
Smooth NIZK Arguments

Charanjit S. Jutla1(B) and Arnab Roy2

1 IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
csjutla@us.ibm.com

2 Fujitsu Laboratories of America, Sunnyvale, CA, USA
aroy@us.fujitsu.com

Abstract. We introduce a novel notion of smooth (-verifier) non- inter-
active zero-knowledge proofs (NIZK) which parallels the familiar notion
of smooth projective hash functions (SPHF). We also show that the sin-
gle group element quasi-adaptive NIZK (QA-NIZK) of Jutla and Roy
(CRYPTO 2014) and Kiltz and Wee (EuroCrypt 2015) for linear sub-
spaces can be easily extended to be computationally smooth. One impor-
tant distinction of the new notion from SPHFs is that in a smooth NIZK
the public evaluation of the hash on a language member using the pro-
jection key does not require the witness of the language member, but
instead just requires its NIZK proof.

This has the remarkable consequence that if one replaces the tradition-
ally employed SPHFs with the novel smooth QA-NIZK in the Gennaro-
Lindell paradigm of designing universally-composable password- authen-
ticated key-exchange (UC-PAKE) protocols, one gets highly efficient
UC-PAKE protocols that are secure even under adaptive corruption.
This simpler and modular design methodology allows us to give the first
single-round asymmetric UC-PAKE protocol, which is also secure under
adaptive corruption in the erasure model. Previously, all asymmetric UC-
PAKE protocols required at least two rounds. In fact, our protocol just
requires each party to send a single message asynchronously. In addi-
tion, the protocol has short messages, with each party sending only four
group elements. Moreover, the server password file needs to store only
one group element per client. The protocol employs asymmetric bilin-
ear pairing groups and is proven secure in the (limited programmability)
random oracle model and under the standard bilinear pairing assumption
SXDH.

Keywords: QA-NIZK · Bilinear pairings · SXDH · MDDH
UC-PAKE · Online attack · Server compromise · Dual-system

1 Introduction

Ever since the remarkably efficient non-interactive zero knowledge (NIZK) proofs
[BFM88] for algebraic statements were developed by Groth and Sahai (GS-
NIZK) [GS12], there have been significant efficiency improvements and innova-
tions in the construction of cryptographic protocols. Jutla and Roy [JR13,JR14]
c© International Association for Cryptologic Research 2018
A. Beimel and S. Dziembowski (Eds.): TCC 2018, LNCS 11239, pp. 235–262, 2018.
https://doi.org/10.1007/978-3-030-03807-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03807-6_9&domain=pdf
https://doi.org/10.1007/978-3-030-03807-6_9

236 C. S. Jutla and A. Roy

and Libert, Peters, Joye and Yung [LPJY14] further improved the efficiency of
algebraic NIZK proofs, culminating in constant size NIZK proofs for linear sub-
spaces, independent of the number of equations and witnesses. This efficiency
improvement came in the weaker Quasi-Adaptive setting [JR13], which never-
theless proved sufficient for many applications.

Quasi-adaptive NIZK (QA-NIZK) proofs were further extended to provide
simulation soundness [LPJY14,KW15] and dual-system simulation soundness
[JR15], thus lending applicability to many more applications, such as structure
preserving signatures, password authenticated key exchange in the UC model,
and keyed homomorphic CCA-secure encryption.

In this paper, we further extend (QA-)NIZK proofs to provide an additional
property called smooth soundness. The idea is to force the verification step to
consist of computing hashes in two different ways and comparing the result. To
this end, the verifier is split into three algorithms: a randomized hash-key gen-
eration algorithm, a public hashing algorithm and a private hashing algorithm.
The verification step starts off by generating two hash-keys, the private key and
the projection key. Next, the setting allows computation of a private hash given
the private hash-key and the word, and computation of the public hash using
the projection key and just a QA-NIZK proof for the word - the witness for
the word is not required. Completeness states that the private hash is equal to
the public hash for a language member and correct (QA-)NIZK proof. Compu-
tational soundness states that it is hard to come up with a proof such that a
non-language word passes the same equality check. The new smoothness prop-
erty states that for any non-language word, the private hash algorithm outputs
a value (computationally) indistinguishable from uniformly random, even when
the projection key is given to the adversary.

Comparison with SPHFs. The new primitive is modeled after smooth projective
hash functions (SPHF [CS02]). An SPHF also generates private and projection
hash-keys and defines a private hash and a public hash. Further, similar prop-
erties hold where (1) for a member word, private hash equals public hash, (2)
for a non-member word, private hash is uniformly random (even given projec-
tion hash-key). The crucial difference is that1, whereas the SPHF public hash
computation requires a witness of the member word, the smooth (QA-)NIZK
public hash requires only a NIZK proof of the word. This allows for hiding of
the witness, even when computing using the projection hash-key. In contrast,
trapdoor-SPHFs as introduced by [BBC+13] allow a simulation world to have
a trapdoor to evaluate a hash over a word without a witness and using only
projection hash-key. As shown in Fig. 1, where trapdoor-SPHFs are compared
with smooth QA-NIZK, their notion does not allow “erasure” of the witness w
in the real world (if only projection hash-key is available).

While Fig. 1 is self-explanatory, it brings up an interesting alternative inter-
pretation of smooth (QA)-NIZK. In the common reference string (CRS) setting,
one can have a composite-SPHF, which is composed of two SPHFs: the first
1 On the other hand, our constructions only allow computational smooth-soundness,

while for SPHFs these properties hold information-theoretically.

Smooth NIZK Arguments 237

SPHF’s projection hash-key is published in the CRS, that enables one to com-
pute an intermediate-hash using the witness w of a language member x. At this
point, the witness can be erased. Next, the real projection hash-key hp is revealed
(possibly, generated by another party along with the private hash-key hk). Then,
a final hash on input x can be computed using hp and the intermediate-hash.
If x is a language member then the final hash is same as that computed from x
using hk. The question then arises as to why the intermediate-hash is depicted
as a (QA)-NIZK in Fig. 1. However, we note that this first SPHF is already
publicly verifiable, as the private hash-key of the first SPHF is generated by the
CRS generator, and if it has to be used in any form in a private hash evaluation
(and in the real world) it must be publicly available in the CRS. Indeed, in our
construction the private hash-key k is given in the CRS as a commitment to
k (this interpretation of QA-NIZK as a publicly-verifiable SPHF was given in
[KW15]).

We remark that this interpretation of smooth (QA)-NIZK is similar to
constructions of structure-preserving SPHF in [BC16a]. In that work, the
intermediate-hash is a GS-NIZK proof in the commit and prove framework
[GS12], and hence the (second) private-hash takes the commitments also as
input. Although the first hash is not a SPHF, their construction can still be
viewed as a smooth NIZK (as per our definition2). Since their construction also
works only for linear subspaces, our smooth QA-NIZK construction turns out
to be more efficient, namely that no commitments need to be given for private
hash computation.

Priv

(x,w) : x = Mw

QANIZK(x; w)

CRS = ([M�k]1; [kĀ]2, [Ā]2)

hp∗

hp‖hk

Hash∗

Hash

H(x)

w

Hash

x

(ALL IN REAL WORLD)

(x,w) ∈ L

CRS ; TRAP

hp‖hkHash

H(x)

w

Priv
Hash

x

(REAL WORLD)

Sim
Hash

x

H(x)

(SIM WORLD)

([M�k]1)
Pub Pub

Pub

w erased

$

$

Fig. 1. Trapdoor-SPHF [BBC+13] vs Smooth QANIZK

Our Construction. In this work, we show that the single group element QA-
NIZK arguments of [JR14,KW15] can be easily extended to be smooth. As a
2 Since their construction uses the commit and prove paradigm of GS-NIZK proofs,

their (composite-) construction is a smooth NIZK with a small tweak: they obtain
information-theoretic smoothness, but computational zero-knowledge.

238 C. S. Jutla and A. Roy

first application, we show that in the Gennaro-Lindell paradigm of designing
universally-composable password-authenticated key exchange (UC-PAKE) pro-
tocols, if one replaces the traditional SPHFs with the novel smooth QA-NIZK,
then one gets highly efficient single-round UC-PAKE protocols which are adap-
tively secure in the erasure model. At a high level, the UC simulator must emulate
each party’s outgoing commitment to the password, without knowing the pass-
word. This is not difficult, as one can use ElGamal encryption to achieve a hiding
commitment. However, if the party is corrupted after its message has been sent,
the simulator is at a loss to produce a witness which each party must retain to
eventually compute the SPHF public hash. In our new protocol, the parties need
only save the QA-NIZK and not the witness, as that suffices to compute the pub-
lic hash. This nicely captures the main idea behind the single-round adaptively
secure UC-PAKE of [JR15]. In this work, the novel abstraction further allows
us to obtain a single-round adaptively secure asymmetric UC-PAKE, which is a
much more difficult notion to understand even from a definitional perspective,
let alone constructing one.

(Asymmetric) Password-Authenticated Key-Exchange. The problem of
setting up a secure channel between two parties that only share a human-
memorizable password (or a low-entropy secret) was first studied by Bellovin
and Merritt [BM92], and later by Jiang and Gong [JG04]. Since then, this prob-
lem has been extensively studied and is called the password-authenticated key-
exchange (PAKE) problem. One of the main challenges in designing such pro-
tocols is the intricacy in the natural security definition which requires that the
protocol transcripts cannot be used to launch offline dictionary attacks. While
an adversary can clearly try to guess the (low-entropy) password and imperson-
ate one of the parties, its advantage from the fact that the password is of low
entropy should be limited to such online impersonation attacks.

In a subsequent paper, Bellovin and Merritt [BM93] also considered a
stronger model of server compromise such that if a server’s password file is
revealed to the adversary it cannot directly impersonate a client (cf. if the pass-
word was stored in the raw at the server). The adversary should be able to
impersonate the client only if it succeeds in an offline dictionary attack on the
revealed server password file. Clearly, this requires that the server does not store
the password as it is (or in some reversibly-encrypted form), and protocols sat-
isfying this stronger security requirement are referred to as asymmetric PAKE
protocols.

Canetti et al. [CHK+05] also considered designing (symmetric) UC-PAKE
protocols in the universally-composable (UC) framework [Can01]. One of their
main contributions was the definition of a natural UC-PAKE ideal functionality
(Fpake). Gentry et al. [GMR06] extended the functionality of symmetric UC-
PAKE [CHK+05] to the asymmetric setting (FapwKE) and gave a general method
of extending any symmetric UC-PAKE protocol to an asymmetric UC-PAKE
protocol (from now on referred to as UC-APAKE). Their general method adds
an additional round to the UC-PAKE protocol.

Smooth NIZK Arguments 239

Our Contributions. In this paper, we give the first single-round UC-APAKE pro-
tocol (realizing FapwKE). In fact, both parties just send a single message asyn-
chronously. The protocol is realized in the (limited programmability3) random-
oracle (RO) [BR93] hybrid-model under standard static assumptions for bilin-
ear groups, namely SXDH [BBS04] and the general MDDH [EHK+13] assump-
tion. Our protocol is also secure against adaptive corruption (in the erasure
model) and is very succinct, with each message consisting of only four group
elements. Moreover, for each client the server need store only one group ele-
ments as a “password hash”. Many non-UC asymmetric PAKE protocols are
at least two rounds [HK98,BPR00,BMP00,Mac01,Boy09]. Benhamouda and
Pointcheval [BP13] proposed the first single round asymmetric PAKE protocol,
but in a game-based model built on the BPR model [BPR00].

The first single-round UC-secure symmetric PAKE protocol was given in
[KV11] (using bilinear pairings), which was then further improved (in the number
of group elements) in subsequent papers [JR12,BBC+13]. Recently in [JR15],
a single round UC-PAKE protocol (in the standard model and using bilinear
pairings) was also proven secure against adaptive corruption using ideas from
the dual-system IBE construction of Waters [Wat09]. However, the [JR15] con-
struction did not employ their dual-system simulation-sound QA-NIZK proofs
(DSS-QA-NIZK) in a black box manner. Instead, it used ideas from the DSS-
QA-NIZK construction and properties as the underlying intuition for the proof.

In this paper, we show that the UC-PAKE of [JR15] can be built in a
black-box manner using smooth QA-NIZK arguments. Next, we build on the
verifier-based PAKE (VPAKE) construction of [BP13], to construct the first
adaptively-secure UC-APAKE protocol, which in addition has a single (asyn-
chronous) round. Since, in the UC framework, the simulator has to detect offline
password guesses by an adversary that steals the server password file, for prov-
able security this seems to inevitably require the RO model, and indeed our
security proof is in the (limited programmability) RO model.

In our protocol, each party sends an ElGamal style encryption of the (hash
of) the password pw to the other party, along with an SPHF of the underly-
ing language and a projection verification hash-key of a smooth QA-NIZK of
the underlying language (ElGamal augmented with the SPHF). If such a mes-
sage is adversarially inserted, the simulator must have the capability to extract
password pw′ from it, so that it can feed the ideal functionality FapwKE to test
this guess of the password. Thus, the NIZK proof must have simulation-sound
extractability. It was shown in [JR15] that dual-system simulation soundness
suffices for this purpose (and that makes the protocol very simple). When using
smooth QA-NIZK, this dual-system simulation-soundness can be attained by
simply sending an SPHF.

Detailed explanations can be found in Sect. 5 with proof details in the full
version [JR16], where we also explain how the random oracle is used to extract
the password efficiently from the exponent. This leads to a security reduction

3 Basically, the output values of the random oracle are all randomly chosen, but dif-
ferent inputs can be assigned dynamically to these outputs [FLR+10].

240 C. S. Jutla and A. Roy

which has an additive computational overhead of n ∗ m ∗ poly(q), where n is the
number of random oracle calls, m is the number of online attacks and q is the
security parameter.

Recent Related Work. Recently, [JKX18] formulated a stronger UC-APAKE func-
tionality that disallows use of pre-computation to attack a stolen password file.
Using an ideal functionality for oblivious pseudo-random functions (OPRF), they
give a compiler that converts any standard UC-APAKE realization (such as in
this paper) into one that satisfies their stronger definition (in the OPRF-hybrid
model). Thus, if the OPRF can be realized with adaptive corruption, then we
obtain a adaptive corruption secure (strong) UC-APAKE realization. However,
to the best of our knowledge, no adaptive corruption secure (UC-) OPRF real-
ization is known, and hence the problem of realizing adaptive corruption secure
strong UC-APAKE remains open.

Organization. The rest of the paper is organized as follows. In Sect. 2, we intro-
duce the new notion of smooth QA-NIZK proofs. In Sect. 3, we recall the MDDH
assumptions and establish a useful boosting theorem relating the assumptions.
In Sect. 4, we give the single group element smooth QA-NIZK construction for
linear subspaces. In Sect. 5, we describe the ideal functionality FapwKE for asym-
metric password-authenticated key-exchange and construct the new single-round
UC-APAKE protocol. Preliminaries and proofs of many of the theorems are rel-
egated to the Appendix.

2 Smooth Quasi-Adaptive NIZK Proofs

We start by reviewing the definition of Quasi-Adaptive computationally-sound
NIZK proofs (QA-NIZK) [JR13]. A witness relation is a binary relation on pairs
of inputs, the first called a (potential) language member and the second called
a witness. Note that each witness relation R defines a corresponding language
L which is the set of all x for which there exists a witness w, such that R(x,w)
holds.

We will consider QA-NIZK proofs for a probability distribution D on a collec-
tion of (witness-) relations R = {Rρ} (with corresponding languages Lρ). Recall
that in a QA-NIZK, the CRS can be set after the language parameter has been
chosen according to D. We recall the formal definition of Quasi-Adaptive NIZK
below from [JR13].

Definition 1 (QA-NIZK [JR13]). We call a tuple of efficient algorithms
(pargen, crsgen, prover, ver) a quasi-adaptive non-interactive zero-knowledge
(QA-NIZK) proof system for witness-relations Rλ = {Rρ} with parameters sam-
pled from a distribution D over associated parameter language Lpar, if there
exist simulators crssim and sim such that for all non-uniform PPT adversaries
A1,A2,A3, we have (in all of the following probabilistic experiments, the exper-
iment starts by setting λ as λ ← pargen(1m), and choosing ρ as ρ ← Dλ):

Smooth NIZK Arguments 241

Quasi-Adaptive Completeness:

Pr

⎡
⎣
crs ← crsgen(λ, ρ)
(x,w) ← A1(crs, ρ)
π ← prover(crs, x, w)

:
ver(crs, x, π) = 1 if

Rρ(x,w)

⎤
⎦ = 1

Quasi-Adaptive Soundness:

Pr
[
crs ← crsgen(λ, ρ)
(x, π) ← A2(crs, ρ) :

x /∈ Lρ and
ver(crs, x, π) = 1]

]
≈ 0

Quasi-Adaptive Zero-Knowledge:

Pr
[
crs ← crsgen(λ, ρ) : Aprover(crs,·,·)

3 (crs, ρ) = 1
]

≈
Pr

[
(crs, trap) ← crssim(λ, ρ) : Asim∗(crs,trap,·,·)

3 (crs, ρ) = 1
]
,

where sim∗(crs, trap, x, w) = sim(crs, trap, x) for (x,w) ∈ Rρ and both oracles
(i.e. prover and sim∗) output failure if (x,w) �∈ Rρ.

We call a QA-NIZK smooth (-verifier) if the verifier ver consists of three
efficient algorithms ver = (hkgen, pubH, privH), and it satisfies the following mod-
ified completeness and soundness conditions. Here, hkgen is a probabilistic algo-
rithm that takes a crs as input and outputs two keys, hp, a projection hash key,
and hk, a private hash key. The algorithm privH takes as input a word (e.g. a
potential language member), and a (private hash) key, and outputs a string. Sim-
ilarly, the algorithm pubH takes as input a word, a proof (for instance generated
by prover), and a (projection hash) key hp, and outputs a string.

The completeness property is now defined as:

Pr

⎡
⎢⎢⎣
crs ← crsgen(λ, ρ)
(x,w) ← A1(crs, ρ)
π ← prover(crs, x, w)
(hp, hk) ← hkgen(crs)

:
privH(hk, x) = pubH(hp, x, π)

if Rρ(x,w)

⎤
⎥⎥⎦ = 1

The QA-NIZK is said to satisfy smooth-soundness if for all words x �∈ Lρ,
privH(hk, x) is computationally indistinguishable to the Adversary from uni-
formly random, even when the Adversary is given hp, and even if it produces x
after receiving hp.

More precisely, Quasi-Adaptive Smooth-Soundness is the following
property (let U be the uniform distribution on the range of privH, which is
assumed to be of cardinality exponential in m): for every two-stage efficient
oracle adversary A

Pr
[
crs ← crsgen(λ, ρ), (hp, hk) ← hkgen(crs)
(x∗, σ) ← AO(crs, ρ, hp), u ← U : AO(privH(hk, x∗), σ) = 1 | Q

]

≈

Pr
[
crs ← crsgen(λ, ρ), (hp, hk) ← hkgen(crs)
(x∗, σ) ← AO(crs, ρ, hp), u ← U : AO(u, σ) = 1 | Q

]

242 C. S. Jutla and A. Roy

where the oracle O is instantiated with privH(hk, ·), and Q is the condition that
x∗ is not in the language Lρ and all oracle calls by the adversary in both stages
are with Lρ-language members. Here, σ is a local state of A.

Note that as opposed to the information-theoretic smoothness property of
projective hash functions, one cannot argue here that privH(hk, x) for x ∈ Lρ

can instead just be computed using hp, as that would also require efficiently
computing a witness for x. Hence, the need to provide oracle access to privH(hk, ·)
for language members.

Also, note that smooth-soundness implies the earlier definition of soundness
[JR13] if verification of (x, π) is defined as privH(hk, x) = pubH(hp, x, π).

To differentiate the functionalities of the verifier of a QA-NIZK from simi-
lar functionalities of an SPHF, we will prepend the SPHF functionalities with
keyword sphf and the QA-NIZK verifier functionalities with the keyword ver.

3 Matrix Decisional Assumptions

We will consider bilinear groups that consist of three cyclic groups of prime
order q, G1,G2 and GT with an efficient bilinear map e : G1 ×G2 → GT . Group
elements g1 and g2 will typically denote generators of the group G1 and G2

respectively. Following [EHK+13], in this section and the next we will use the
notations [a]1, [a]2 and [a]T to denote ag1, ag2, and a · e(g1,g2) respectively and
use additive notations for group operations. When talking about a general group
G with generator g, we will just use the notation [a] to denote ag. However, in
the UC-APAKE constructions, we will switch to multiplicative notation for easy
readability.

For two vector or matrices A and B, we will denote the product A�B as
A · B. The pairing product e([A]1, [B]2) evaluates to the matrix product [AB]T
in the target group with pairing as multiplication and target group operation as
addition.

We recall the Matrix Decisional Diffie Hellman or MDDH assumptions from
[EHK+13]. A matrix distribution Dl,k, where l > k, is defined to be an efficiently
samplable distribution on Z

l×k
q which is full-ranked with overwhelming probabil-

ity. The Dl,k−mddh assumption in group G states that with samples A ← Dl,k

and (s, s′) ← Z
k
q ×Z

l
q, the tuple ([A], [As]) is computationally indistinguishable

from ([A], [s′]). A matrix distribution Dk+1,k is simply denoted by Dk.
Intuitively, a Dl,k−mddh assumption allows us to generate l (computation-

ally) independently random group elements from an initial k independently ran-
dom exponents. A Dk−mddh assumption allows us to generate one extra ran-
dom group element. In this section, we will establish that, in fact, a Dk−mddh
assumption can be boosted to generate additional (computationally) indepen-
dently random elements. This will be useful to us in the next section to prove
the smoothness property of our construction.

We remark that boosting is different from the random self-reducibility of
Dl,k−mddh assumptions, as described by [EHK+13]. While the former aims to
generate extra randomness from the same initial sample of vector of random

Smooth NIZK Arguments 243

exponents, the latter talks about results from several independent samples of
vector of random exponents. Boosting can be seen as an abstraction of the
switching lemma of [JR14] and follows the same blueprint for the proof.

For an l × k matrix A, we denote Ā to be the top k × k square sub-matrix of
A and A to be the bottom (l − k) × k sub-matrix of A.

Theorem 1. Let Dk be a matrix distribution on Z
(k+1)×k
q . Define another

matrix distribution Dl,k on Z
l×k
q as follows: First sample matrices A ← Dk and

R ← Z
(l−k)×k
q and then output

(
Ā
R

)
. Then the Dk−mddh assumption implies

the Dl,k−mddh assumption.

We will call boosting to be the process of stretching Dk to Dl,k as above. This
theorem is proved as a corollary of an even more general theorem which we will
describe after defining the notion of ‘boostable’-ity as follows.

Definition 2. We say that a matrix distribution Dk on Z
(k+1)×k
q is boostable to

a matrix distribution Dl,k on Z
l×k
q , where l > k, if there are efficiently samplable

distributions E on Z
(l−k)×k
q and F on Z

(l−k)×(k+1)
q , such that the following hold:

– For A ← Dk,B ← Dl,k,E ← E ,F ← F , we have:

B̄ ≈ Ā, B ≈ EĀ ≈ FA.

– For F ← F , with overwhelming probability, all entries of the rightmost column
Fr of F are non-zero.

Theorem 2. If a matrix distribution Dk on Z
(k+1)×k
q is boostable to a matrix

distribution Dl,k on Z
l×k
q then the Dk-MDDH assumption implies the Dl,k-

MDDH assumption.

Proof. We prove this by a sequence of hybrids, where in the i-th hybrid we
transform row k + i from that of [Bs] to uniformly random. We start off with
i = 0, where we have the real output [Bs] and end with i = l − k where we have
the fake output which is uniformly random in Z

l
q.

The i-th hybrid ([B], [b]) is computed as follows. We sample [A] from Dk and
s from Z

k
q . We set [B̄] as [Ā] and, if i �= 0, the row i of [B] as the row i of F[A].

All other rows j �= i of [B] are set to the j-th row of E[Ā]. We set the top k
elements of [b] to be [Ās] and choose all the (k + j)-th elements, where j < i, of
[b] uniformly at random from Zq. If i �= 0, we set the (k + i)-th element of [b]
to be the i-th element of F[As]. For all j > i, we set the (k + j)-th element of
[b] to be the j-th element of E[Ās]. To summarize, [b] is computed as:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

[Ās]
$
...
$

(F[As])i

(E[Ās])j=(i+1) to (l−k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

244 C. S. Jutla and A. Roy

We observe that the 0-th hybrid has the distribution of ([B], [Bs]) and the (l−k)-
th hybrid has the distribution of ([B], [s′]), with s′ uniform in Z

l
q.

Now, (F[As])i = (Fl)i[Ās] + (Fr)i[As], where Fl is the first k-column sub-
matrix of F and Fr is the last column of F. Suppose we are given a Dk-MDDH
challenge ([A],χ = [As] or [s′]). If χ = [As], then (Fχ)i is distributed as
(F[As])i. Else, if χ = [s′], then (Fχ)i is distributed uniformly randomly in Zq,
since (Fr)i is overwhelmingly non-zero by design. Next we transition to an inter-
mediate hybrid i′ where [b] is computed as:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

[Ās]
$
...
$
$

(E[Ās])j=(i+1) to (l−k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

As shown above, the hybrid i′ is indistinguishable from hybrid i by the Dk-
MDDH assumption. Next we transition to the hybrid i+1 where [b] is computed
as:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[Ās]
$
...
$
$

(F[As])(i+1)

(E[Ās])j=(i+2) to (l−k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The hybrid i + 1 is indistinguishable from hybrid i′, as EĀ is identically dis-
tributed as FA. The theorem is thus established by chaining all the hybrids.

Corollary 1. Any Dk distribution can be boosted to a Dl,k distribution which
inherits the distribution of the top k × k matrix of the samples.

This can be seen by setting the top k × k matrix of a Dl,k sample to be the
top k×k matrix of a Dk sample and setting the bottom (l−k)×k sub-matrix of
the Dl,k sample to be uniformly random in Z

(l−k)×k
q . The required distributions

E and F are just the uniform distributions on their respective domains.
This corollary allows us to retain the representation size of the top square

matrix of a Dk distribution sample, while boosting it to an assumption required
for security proofs. In particular, in applications such as this paper, this can lead
to shorter public keys.

Finally, observe that Theorem 2 and the justification of Corollary 1 estab-
lishes Theorem 1.

Smooth NIZK Arguments 245

4 Smooth Quasi-Adaptive NIZK Constructions

In this section we show that the single element QA-NIZK [JR14,KW15] for
witness-samplable linear subspaces can easily be extended to be smooth QA-
NIZK. Particularly, under SXDH, the public hash key hp generated by ver.hkgen
consists of a single group element. We follow the construction of Kiltz and Wee
[KW15] and prove the result under the more general MDDH assumption in
bilinear groups.

We follow additive notation for group operations in this section. In later
sections we will use product notation.

Linear Subspace Languages. We first consider languages that are linear sub-
spaces of vectors of G1 elements. In other words, the languages we are interested
in can be characterized as languages parametrized by [M]1 as below:

L[M]1 = {[M]1x ∈ G
n
1 | x ∈ Z

t
q}, where [M]1 is an n × t matrix of G1 elements.

Here [M]1 is an element of the associated parameter language Lpar, which is
all n × t matrices of G1 elements. The parameter language Lpar also has a cor-
responding witness relation Rpar, where the witness is a matrix of Zq elements:
Rpar([M]∞,M′) iff M = M′.

Robust and Efficiently Witness-Samplable Distributions. Let the t × n dimen-
sional matrix [M]1 be chosen according to a distribution D on Lpar. The dis-
tribution D is called robust if with probability close to one the left-most t
columns of [M]1 are full-ranked. A distribution D on Lpar is called efficiently
witness-samplable if there is a probabilistic polynomial time algorithm such
that it outputs a pair of matrices ([M]1,M′) that satisfy the relation Rpar (i.e.,
Rpar([M]1,M

′) holds), and further the resulting distribution of the output [M]1
is same as D. For example, the uniform distribution on Lpar is efficiently witness-
samplable, by first picking M at random, and then computing [M]1.

Smooth QA-NIZK Construction. We now describe a smooth computationally-
sound Quasi-Adaptive NIZK (pargen, crsgen, prover, ver) for linear subspace lan-
guages {L[M]1} with parameters sampled from a robust and efficiently witness-
samplable distribution D over the associated parameter language Lpar and given
a Dk-MDDH assumption.

crsgen: The crsgen algorithm generates the CRS as follows. Let [Mn×t]1 be the
parameter supplied to crsgen. It generates an n × k matrix K with all elements
chosen randomly from Zq and a (k+1)×k matrix A from the MDDH distribution
Dk. Let Ā be the top k × k square matrix of A.

The common reference string (CRS) has two parts CRSp and CRSv which are
to be used by the prover and the verifier respectively.

CRSt×k
p := ([P]1 = [M�K]1) CRSv := ([C]n×k

2 = [KĀ]2, [Ā]k×k
2)

prover: Given candidate [y]1 = [M]1x with witness vector xt×1, the prover gen-
erates the following proof consisting of k elements in G1:

π := x�CRSp

246 C. S. Jutla and A. Roy

ver: The algorithm hkgen is as follows: Sample s ← Z
k
q . Given CRSv as above,

compute hk and hp as follows:

hk := [C]2 s, hp := [Ā]2 s

The algorithms pubH and privH are as follows: Given candidate [y]1, and
proof π, compute:

privH(hk, [y]1) := e([y�]1, hk) pubH(hp, π) := e(π, hp)

Theorem 3. The above algorithms (pargen, crsgen, prover, ver) constitute a
smooth computationally -sound Quasi-Adaptive NIZK proof system for linear
subspace languages {L[M]1} with parameters [M]1 sampled from a robust and effi-
ciently witness-samplable distribution D over the associated parameter language
Lpar, given any group generation algorithm for which the Dk−mddh assumption
holds for group G2.

The proofs of completeness, zero knowledge and soundness are same as
[KW15]. The proof of smooth soundness follows.

Proof (Smooth Soundness). First, note that the range of privH is exponential in
the security parameter, for otherwise an adversarial circuit can compute discrete
logarithms with non-negligible probability. We prove smoothness by transform-
ing the system over a sequence of games. Game G0 just replicates the con-
struction, but samples A from a distribution Dk+n−t,k obtained by boosting the
given distribution Dk by Theorem 1. The construction only uses the top k × k
sub-matrix Ā of the sample which is distributed identically for both Dk and
Dk+n−t,k. Let A be the bottom (n − t) × k sub-matrix of A.

In Game G1, the challenger efficiently samples [M]1 according to distribution
D, along with witness M (since D is an efficiently witness samplable distribution).
Since M is an n × t dimensional rank t matrix, there is a rank n − t matrix M⊥

of dimension n × (n − t) whose columns form a complete basis for the kernel of
M�, which means M�M⊥ = 0t×(n−t). In this game, the NIZK CRS is computed
as follows: Generate matrix K′ n×k and compute the matrix T(n−t)×k, such that
TĀ = A. Implicitly set: K = K′ + M⊥T. Therefore we have,

CRSt×k
p = [M�K]1 = [M�(K′ + M⊥T)]1 = [M�K′]1

[C]n×k
2 = [(K′ + M⊥T)Ā]2 = K′[Ā]2 + M⊥[A]2,
hk = [C]2 s, hp = [Ā]2 s

In Game G2, we sample fresh random vectors s′ in Z
k
q and s′′ in Z

n−t
q and

modify the simulated computations as follows:

CRSt×k
p = [M�K′]1, [C]n×k

2 = K′[Ā]2 + M⊥[A]2,

hk = K′[s′]2 + M⊥[s′′]2, hp = [s′]2

Given a Dk+n−t,k challenge which is either “real”: ([A]2, [Ās]2, [As]2) or
“fake”: ([A]2, [s′]2, [s′′]2), we observe that the real tuple can be used to simu-
late Game G1, while the fake tuple can be used to simulate Game G2. Thus the

Smooth NIZK Arguments 247

games G1 and G2 are indistinguishable by the Dk+n−t,k-MDDH assumption,
which in turn is implied by the Dk-MDDH assumption by Theorem 2.

Now in Game G2 we have,

privH(hk, [y∗]1) = e
(
[y∗�]1,K′[s′]2 + M⊥[s′′]2

)

For the oracle queries where [y∗]1 ∈ L[M]1 , we have y∗�M⊥ = 01×(n−t). Hence
the simulator responds with e

(
[y∗]�1 ,K′[s′]2

)
. Note that s′′ does not appear in

this response.
For the adversary supplied [y∗]1 /∈ L[M]1 , we have y∗�M⊥ �= 01×(n−t). There-

fore privH(hk,y∗) is uniformly random, as s′′ is independently random of every-
thing else given to the adversary.

Smooth Split-CRS QA-NIZK for Tagged Affine Languages. QA-NIZKs
for linear subspaces were also extended by [JR13] to integer tag-based languages
as well as provided split-CRS4 instantiation for affine languages. In [JR16],
we combine all these extensions and describe a smooth computationally-sound
Quasi-Adaptive NIZK (pargen, crsgen, prover, ver) for tagged affine linear sub-
space languages {L}, parametrized by ([M0]1, [M1]1, [M2]1, [M3]1, [a]1) and con-
sisting of words of the form:

([M0x]1, [M1x + a]1, [(M2 + tag.M3)x]1, tag ∈ Zq) ,

with parameters sampled from a robust and efficiently witness-samplable dis-
tribution D over (M0,M1,M2,M3, a) and given a Dk−mddh assumption. We
assume that M0 is a square matrix and the robustness of D is defined by M0

being non-singular. The smooth QA-NIZK will be split-CRS [JR13], so that
CRSv is independent of the language parameters.

5 Asymmetric UC-PAKE: UC-APAKE

Based on the UC-PAKE functionality of [CHK+05], Gentry et al. [GMR06]
gave another UC functionality for asymmetric PAKE (UC-APAKE). A salient
feature of the UC-PAKE functionality [CHK+05] is that it models the security
requirement that an adversary cannot perform efficient off-line computations on
protocol transcripts to verifiably guess the low-entropy password. An adversary
can only benefit from the low-entropy of the password by actually conducting an
on-line attack (i.e. by impersonating one of the parties with a guessed password).
This is modeled in the ideal world with a TestPwd capability available to the
ideal world adversary: if TestPwd is called with the correct password, the ideal
world adversary is allowed to set the session key. Moreover, in this functionality
if any of the parties is corrupted, then the ideal world adversary is given the
registered password.
4 A split-CRS QA-NIZK allows the verifier CRS to be generated independent of the

language.

248 C. S. Jutla and A. Roy

5.1 The UC Ideal Functionality for Asymmetric PAKE

In asymmetric PAKE [GMR06], the ideal functionality also allows an adversary
to steal the password file stored at the server (while not necessarily corrupting
the server). However, this by itself does not directly provide the actual password
to the adversary. However, after this point the adversary is allowed to perform
OfflineTestPwd tests to mimic a similar capability in the real world (in fact, the
ideal world adversary is even allowed to perform OfflineTestPwd tests before it
steals the password file, but it does not get a confirmation of the guess being
correct until after it steals the password file).

Moreover, after the “steal password file” event the adversary is also allowed
to impersonate the server to a correctly guessed client, even without providing
the actual password (as it can clearly do so in the real world). However, com-
promising impersonation of the client still requires providing a correct password.
This differentiation in capabilities also becomes important when characterizing
the complexity of a simulator in terms of the real world adversary, as we will see
later.

The Fpake functionality for UC-PAKE was a single-session functionality.
However, asymmetric PAKE requires that a password file be used across multi-
ple sessions, so the FapwKE functionality for UC-APAKE is defined as a multiple-
session functionality. Note that this cannot be accomplished simply using com-
position with joint state [CR03] because the functionality itself requires shared
state that needs to be maintained between sessions. The complete UC-APAKE
functionality FapwKE is described in detail in Fig. 2.

5.2 UC-APAKE Based on VPAKE and Smooth-NIZK

We now design an asymmetric UC-PAKE based on Verifier-based PAKE or
VPAKE of Benhamouda and Pointcheval [BP13] and the novel Smooth NIZK
proofs. The essential idea of [BP13] is that while the Client holds the actual
password, the Server does not hold password in the clear. Instead the Server
stores a hard to invert function called PHash (password hash) evaluated over the
password and a random “salt” (PSalt) published in the CRS. While executing a
session, the client sends encryptions of the password or another function called
PPreHash (password pre-hash) evaluated on the password. Correspondingly, the
server sends encryptions of the stored PHash.

Of course, some kind of zero-knowledge proof must accompany these encryp-
tions, and to that end [BP13] can utilize the new smooth projective hash func-
tions (SPHF) for CCA2-encryption [BBC+13] such as Cramer-Shoup encryption
[CS02]. In each session, both parties generate fresh SPHF private and projection
keys (to be employed on incoming messages). The projection key is sent (piggy-
backed) along with the encrypted message. If the encrypted messages use the
correct password (meaning both parties have the same password or its PHash),
then SPHF computed on the message by the receiving party using the SPHF
hash key it generated equals the SPHF computed on the message by the sending
party using the SPHF projection key it received. Thus, these SPHF hashes can be

Smooth NIZK Arguments 249

Functionality FapwKE

The functionality FapwKE is parameterized by a security parameter k. It interacts with
an adversary S and a set of parties via the following queries:

Password Storage and Authentication Sessions
Upon receiving a query (StorePwdFile, sid, Pi, pw) from party Pj :
If this is the first StorePwdFile query, store password data record (file, Pi, Pj , pw) and
mark it uncompromised.

Upon receiving a query (CltSession, sid, ssid, Pi, Pj , pw) from party Pi:
Send (CltSession, sid, ssid, Pi, Pj) to S. In addition, if this is the first CltSession query
for ssid, then store session record (Clt, ssid, Pi, Pj , pw) and mark this record fresh.

Upon receiving a query (SvrSession, sid, ssid, Pi) from party Pj :
If there is a password data record (file, Pi, Pj , pw), then send (SvrSession, sid, ssid,
Pj , Pi) to S, and if this is the first SvrSession query for ssid, store session record (Svr,
ssid, Pj , Pi, pw), and mark it fresh.

Stealing Password Data
Upon receiving a query (StealPwdFile, sid) from adversary S:
If there is no password data record reply to S with ’no password file’. Otherwise, do
the following: If the password data record (file, Pi, Pj , pw) is marked uncompromised,
mark it compromised. If there is a tuple (offline, pw′) stored with pw′ = pw then send
pw to S, otherwise reply to S with ’password file stolen’.

Upon receiving a query (OfflineTestPwd, sid, pw′) from Adversary S:
If there is no password data record, or if there is a password data record
(file, Pi, Pj , pw) that is marked uncompromised, then store (offline, pw′). Otherwise
do: if pw = pw′, send pw back to S. If pw �= pw′, reply with ’wrong guess’.

Active Session Attacks
Upon receiving a query (TestPwd, sid, ssid, Pi, pw′) from the adversary S:
If there is a session record of the form (role, ssid, Pi, Pj , pw) which is fresh, then do:
If pw = pw′, mark the record compromised and reply to S with “correct guess”. If
pw �= pw′, mark the record interrupted and reply with “wrong guess”.

Upon receiving a query (Impersonate, sid, ssid)
If there is a session record of the form (Clt, ssid, Pi, Pj , pw) which is fresh, then
do: then if there is a password data record file (file, Pi, Pj , pw) that is marked
compromised, mark the session record compromised and reply to S with ’correct guess’,
else mark the session record interrupted and reply with wrong guess.

Key Generation and Authentication
Upon receiving a query (NewKey, sid, ssid, Pi, sk) from S, where |sk| = k:
If there is a session record of the form (role, ssid, Pi, Pj , pw) that is not marked
completed,
– If this record is compromised, or either Pi or Pj is corrupted, then output

(sid, ssid, sk) to player Pi.
– If this record is fresh, and there is a session record (role, ssid, Pj , Pi, pw′) with

pw′ = pw, and a key sk′ was sent to Pj , and (role, ssid, Pj , Pi, pw) was fresh at the
time, then output (sid, ssid, sk′) to Pi.

– In any other case, pick a new random key sk′ of length k and send (sid, ssid, sk′)
to Pi.

Either way, mark the record (Pi, Pj , pw) as completed.

Upon receiving (Corrupt, sid, P) from S: if there is a (Clt, sid, P, P ′, pw) recorded,
return pw to S, and mark Pi corrupted. If there is a (Svr, sid, P, P ′, pw) recorded,
then mark P corrupted and (internally) call (StealPwdFile, sid).

Fig. 2. The password-based key-exchange functionality FapwKE

used to compute the session key. Smoothness property of the SPHF guarantees
security of the VPAKE scheme.

Unfortunately, each party must retain the witness used in the CCA2 encryp-
tion, as computing the SPHF projection-hash of its outgoing encrypted message

250 C. S. Jutla and A. Roy

Generate g ← G1; a1, a2, bc, bs ← Zq and let ρ = {a1 = ga1 , a2 = ga2 ,bc = gbc ,bs = gbs}.
Define languages

[
Lc = {(R, S, H) | ∃r, p : R = gr, S = ar

1b
p
c , H = bp

s }
Ls = {(R, S) | ∃r : R = gr, S = ar

2}
]

Let (hkc, hpc) ← sphf(Lc).hkgen and (hps, hks) ← sphf(Ls).hkgen.
Define languages:[

L+
c = {(R, S, H, T, l) | ∃r, p : R = gr, S = ar

1b
p
c , H = bp

s , T = sphf.pubH(hpc, 〈R, S, H〉, l; r, p)}
L+

s = {(R, S, T, l) | ∃r : R = gr, S = ar
2, T = sphf.pubH(hps, 〈R, S〉, l; r)}

]

Let (pargenP , crsgenP , proverP , verP) be Smooth QA-NIZKs for languages L+
P , with P ∈ {C, S}.

Let crsP ← crsgenP (ρ) and H be a collision resistant hash function.
Let RO be a random oracle and let phash = RO(sid, Pi, Pj , pwd).
Note that there are several sessions, designated by unique ssid-s, within the scope of a single sid.
Thus, phash is the same across all these sessions.

CRS := (ρ, hpc, hps, crsc, crss, H).

Server Persistent State := b
phash
s .

Client Pi Network

Input (CltSession, sid, ssid, Pi, Pj , pwd).
Choose r1 ← Zq and (hk1, hp1) ← vers.hkgen(crss).

Set R1 = gr1 , S1 = a
r1
1 b

phash
c ,

R1,S1,T1,hp1−−−−−−−−−−→ Pj

T1 = sphfc.pubH(hpc, 〈R1, S1,b
phash
s 〉, i1; r1, phash),

W1 = proverc(crsc, 〈R1, S1,b
phash
s , T1, i1〉; r1, phash),

where i1 = H(sid, ssid, Pi, Pj , R1, S1, hp1).
Erase r1, send (R1, S1, T1, hp1) and retain (W1, hk1).

Receive (R′
2, S′

2, T ′
2, hp′

2).

If any of R′
2, S′

2, T ′
2, hp′

2 is not in their respective group or is 1, set sk1
$←− GT ,

else compute i′
2 = H(sid, ssid, Pj , Pi, R′

2, S′
2, hp′

2),
R′

2,S′
2,T ′

2,hp′
2←−−−−−−−−−− Pj

and sk1 = vers.privH(hk1, 〈R′
2, S′

2/b
phash
s , T ′

2, i′
2〉) · verc.pubH(hp′

2, W1).
Output (sid, ssid, sk1).

Server Pj Network

Input (SvrSession, sid, ssid, Pj , Pi, Server Persistent State) .
Choose r2 ← Zq and (hk2, hp2) ← verc.hkgen(crsc).

Set R2 = gr2 , S2 = a
r2
2 b

phash
s ,

R2,S2,T2,hp2−−−−−−−−−−→ Pi

T2 = sphfs.pubH(hps, 〈R2, S2/b
phash
s 〉, i2; r2),

W2 = provers(crss, 〈R2, S2/b
phash
s , T2, i2〉; r2),

where i2 = H(sid, ssid, Pj , Pi, R2, S2, hp2).
Erase r2, send (R2, S2, T2, hp2) and retain (W2, hk2).

Receive (R′
1, S′

1, T ′
1, hp′

1).

If any of R′
1, S′

1, T ′
1, hp′

1 is not in their respective group or is 1, set sk2
$←− GT ,

else compute i′
1 = H(sid, ssid, Pi, Pj , R′

1, S′
1, hp′

1),
R′

1,S′
1,T ′

1,hp′
1←−−−−−−−−−− Pi

and sk2 = verc.privH(hk2, 〈R′
1, S′

1,b
phash
s , T ′

1, i′
1〉) · vers.pubH(hp′

1, W2).
Output (sid, ssid, sk2).

Fig. 3. Single round RO-hybrid UC-APAKE protocol under SXDH assumption.

using the received projection key requires this witness. In the strong simulation
paradigm of universally composable security, this leads to a problem if an Adver-
sary can corrupt a session dynamically after the outgoing message has been sent
and the incoming message has not yet been received. Thus, this SPHF methodol-
ogy can only handle static corruption. While Jutla and Roy [JR15] have recently
given an efficient UC-PAKE protocol which can handle dynamic corruption, the
construction uses ideas from dual-system simulation-sound QA-NIZK that they
introduce there. These ideas are rather intricate and do not seem to allow a
modular or generic design of such UC password-authenticated protocols.

Smooth NIZK Arguments 251

In this paper, we show that the new notion of Smooth QA-NIZK allows
easy to understand (and equally efficient) modular or generic design. Just as
QA-NIZK proofs can be seen as generalization of projective hash proof systems
to public verifiability (and also assuring zero-knowledge), the novel notion of
Smooth QA-NIZK naturally generalizes the notion of smooth projective hash
functions where instead of the witness, the publicly verifiable proof can be used
to evaluate the projection-hash. The zero-knowledge property of this publicly
verifiable proof assures that this proof and hence the projection-hash can be
generated by a simulator with no access to the witness. In particular, each party
in the UC-PAKE protocol can generate an encryption of the password and gen-
erate this publicly verifiable QA-NIZK proof, send the encryption to the other
party, erase the witness and retain just the proof for later generation of session
key.

The natural question that arises is whether one needs a notion of smooth-
soundness under simulation. Indeed, one does need some form of unbounded
simulation-soundness as the UC simulator generates QA-NIZK proofs on non-
language members without access to the password. Unfortunately, the recent
efficient unbounded simulation sound QA-NIZK construction of [KW15] does
not extend to be smooth under unbounded simulation (or at least current tech-
niques do not seem to allow one to prove so). The dual-system simulation sound
QA-NIZK [JR15] does satisfy smoothness property, but it would need introduc-
tion of various new intricate definitions and complicated proofs. One may also
ask whether CCA2 encryption by itself provides the required simulation sound-
ness, but that is also not the case, as CCA2 encryption by itself does not give
a privately-verifiable (say, via its underlying SPHF as in Cramer-Shoup encryp-
tion) proof that it is the password that is being encrypted.

In light of this, it turns out that the simplest way to design the UC-APAKE
(or UC-PAKE) protocol is to use an ElGamal encryption of the password (or
its PPreHash or PHash) and augment it with an SPHF proof of its consistency,
and finally a Smooth QA-NIZK on this augmented ElGamal encryption. (If the
reader is interested in the simpler UC-PAKE protocol secure under dynamic
corruption in the new Smooth QA-NIZK framework, the UC-PAKE definition
and protocol are provided in [JR16]).

We will also need the random oracle hybrid model to achieve the goal of
a UC-APAKE protocol, as explained next. The focus of [BP13] was to design
protocols which can be proven secure in the standard model. They formalized
a security notion for APAKEs modifying the game-based BPR model [BPR00].
However, our focus is to construct an APAKE protocol in the UC model. In the
UC model of [GMR06], the UC simulator must be able to detect offline password
guess attempts of the adversary. This is not possible in the standard model as
offline tests can be internally performed by the adversary. In order to intercept
offline tests by the adversary, it thus becomes inevitable to use an idealized
model, such as the random oracle model.

So in particular, we adapt the random oracle-based password hashing scheme
of [BP13]. In the scheme, the public parameters are param = bc,bs randomly

252 C. S. Jutla and A. Roy

sampled from G1 and a random oracle RO. Define phash = RO(sid, Client-id,
Server-id, pwd), where Client-id, Server-id are the ids of the participating parties,
sid is the common session-id for all sessions between these parties and pwd is the
password of the client. Note that there are several sessions designated by unique
ssid-s within the scope of a single sid. Thus phash is the same across all these
sessions. We set:

PPreHash(param, pwd) = bphash
c

PSalt(param) = bs

PHash(param, pwd) = bphash
s

Corresponding to the asymmetric storages of the client and the server, we
define the following languages, one for each party, which implicitly check the
consistency of correct elements being used (a1 and a2 are essentially public keys
for ElGamal encryption):

Lc = {(R,S,H) | ∃r, p : R = gr, S = ar
1b

p
c ,H = bp

s }
Ls = {(R,S) | ∃r : R = gr, S = ar

2}
We now plug these languages into UC-PAKE methodology described above.

The client sends ElGamal encryption of bp
c , as in (R,S) of Lc, while the server

supplies the last element H for forming a word of Lc. The server sends ElGamal
encryption of bp

s , while the client divides out bp
s from the second component to

form a word of Ls.
The CRS provides public smooth2 SPHF keys for the languages Lc and Ls,

which are used by the client and server respectively to compute T1 and T2 for
their flows.

Lastly, we use Smooth QA-NIZK proofs for generating a public hash key
and a private hash key over the above languages augmented with the SPHFs as
below:

L+
c =

{
(R,S,H, T, l) | ∃r, p :

R = gr, S = ar
1b

p
c ,H = bp

s ,
T = sphf.pubH(hpc, 〈R,S,H〉, l; r, p)

}

L+
s = {(R,S, T, l) | ∃r : R = gr, S = ar

2, T = sphf.pubH(hps, 〈R,S〉, l; r)}
The client generates a Smooth QA-NIZK verification key pair for the server

language L+
s , retains the private key hk1 and sends the public key hp1 along

with the ElGamal encryption and the SPHF. The client computes a QA-NIZK
proof W1 of (R1, S1,bphash

s , T1) ∈ L+
c with label i1 = H(sid, ssid, Pi, Pj , R1, S1,

T1, hp1) and retains that for later key computation.
Similarly, the server generates a Smooth QA-NIZK verification key pair for

the client language L+
c , retains the private key hk2 and sends the public key

hp2 along with the ElGamal encryption and the SPHF. The server computes a
QA-NIZK proof W2 of (R2, S2/bphash

s , T2) ∈ L+
s with label i2 = H(sid, ssid, Pj ,

Pi, R2, S2, T2, hp2) and retains that for later key computation.
In the second part of the protocol, after receiving the peer flow, each party

computes the final secret key as the product of the private Smooth QA-NIZK

Smooth NIZK Arguments 253

hash of the peer flow with own private Smooth QA-NIZK key and the public
Smooth QA-NIZK hash of the (retained) QA-NIZK proof of own flow with the
peer public Smooth QA-NIZK hash key. Formally the client computes:

vers.privH(hk1, 〈R′
2, S

′
2/b

phash
s , T ′

2, i
′
2〉) · verc.pubH(hp′

2,W1).

Similarly, the server computes:

verc.privH(hk2, 〈R′
1, S

′
1,b

phash
s , T ′

1, i
′
1〉) · vers.pubH(hp′

1,W2).

Given the completeness property of the Smooth QA-NIZK, it is not difficult
to see that legitimately completed peer sessions end up with equal keys. In the
next section, we prove that this protocol securely realizes FapwKE, as stated in
the theorem below.

The complete protocol is described in detail in Fig. 3. The SPHF sphf is
required to be a smooth2 projective hash function (see [JR16] for definitions). For
simplicity, in this paper we focus on constructions based on D1−mddh assump-
tions, and in particular the sxdh assumption.

Theorem 4. Under the D1−mddh assumption sxdh, the protocol in Fig. 3
securely realizes the FapwKE functionality in the (Fcrs,FRO)-hybrid model, in
the presence of adaptive corruption adversaries. The number of unique password
arguments passed to TestPwd and OfflineTestPwd of FapwKE combined in the ideal
world is at most the number of random oracle calls in the (Fcrs,FRO)-hybrid
world.

We describe the intuition of the proof below and describe the UC simulator,
while detailed formal steps proving indistinguishability of the real and the ideal
world are relegated to the full version [JR16].

5.3 Main Idea of the UC Simulator

The UC simulator Sworks as follows: It simulates the random oracle calls and
records all the query response pairs. It will generate the CRS for F̂pake using the
real world algorithms, except for the Smooth QA-NIZK, for which it uses the
simulated CRS generator. It also retains the private hash keys of the SPHF’s.
The next main difference is in the simulation of the outgoing message of the
real world parties: S uses a dummy message μ instead of the real password
which it does not have access to. Further, it postpones computation of W till
the session-key generation time. Finally, another difference is in the processing
of the incoming message, where S decrypts the incoming message R′

2, S
′
2 and

runs through the list of random oracle queries to search for a pwd′, such that the
decryption is bRO(sid,Pi,Pj ,pwd′)

s , which it uses to call the ideal functionality’s test
function. It next generates an sk similar to how it is generated in the real-world.
It sends sk to the ideal functionality to be output to the party concerned.

Since the (R1, S1) that it sends out is no longer such that (R1, S1,bphash
s) in

the language Lc, it has to use the private key of the SPHF in order to compute
T1 on (R1, S1,bphash

s) and the QA-NIZK proof simulator to compute W1.

254 C. S. Jutla and A. Roy

There are other special steps designed to simulate stealing the password file
and then impersonating the server to the client. Specifically, when the password
file is stolen, the simulator still may not know pwd. It then preemptively sets
phash to a random value and pretends that this is the random oracle response
with the correct pwd query. Later on when there is a successful pwd query, which
the simulator can find out by the online or offline testpwd ideal functionality
calls, it sets the record accordingly.

In case of a stolen password file, the simulator includes a “Client Only Step”
which lets it test (modified) server flows for consistency and call the Impersonate
functionality if consistency checks out. The server simulation steps do not include
such a step to model the security notion that even if the password file is stolen,
the adversary should still not be able to impersonate the client.

5.4 Main Idea of the Proof of UC Realization

The proof that the simulator S described above simulates the Adversary in the
real-world protocol, follows essentially from the properties of the Smooth QA-
NIZK and smooth2 SPHF, and we give a broad outline here. The proof will
describe various experiments between a challenger C and the adversary, which
we will just assume to be the environment Z (as the adversary A can be assumed
to be just dummy and following Z’s commands). In the first experiment the chal-
lenger C will just be the combination of the code of the simulator S above and
F̂pake. In particular, after the environment issues a CltSession request with a pass-
word pwd, the challenger gets that password. So, while in the first experiment,
the challenger (copying S) does not use pwd directly, from the next experiment
onwards, it can use pwd. Thus, the main goal of the ensuing experiments is to
modify the fake tuples gr1 ,gr′

by real tuples (as in real-world) gr1 ,ar1
1 bphash

c ,
since the challenger has access to pwd, and hence phash. This is accomplished
by a hybrid argument, modifying one instance at a time using DDH assumption
in group G1.

The guarantee that the client cannot be impersonated by the adversary, even
when the password file is stolen is established by noting that bphash

c , which is what
the client encrypts in its flows, is hard to compute given the server persistent
state bphash

s . This is formally captured in the proof by using a DDH transition
from (bs,bc,bphash

s ,bphash
c) to (bs,bc,bphash

s ,bz
c), where z is independently ran-

dom from phash.
Once all the instances are corrected, i.e. R1, S1 are generated as gr1 ,ar1

1 bphash
c ,

the challenger can switch to the real-world because the tuples R1, S1,bphash
s are

now in the language Lc. This implies that the session keys are generated exactly
as in the real-world.

5.5 Adaptive Corruption

The UC protocol described above is also UC-secure against adaptive corruption
of parties by the Adversary in the erasure model. In the real-world when the
adversary corrupts a client (with a Corrupt command), it gets the internal state

Smooth NIZK Arguments 255

of the client. Clearly, if the party has already been invoked with a CltSession
command then the password pwd is leaked at the minimum, and hence the ideal
functionality Fpake leaks the password to the Adversary in the ideal world. In
the protocol described above, the Adversary also gets W1 and hk1, as this is
the only state maintained by each client between sending R1, S1, T1,hp1, and
the final issuance of session-key. Simulation of hk1 is easy for the simulator S
since S generates hk1 exactly as in the real world. For generating W1, which
S had postponed to computing till it received an incoming message from the
adversary, it can now use the pwd which it gets from F̂pake by issuing a Corrupt
call to F̂pake. More precisely, it issues the Corrupt call, and gets pwd, and then
calls the QA-NIZK simulator with the tuple (R1, S1,bphash

s , T1, i1) to get W1.
Note that this computation of W1 is identical to the postponed computation of
W1 in the computation of client factor of sk1 (which is really used in the output
to the environment when pwd′ = pwd).

In case of server corruption, the simulator does not get pwd, but is able to
set phash which also enables it to compute W2 using the QA-NIZK simulator on
(R2, S2/bphash

s , T2, i2).
We first define a simulator which interfaces with the ideal functionality and

the adversary and then through a series of experiments convert it to just the
real world protocol interacting with the same adversary.

5.6 Simulator for the Protocol

We will assume that the adversary A in the UC protocol is dummy, and essen-
tially passes back and forth commands and messages from the environment Z.
Thus, from now on we will use environment Z as the real adversary, which out-
puts a single bit. The simulator S will be the ideal world adversary for FapwKE.
It is a universal simulator that uses A as a black box. For each instance (session
and a party), we will use a prime, to refer to variables received in the message
from Z (i.e. A). We will call a message legitimate if it was not altered by Z, and
delivered in the correct session and to the correct party.

Responding to Random Oracle Queries. Let the input be m. If there is a
record of the form (m, r), that is, m was queried before and was responded with
r, then just return r.

Otherwise, if m is of the form (sid, Pi, Pj , x), for some x and the password file
has been stolen then call OfflineTestPwd with x. If the test succeeds then return
phash, which must already have been set (see Stealing Password File below), and
record (m, phash).

In all other cases, generate r ← Zq, record (m, r) and return r.

Setting the CRS. The simulator S picks the CRS just as in the real world,
except the QA-NIZK CRS-es are generated using the crs-simulators, which also
generate simulator trapdoors trapc, traps. It retains a1, a2, trapc, traps, hkc, hks as
trapdoors.

256 C. S. Jutla and A. Roy

New Client Session: Sending a Message to Z. On message (CltSession, sid,
ssid, Pi, Pj) from FapwKE, S starts simulating a new instance of the protocol for
client Pi, server Pj , session identifier ssid, and CRS set as above. We will denote
this instance by (Pi, ssid) and call it a client instance.

To simulate this instance, S chooses r1, r
′
1, r

′′
1 at random, and sets R1 =

gr1 , S1 = gr′
1 and T1 = gr′′

1 . Next, S generates (hk1,hp1) ← vers.hkgen(crss)
and sets i1 = H(sid, ssid, Pi, Pj , R1, S1,hp1). It retains (i1,hk1). It then hands
(R1, S1, T1,hp1) to Z on behalf of this instance.

New Server Session: Sending a Message to Z. On message (SvrSession,
sid, ssid, Pj , Pi) from FapwKE, S starts simulating a new instance of the protocol
for client Pi, server Pj , session identifier ssid, and CRS set as above. We will
denote this instance by (Pj , ssid) and call it a server instance.

To simulate this instance, S chooses r2, r
′
2, r

′′
2 at random, and sets R2 =

gr2 , S2 = gr′
2 and T2 = gr′′

2 . Next, S generates (hk2,hp2) ← verc.hkgen(crsc)
and sets i2 = H(sid, ssid, Pj , Pi, R2, S2,hp2). It retains (i2,hk2). It then hands
(R2, S2, T2,hp2) to Z on behalf of this instance.

On Receiving a Message from Z. On receiving a message R′
2, S

′
2, T

′
2,hp

′
2

from Z intended for a client instance (P, ssid), the simulator S does the fol-
lowing:

1. If any of the the real world protocol checks, namely group membership and
non-triviality fail it goes to the step “Other Cases”below.

2. If the message received from Z is same as message sent by S on behalf of
peer P ′ in session ssid, then S just issues a NewKey call for P .

3. (“Client Only Step”): If StealPwdFile has already taken place then do the fol-
lowing: If S′

2 = R′a2
2 bphash

s , then S calls FapwKE with (Impersonate, P, sid, ssid)
and skips to the “Key Setting” step below, and otherwise go to the step
“Other Cases”.

4. It searches its random oracle query response pairs {(mk, hk)}k and checks
whether for some k = x we have S′

2 = R′a2
2 bhx

s and mx is of the form
(sid, Pi, Pj , pwd′). If so, then S calls FapwKE with (TestPwd, ssid, P , pwd′) else
it goes to the step “Other Cases” below. If the test passes, it sets phash = hx

and goes to the “Key Setting” step below, else it goes to the step “Other
Cases” below.

5. (“Key Setting Step”): Compute i′2 = H(sid, ssid, Pj , Pi, R
′
2, S

′
2,hp

′
2).

If T ′
2 �= sphfs.privH(hks, 〈R′

2, S
′
2/b

phash
s 〉, i′2) then goto the step “Other Cases”.

Else, compute W1 = sim(crsc, trapc, 〈R1, S1,bphash
s , T1, i1〉). Issue a NewKey

call to F̂pake with key

vers.privH(hk1, 〈R′
2, S

′
2/b

phash
s , T ′

2, i
′
2〉) · verc.pubH(hp′

2,W1)

6. (“Other Cases”): S issues a TestPwd call to F̂pake with the dummy password
μ, followed by a NewKey call with a random session key, which leads to the
functionality issuing a random and independent session key to the party P .

Smooth NIZK Arguments 257

On receiving a message R′
1, S

′
1, T

′
1,hp

′
1 from Z intended for a server

instance (P, ssid), the response of the simulator S is symmetric to the response
described above for client instances, except the above step “Client Only Step”
is skipped.

Stealing Password File. If there was a successful online TestPwd call by
the simulator, before this StealPwdFile call, the corresponding random oracle
response hk was already assigned to the variable phash. Otherwise, the simula-
tor runs through the set of random oracle query response set of the adversary
{(mk, hk)}k, which were not used for an online TestPwd call. For all the mk’s
of the form (sid, Pi, Pj , pwd′), it calls (OfflineTestPwd, sid, pwd′). Next, S calls
StealPwdFile. If StealPwdFile returns pwd then it must equal pwd′ in some mk.
Assign to the variable phash the value hk from the earlier recorded random oracle
response to mk. Otherwise, phash is assigned a fresh random value. The Server
Persistent State bphash

s is computed accordingly and given to the adversary.

Client Corruption. On receiving a Corrupt call from Z for client instance Pi

in session ssid, the simulator S calls the Corrupt routine of FapwKE to obtain pwd.
If S had already output a message to Z, and not output sk1 it computes

W1 = simc(crsc, trapc, 〈R1, S1,bphash
s , T1, i1〉).

and outputs this W1 along with pwd, and hk1 as internal state of Pi. Note that
this computation of W1 is identical to the computation of W1 in the computation
of sk1 (which is really output to Z only when pwd′ = pwd).

Without loss of generality, we can assume that in the real-world if the Adver-
sary (or Environment Z) corrupts an instance before the session key is output
then the instance does not output any session key. This is so because the Adver-
sary (or Z) either sets the key for that session or can compute it from the internal
state it broke into.

Server Corruption. On receiving a Corrupt call from Z for server instance Pj

in session ssid, the simulator S first performs the steps in the section on Stealing
Password File above. In particular this sets the value of phash. It then calls the
Corrupt routine of FapwKE. If S had already output a message to Z, and not
output sk1 it computes

W2 = sims(crss, traps, 〈R2, S2/bphash
s , T2, i2〉).

and outputs this W2 along with hk2 as internal state of Pj . Note that pwd is
not given out.

Complexity of the Simulator. Observe that on stealing the password file, the
function OfflineTestPwd is only called once for each random oracle input, which
was not already tested by calling TestPwd. Hence the number of unique password

258 C. S. Jutla and A. Roy

arguments passed to TestPwd and OfflineTestPwd of FapwKE combined in the ideal
world is at most the number of random oracle calls in the hybrid model.

Time complexity-wise, most of the simulator steps are log q-time, where q is
the security parameter. Due to Step 4 of the simulator code, where for each of
the m sessions, in the worst case, it might go through all the n random oracle
calls, there is an additive component of m ∗ n ∗ log q time. So the simulator runs
in O(mn log q)-time.

5.7 Proof of Indistinguishability

We now describe a series of experiments between a probabilistic polynomial time
challenger C and the environment Z, starting with Expt0 which we describe next.
We will show that the view of Z in Expt0 is same as its view in UC-APAKE ideal-
world setting with Z interacting with FapwKE and the UC-APAKE simulator S
described above in Sect. 5.6. We end with an experiment which is identical to
the real world execution of the protocol in Fig. 3. We prove that environment
has negligible advantage in distinguishing between these series of experiments,
leading to a proof of realization of FapwKE by the protocol Π. Due to space
limitations, in this version we only describe Expt0, and rest of the experiments
and related proofs of indistinguishability can be found in the full version [JR16].

Here is the complete code in Expt0 (stated as it’s overall experiment with Z):

1. Responding to a random oracle query on input m: If there is a record of the
form (m, r), then just return r. Otherwise, generate r ← Zq, record (m, r)
and return r.

2. The challenger C picks the CRS just as in the real world, except the QA-NIZK
CRS-es are generated using the crs-simulators, which also generate simulator
trapdoors trapc, traps. It retains a1, a2, trapc, traps, hkc, hks as trapdoors.
Next, (on StorePwdFile) the challenger calls the random oracle with query
(sid, Pi, Pj , pwd). It sets phash equal to the random oracle response and sets
the server persistent state as bphash

s .
Define PhashIsSet to be true after either StealPwdFile has been called or
the random oracle has been called with (sid, Pi, Pj , pwd) by the adversary,
and false before.
Define PwdCalled to be true after the random oracle has been called with
(sid, Pi, Pj , pwd) by the adversary, and false before.

3. On receiving (CltSession, sid, ssid, Pi, Pj) from Z, C generates (hk1,hp1) ←
vers.hkgen(crss). Next, C chooses r1, r

′
1, r

′′
1 at random, and sets R1 = gr1 ,

S1 = gr′
1 and T1 = gr′′

1 . It then hands (R1, S1, T1,hp1) to Z on behalf of this
instance.

4. On receiving (R′
2, S

′
2, T

′
2,hp

′
2) from Z, intended for client session (Pi, ssid)

(and assuming no corruption of this instance):
(a) If the received elements are either not in their respective groups, or are

trivially 1, output sk1 ← GT .
(b) If the message received is identical to message sent by C in the same

session (i.e. same ssid) on behalf of the peer, then output sk1 ← GT

Smooth NIZK Arguments 259

(unless the simulation of peer also received a legitimate message and its
key has already been set, in which case the same key is used to output
sk1 here).

(c) If PhashIsSet is false, then output sk1 ← GT .
(d) Compute: i′2 = H(sid, ssid, Pj , Pi, R

′
2, S

′
2,hp

′
2). If S′

2 = R′a2
2 bphash

s and
T ′
2 = sphfs.privH(hks, 〈R′

2, S
′
2/b

phash
s 〉, i′2), compute:

W1 = simc(crsc, trapc, 〈R1, S1,bphash
s , T1, i1〉).

Output:

sk1 = vers.privH(hk1, 〈R′
2, S

′
2/b

phash
s , T ′

2, i
′
2〉) · verc.pubH(hp′

2,W1)

(e) If the above check failed then output sk1 ← GT .
5. On a Corrupt call for client Pi, output pwd. If Step 3 has already happened

then also output hk1 and W1 = simc(crsc, trapc, 〈R1, S1,bphash
s , T1, i1〉).

6. On receiving (SrvSession, sid, ssid, Pj , Pi) from Z, follow steps symmetric to
Step 4, swapping subscripts and languages accordingly and replacing the con-
dition PhashIsSet by PwdCalled in Step 4c. Also, in step 4d, the condition
becomes: if S′

1 = R′a1
1 bphash

c and T ′
1 = sphfc.privH(hkc, 〈R′

1, S
′
1,b

phash
s 〉, i′1),

7. On a Corrupt call for server Pj , if Step 3 has already happened then out-
put hk2, and W2 = sims(crss, traps, 〈R2, S2/bphash

s , T2, i2〉). Finally, execute
a StealPwdFile call, as described below.

8. On a StealPwdFile call, return bphash
s as the Server Persistent State to the

adversary.

All outputs of sk1 are also accompanied with sid, ssid (but are not mentioned
above for ease of exposition).

Note that each instance has two asynchronous phases: a phase in which C
outputs R1, S1, ... to Z, and a phase where it receives a message from Z. How-
ever, C cannot output sk1 until it has completed both phases. These orderings
are dictated by Z. We will consider two different kinds of temporal orderings. A
temporal ordering of different instances based on the order in which C outputs
sk1 in an instance will be called temporal ordering by key output. A tem-
poral ordering of different instances based on the order in which C outputs its
first message (i.e. R1, S1, ...) will be called temporal ordering by message
output. It is easy to see that C can dynamically compute both these orderings
by maintaining a counter (for each ordering).

We now claim that the view of Z in Expt0 is statistically indistinguishable
from its view in its combined interaction with FapwKE and S. The CRS is set
identically by both C and S. While C has access to pwd from the outset and
sets up the random oracle output phash corresponding to (sid, Pi, Pj , ssid) at the
beginning, S doesn’t have access to pwd at the beginning and hence defers this
step till the point where either (1) a correct online guess has been made, (2)
the password file was stolen and a correct offline guess was made, (3) the client
was corrupted. In all these three cases the simulator gets to know pwd and has
the chance to set phash. At the point when password file is stolen, the correct

260 C. S. Jutla and A. Roy

pwd may not have been guessed, but phash has to be set in order to output the
server persistent state. In that case S generates a random phash, remembers it
and assigns it to the correct input when the actual password is queried. At all
points, although their algorithms differ, we can see that C and S respond to
random oracle queries identically.

Both C and S generate the client and server flows identically. In particular,
observe that the condition PhashIsSet exactly captures the state of S for a
client session where it knows phash and can compute the relevant elements and
keys. C uses the condition PhashIsSet to do the same computations. Similarly
for the server sessions with the condition PwdCalled. The stronger condition
for the server reflects the absence of the “Client Only Step” in the server sessions
simulation. In the steps where a party receives a message from the adversary,
both C and S end up computing keys identically. While C directly checks by
exponentiation with phash in the case that pwd was guessed correctly, S goes
through the list of random oracle calls to see which response was used for expo-
nentiation as it may not know pwd or phash at this point.

Due to space limitations, the rest of the experiments and related proofs of
indistinguishability are relegated to the full version [JR16].

References

[BBC+13] Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud,
D.: New techniques for SPHFs and efficient one-round PAKE protocols.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp.
449–475. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40041-4 25

[BBS04] Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-28628-8 3

[BC16a] Blazy, O., Chevalier, C.: Structure-preserving smooth projective hashing.
In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032,
pp. 339–369. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53890-6 12

[BFM88] Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its
applications (extended abstract). In: 20th ACM STOC, pp. 103–112. ACM
Press, May 1988

[BM92] Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based pro-
tocols secure against dictionary attacks. In: 1992 IEEE Symposium on Secu-
rity and Privacy, pp. 72–84. IEEE Computer Society Press, May 1992

[BM93] Bellovin, S.M., Merritt, M.: Augmented encrypted key exchange: a
password-based protocol secure against dictionary attacks and password
file compromise. In: Ashby, V. (ed.) ACM CCS 93, pp. 244–250. ACM
Press, November 1993

[BMP00] Boyko, V., MacKenzie, P., Patel, S.: Provably secure password-
authenticated key exchange using diffie-hellman. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 156–171. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-45539-6 12

https://doi.org/10.1007/978-3-642-40041-4_25
https://doi.org/10.1007/978-3-642-40041-4_25
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-662-53890-6_12
https://doi.org/10.1007/978-3-662-53890-6_12
https://doi.org/10.1007/3-540-45539-6_12

Smooth NIZK Arguments 261

[Boy09] Boyen, X.: HPAKE: password authentication secure against cross-site user
impersonation. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 09.
LNCS, vol. 5888, pp. 279–298. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-10433-6 19

[BP13] Benhamouda, F., Pointcheval, D.: Verifier-based password-authenticated
key exchange: new models and constructions. Cryptology ePrint Archive,
Report 2013/833 (2013). http://eprint.iacr.org/2013/833

[BPR00] Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange
secure against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 139–155. Springer, Heidelberg (2000). https://doi.org/
10.1007/3-540-45539-6 11

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for
designing efficient protocols. In: Ashby, V. (ed.) ACM CCS 93, pp. 62–73.
ACM Press, November 1993

[Can01] Canetti, R.: Universally composable security: a new paradigm for crypto-
graphic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society
Press, October 2001

[CHK+05] Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally
composable password-based key exchange. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 404–421. Springer, Heidelberg (2005).
https://doi.org/10.1007/11426639 24

[CR03] Canetti, R., Rabin, T.: Universal composition with joint state. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 265–281. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45146-4 16

[CS02] Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive
chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-46035-7 4

[EHK+13] Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic frame-
work for diffie-hellman assumptions. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40084-1 8

[FLR+10] Fischlin, M., Lehmann, A., Ristenpart, T., Shrimpton, T., Stam, M., Tes-
saro, S.: Random oracles with(out) programmability. In: Abe, M. (ed.) ASI-
ACRYPT 2010. LNCS, vol. 6477, pp. 303–320. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-17373-8 18

[GMR06] Gentry, C., MacKenzie, P., Ramzan, Z.: A method for making password-
based key exchange resilient to server compromise. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 142–159. Springer, Heidelberg (2006).
https://doi.org/10.1007/11818175 9

[GS12] Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear
groups. SIAM J. Comput. 41(5), 1193–1232 (2012)

[HK98] Halevi, S., Krawczyk, H.: Public-key cryptography and password protocols.
In: ACM CCS 98, pp. 122–131. ACM Press, November 1998

[JG04] Jiang, S., Gong, G.: Password Based key exchange with mutual authenti-
cation. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357,
pp. 267–279. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-30564-4 19

https://doi.org/10.1007/978-3-642-10433-6_19
https://doi.org/10.1007/978-3-642-10433-6_19
http://eprint.iacr.org/2013/833
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/978-3-540-45146-4_16
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-17373-8_18
https://doi.org/10.1007/11818175_9
https://doi.org/10.1007/978-3-540-30564-4_19
https://doi.org/10.1007/978-3-540-30564-4_19

262 C. S. Jutla and A. Roy

[JKX18] Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: an asymmetric pake proto-
col secure against pre-computation attacks. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 456–486. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-78372-7 15

[JR12] Jutla, C., Roy, A.: Relatively-sound NIZKs and password-based key-
exchange. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012.
LNCS, vol. 7293, pp. 485–503. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-30057-8 29

[JR13] Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear sub-
spaces. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269,
pp. 1–20. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
42033-7 1

[JR14] Jutla, C.S., Roy, A.: Switching lemma for bilinear tests and constant-
size NIZK proofs for linear subspaces. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8617, pp. 295–312. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44381-1 17

[JR15] Jutla, C.S., Roy, A.: Dual-system simulation-soundness with applications
to UC-PAKE and more. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015. LNCS, vol. 9452, pp. 630–655. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-48797-6 26

[JR16] Jutla, C., Roy, A.: Smooth NIZK arguments with applications to asymmet-
ric UC-PAKE. Cryptology ePrint Archive, Report 2016/233 (2016). http://
eprint.iacr.org/2016/233

[KV11] Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenti-
cated key exchange. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp.
293–310. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
19571-6 18

[KW15] Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp.
101–128. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
46803-6 4

[LPJY14] Libert, B., Peters, T., Joye, M., Yung, M.: Non-malleability from mal-
leability: simulation-sound quasi-adaptive NIZK proofs and CCA2-secure
encryption from homomorphic signatures. In: Nguyen, P.Q., Oswald, E.
(eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 514–532. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-642-55220-5 29

[Mac01] MacKenzie, P.: More efficient password-authenticated key exchange. In:
Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 361–377. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45353-9 27

[Wat09] Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE
under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol.
5677, pp. 619–636. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-03356-8 36

https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-642-30057-8_29
https://doi.org/10.1007/978-3-642-30057-8_29
https://doi.org/10.1007/978-3-642-42033-7_1
https://doi.org/10.1007/978-3-642-42033-7_1
https://doi.org/10.1007/978-3-662-44381-1_17
https://doi.org/10.1007/978-3-662-48797-6_26
https://doi.org/10.1007/978-3-662-48797-6_26
http://eprint.iacr.org/2016/233
http://eprint.iacr.org/2016/233
https://doi.org/10.1007/978-3-642-19571-6_18
https://doi.org/10.1007/978-3-642-19571-6_18
https://doi.org/10.1007/978-3-662-46803-6_4
https://doi.org/10.1007/978-3-662-46803-6_4
https://doi.org/10.1007/978-3-642-55220-5_29
https://doi.org/10.1007/3-540-45353-9_27
https://doi.org/10.1007/978-3-642-03356-8_36
https://doi.org/10.1007/978-3-642-03356-8_36

	Smooth NIZK Arguments
	1 Introduction
	2 Smooth Quasi-Adaptive NIZK Proofs
	3 Matrix Decisional Assumptions
	4 Smooth Quasi-Adaptive NIZK Constructions
	5 Asymmetric UC-PAKE: UC-APAKE
	5.1 The UC Ideal Functionality for Asymmetric PAKE
	5.2 UC-APAKE Based on VPAKE and Smooth-NIZK
	5.3 Main Idea of the UC Simulator
	5.4 Main Idea of the Proof of UC Realization
	5.5 Adaptive Corruption
	5.6 Simulator for the Protocol
	5.7 Proof of Indistinguishability

	References

