, such that we have

zj,θ = �(A · Rx

)� · s̄j,θ�p �= �(R�
x · Ā� · C) · s̄j,θ�p. (11)

for some θ ∈ [dj ]. Note that the challenger can detect this event since it knows
Ā ∈ Z

n′×m
q , C ∈ Z

n′×n
q and E ∈ Z

m×n satisfying (10). If BAD occurs, the
challenger overwrites A’s output b̂ with a random bit b′′ ←↩ {0, 1} and sets
b′ = b′′ (otherwise, it sets b′ = b̂ as before). Lemma 4.3 shows that we have
the inequality |Pr[W4] − Pr[W3]| ≤ Pr[BAD] ≤ 2−Ω(λ).

We note that, if BAD does not occur, we have
⌊

(

A · Rx(i)

)� · s̄j,θ

⌋

p
=
⌊(

R�
x(i) · Ā� · C) · s̄j,θ

⌋

p
∀(j, θ) ∈ [N ] × [dj ] (12)
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at each query (j,X(i)) for which X(i) �= X� . We note that the right-hand-side
member of (12) is fully determined by R�

x(i) · Ā� and the product C · s̄j,θ ∈ Z
n′
q .

This means that partial evaluation queries (j,X(i)) such that X(i) �= X� always
reveal the same information (namely, C · s̄j,θ ∈ Z

n′
q ) about s̄j,θ ∈ Z

n.
Conversely, the right-hand-side member of (12) uniquely determines C · s̄j,θ

with high probability: observe that R�
x(i) ·Ā� is statistically uniform over Zm×n′

q ,
so by Lemma 2.1, the quantity �R�

x(i) · Ā� · (C · s)�p is an injective function of
C · s mod q. It comes that partial evaluation queries information-theoretically
reveal C · s mod q, but we will show that s still retains high entropy in A’s view.

Game5: In this game, we modify the challenge value for which, if b = 1, the
adversary is given a random y� ←↩ U(Zk

u). Clearly, we have Pr[W5] = 1/2
since the distribution of the challenge value does not depend on b ∈ {0, 1}.
Moreover, we will show that |Pr[W5] − Pr[W4]| ≤ 2−Ω(λ).

Indeed, we claim that, conditionally on A’s view, the vector y� is already sta-
tistically uniform over Z

k
u in Game4. Indeed, the source �z̃��u depends on an

injective function G� · s ∈ Z
m
q of the vector s. In Lemma 4.4, we show that this

vector has high min-entropy if BAD does not occur.
We observe that the source �z̃��u can be written

�z̃��u =

⌊⌊(
A · Rx� + G

)� · s
⌋

p

⌋
u

(13)

=
⌊(

A · Rx� + G
)� · s

⌋
u

+ es,x,u with es,x,u ∈ {−1, 0}m

= �R�
x� · A� · s�u + �G� · s�u + es,x,u + es,x, with es,x ∈ {0, 1}m

= �R�
x� · A� · s�u + �G� · s�u + e′

s,x, with e′
s,x ∈ {−1, 0, 1}m. (14)

The proof of Lemma 4.3 (see also the proof of the claim in Game 4 in the proof of
Theorem 3.2) implies that �R�

x� ·A� ·s�p = �R�
x� ·Ā� ·C ·s�p with overwhelming

probability. In turn, this implies H∞
(�R�

x� · A� · s�u | C · s
)

= 0 with high
probability. In the expression of z̃� in (14), we also remark that �G� · s�u + e′

s,x

is an injective function of s ∈ Z
n. To see this, observe that

�G� · s�u + e′
s,x = (u/q) · G� · s′ − ts,x + e′

s,x

for some ts,x ∈ (0, 1)m, so that

(q/u) · (�G� · s�u + e′
s,x) = G� · s + e′′

s,x (15)

for some e′′
s,x ∈ (−q/u, 2·q/u)m. The vector s is thus uniquely determined by (15)

using the public trapdoor of G so long as q/u � q.
Consider the entropy of z̃� conditionally on A’s view. We have

H∞
(�z̃��u | C · Γ�, {SIj

}j∈C�

)

= H∞
(�R�

x� · A� · s�u + �G� · s�u + e′
s,x | C · Γ�, {SIj

}j∈C�

)

= H∞
(�G� · s�u + e′

s,x | C · Γ�, {SIj
}j∈C�

)

= H∞
(

s | C · Γ�, {SIj
}j∈C�

) ≥ n · log σ − n

2
· log e − n′ · log q − 1.
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Here, the last inequality is given by Lemma 4.4. The second equality follows
from the fact that, for any random variables X,Y,Z defined over an additive
group, we have H∞(Y + Z | X) = H∞(Z|X) if H∞(Y |X) = 0.

In order to extract statistically random bits from z̃�, we must take into
account that it possibly depends on x� which may depend on pp. As long as
PK(X�) = 0, the source z̃� is taken from a distribution determined by the
challenge input X� ∈ {0, 1}	 within a collection of less than 2	 distributions
(namely, those inputs X for which PK(X) = 0), which all have min-entropy
n̄ ≥ n log σ − n

2 · log e − n′ log q − 1. By applying Lemma 2.11 with ε = 2−λ for
a collection X of at most M = 2	 distributions, we obtain that the distribution
of π(�z̃��u) is 2−Ω(λ)-close to the uniform distribution over Z

k
u. �


Lemma 4.3. Assume that q/p > 2L+λ · r, where r = mL+2 · n · β∗ · αq with
β∗ = O(β · log N). Then, we have the inequality

|Pr[W4] − Pr[W3]| ≤ Pr[BAD] ≤ 2−Ω(λ).

(The proof is given in the full version of the paper.)

Lemma 4.4. In Game4, the min-entropy of s conditionally on A’s view is at
least n · log σ − n

2 · log e − n′ · log q − n
2n .

Proof. Let us assume that BAD does not occur in Game4 since, if it does, the
challenger replaces the adversary’s output with a random bit, in which case both
games have the same outcome. We show that, assuming ¬BAD, the shared secret
vector s retains high min-entropy conditionally on the adversary’s view.

Let us first recap what the adversary can see in Game4. For each partial
evaluation query (j,X�), the response �(A · Rx� + G

)� · S�
Ij

�p consists of non-
lossy functions of S�

Ij
∈ Z

n×dj . We thus consider partial evaluation queries
of the form (j,X�) as if they were corruption queries and assume that they
information-theoretically reveal SIj

(we thus merge the two sets C and E of Def-
inition 2.20 into one set C�). As for uncorrupted shares {SIj

}j∈[N ]\C� , partial
evaluation queries (j,X(i)) for which X(i) �= X� only reveal the information
{C · S�

Ij
}j∈[N ]\C� . More precisely, those partial evaluations {Yj}j∈[N ]\C� can be

written

Yj =
⌊

(A(x(i)))� · S�
Ij

⌋

p
=
⌊

(Rx(i) · Ā� · C) · S�
Ij

⌋

p
(16)

where

S�
Ij

=

⎡

⎢

⎣

ρ�
1
...

ρ�
n

⎤

⎥

⎦ · M�
Ij

∈ Z
n×dj

is a product of M�
Ij

with the matrix [ρ1 | . . . | ρn]� ∈ Z
n×e whose first column is

the secret SK0 = s ∈ Z
n. Hence, the information revealed by (16) for j ∈ [N ]\C�

is only a lossy function C · S�
Ij

of the share SIj
: namely,



Adaptively Secure Distributed PRFs from LWE 415

C ·

⎡

⎢

⎣

ρ�
1
...

ρ�
n

⎤

⎥

⎦ · M�
Ij

=

⎡

⎢

⎣ C · s C ·

⎛

⎜

⎝

ρ2,2

...
ρn,2

⎞

⎟

⎠ . . . C ·

⎛

⎜

⎝

ρ2,e

...
ρn,e

⎞

⎟

⎠

⎤

⎥

⎦ · M�
Ij

, (17)

= C · Γ� · M�
Ij

,

where

Γ =
[

ρ1 | . . . | ρn

]

=

⎡

⎢

⎢

⎢

⎣

s�

ρ2,2 . . . ρn,2

...
. . .

...
ρ2,e . . . ρn,e

⎤

⎥

⎥

⎥

⎦

∈ Z
e×n

is the matrix of Gaussian entries which is used to compute secret key shares

SIj
= MIj

· Γ ∀j ∈ [N ].

The information revealed by exposed shares {SIj
}j∈C� can thus be written

SIj
= [sIj ,1 | . . . | sIj ,n] = MIj

· Γ ∈ Z
dj×n ∀j ∈ C�. (18)

At this stage, we see that proving the following fact on distributions is sufficient
to complete the proof of the lemma.

Fact. Let MC� to be the sub-matrix of M obtained by stacking up the rows
assigned to corrupted parties j ∈ C�. Conditionally on

(

C, C · Γ� · M�, MC� , MC� · Γ), (19)

the vector s� = (1, 0, . . . , 0)� · Γ has min-entropy at least

n · log σ − n

2
· log e − n′ · log q − n

2n
.

To prove this statement, we apply arguments inspired from [4, Lemma 1].
First, we observe that conditioning on (19) is the same as conditioning on

(

C,C·
Γ� ·M�

[N ]\C� ,MC� ,MC� ·Γ) since MC� ·Γ and C are given. In fact, it is sufficient
to prove the result when conditioning on

(

C,C · Γ�,MC� ,MC� · Γ),
as C · Γ� · M�

[N ]\C� is computable from C · Γ�. By the definition of an Integer
Span Program, we know that there exists a sweeping vector κ ∈ Z

e whose first
coordinate is κ1 = 1 and such that MC� · κ = 0. The rows of MC� thus live
in the lattice LC� = {m ∈ Z

e : 〈m,κ〉 = 0}. Hence, if we define a matrix
LC� ∈ Z

(e−1)×e whose rows form a basis of LC� , we may prove the min-entropy
lower bound conditioned on

(

C,C · Γ�, LC� , LC� · Γ).
This is because LC� · Γ provides at least as much information as MC� · Γ.
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We first consider the distribution of Γ, conditioned on (LC� , LC� ·Γ). Since the
columns of Γ are statistically independent, we may look at them individually. For
each i ∈ [n], we let ρ∗

i ∈ Z
e be an arbitrary solution of LC� ·ρ∗

i = LC� ·ρi ∈ Z
e−1
q .

The distribution of ρi ∈ Z
e conditionally on

(

LC� , LC� · ρi

)

is ρ∗
i + DΛ,σ,−ρ∗

i
,

where Λ = {x ∈ Z
e | LC� · x = 0} is the 1-dimensional lattice Λ = κ · Z.

At this stage, we know that conditioned on (LC� , LC� · Γ), each row ρi =
(si, ρi,2, . . . , ρi,e)� of Γ� is Gaussian over an affine line. We use this observation
to show that conditioning on (C,C ·Γ�, LC� , LC� ·Γ) is the same as conditioning
on (C,C · s, LC� , LC� · Γ).3 In fact, we claim that, conditioned on (LC� , LC� · Γ),
the last e − 1 columns of Γ� do not reveal any more information than its first
column. Indeed, conditioned on (LC� , LC� · Γ), each ρi can be written ρi =
ξi · κ + ρ∗

i for some integer ξi ∈ Z. We may assume that the shifting vector
ρ∗

i = (ρ∗
i,1, . . . , ρ

∗
i,e)

� ∈ Z
e
q is known to A as it can be obtained from LC� · ρi via

de-randomized Gaussian elimination. Writing κ = (κ1, . . . , κe), the j-th column
(Γ�)j of Γ� is

(Γ�)j = κj ·

⎛

⎜

⎝

ξ1
...

ξn

⎞

⎟

⎠+

⎛

⎜

⎝

ρ∗
1,j
...

ρ∗
n,j

⎞

⎟

⎠ ∀j ∈ [e].

As κ1 = 1, we have

(Γ�)j = κj · (Γ�)1 − κj ·

⎛

⎜

⎝

ρ∗
1,1
...

ρ∗
n,1

⎞

⎟

⎠+

⎛

⎜

⎝

ρ∗
1,j
...

ρ∗
n,j

⎞

⎟

⎠ ∀j ∈ [e].

In the latter, the last two terms are information-theoretically known to A (once
we have conditioned on (LC� , LC� · Γ)) and so is κj .

We now study the distribution of s = (Γ�)1 conditioned on (LC� , LC� ·Γ). By
statistical independence, we may consider each coordinate si = (1, 0, . . . , 0)� ·ρi

of s individually. Recall that, conditioned on (LC� , LC� ·Γ), each ρi is distributed
as ρ∗

i + DκZ,σ,−ρ∗
i
. Write ρ∗

i = y · κ + (ρ∗
i )

⊥, with y ∈ R and (ρ∗
i )

⊥ orthogonal
to κ. Then,

ρ∗
i + DκZ,σ,−ρ∗

i
= (ρ∗

i )
⊥ + y · κ + DκZ,σ,−y·κ−(ρ∗

i )
⊥

= (ρ∗
i )

⊥ + y · κ + κ · DZ,σ/‖κ‖,−y.

We now take the inner product with (1, 0, . . . , 0) and use the fact that κ1 = 1
to obtain that, conditioned on (LC� , LC� · Γ), the coordinate si is distributed
as (ρ∗

i )
⊥
1 + y + DZ,σ/‖κ‖,−y. As κ ∈ {−1, 0, 1}e with the Benaloh-Leichter-based

LISS scheme of [24], and by our choice of σ, we have that σ/‖κ‖ = Ω(
√

n).
Using Lemma 2.3 (Remark 2.4), this implies that each si has min-entropy ≥

3 Note that conditioned on (LC� , LC� ·Γ), the rows of Γ� are Gaussian on affine lines,
but a column of Γ� is an inner product of unit vector with all these rows.
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log (σ/‖κ‖) − 2−n ≥ log σ − 1
2 log e − 2−n . Overall, we obtain

H∞
(

s | LC� , LC� · Γ) ≥ n · log σ − n

2
· log e − n

2n
.

We are now ready to conclude. By the above, to prove the fact (and hence the
lemma), it suffices to obtain a lower bound on the min-entropy of s conditioned
on (C,C · s, LC� , LC� · Γ). We then use the above min-entropy lower bound on s
conditioned on (LC� , LC� ·Γ) and the fact that given C, the quantity C · s ∈ Z

n′
q

reveals at most n′ log q bits. �
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A Definition of Static DPRF Security

In this section, we recall the definition of static security used in [16].

Definition A.1. Let λ be a security parameter and let integers t,N ∈ poly(λ).
A (t,N)-DPRF is pseudorandom under static corruptions if no PPT adversary
has non-negligible advantage in the following game:

1. The challenger generates pp ← Setup(1λ, 1	, 1t, 1N ) and chooses a random key
SK0 ←↩ K, which is broken into N shares (SK1, . . . , SKN ) ← Share(SK0).
It also initializes empty sets C,V ← ∅ and flip a random coin b ←↩ U({0, 1}).

2. The adversary A chooses a set S� = {i1, . . . , it−1} and the challenger returns
the secret key shares {SKi1 , . . . , SKit−1}.

3. The adversary A adaptively interleaves the following kinds of queries.

Evaluation: A chooses an input X ∈ D. The challenger replies by returning
{Yi = PEval(SKi,X)}i∈[N ]\S� and updating V := V ∪ {X}.

Challenge: A chooses an input X ∈ D. If X previously occurred in a
challenge query, the challenger returns the same output as before. Oth-
erwise, it randomly chooses YX,0 ←↩ U({0, 1}μ) and computes YX,1 =
Eval(SK0,X). It returns YX,b and updates C := C ∪ {X}.

It is required that C ∩ V = ∅ at any time.
4. The adversary A outputs a bit b̂ ∈ {0, 1} and wins if b̂ = b. Its advantage is

defined to be AdvDPRF
A (λ) := |Pr[b̂ = b] − 1/2|.

We may assume w.l.o.g. that the adversary only makes one challenge query
in the experiment of Definition A.1. Indeed, a standard hybrid argument
allows showing that security in the single-challenge sense implies security when
polynomially-many queries are allowed.
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