
Two-Round MPC: Information-Theoretic
and Black-Box

Sanjam Garg1(B), Yuval Ishai2, and Akshayaram Srinivasan1

1 University of California, Berkeley, Berkeley, USA
sanjamg@berkeley.edu
2 Technion, Haifa, Israel

Abstract. We continue the study of protocols for secure multiparty
computation (MPC) that require only two rounds of interaction. The
recent works of Garg and Srinivasan (Eurocrypt 2018) and Benhamouda
and Lin (Eurocrypt 2018) essentially settle the question by showing
that such protocols are implied by the minimal assumption that a two-
round oblivious transfer (OT) protocol exists. However, these proto-
cols inherently make a non-black-box use of the underlying OT pro-
tocol, which results in poor concrete efficiency. Moreover, no analogous
result was known in the information-theoretic setting, or alternatively
based on one-way functions, given an OT correlations setup or an honest
majority.

Motivated by these limitations, we study the possibility of obtain-
ing information-theoretic and “black-box” implementations of two-round
MPC protocols. We obtain the following results:

– Two-round MPC from OT correlations. Given an OT cor-
relations setup, we get protocols that make a black-box use of a
pseudorandom generator (PRG) and are secure against a malicious
adversary corrupting an arbitrary number of parties. For a semi-
honest adversary, we get similar information-theoretic protocols for
branching programs.

– New NIOT constructions. Towards realizing OT correlations, we
extend the DDH-based non-interactive OT (NIOT) protocol of Bel-
lare and Micali (Crypto’89) to the malicious security model, and
present new NIOT constructions from the Quadratic Residuosity
Assumption (QRA) and the Learning With Errors (LWE) assump-
tion.

– Two-round black-box MPC with strong PKI setup. Com-
bining the two previous results, we get two-round MPC protocols
that make a black-box use of any DDH-hard or QRA-hard group.
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The protocols can offer security against a malicious adversary, and
require a PKI setup that depends on the number of parties and the
size of computation, but not on the inputs or the identities of the
participating parties.

– Two-round honest-majority MPC from secure channels.
Given secure point-to-point channels, we get protocols that make
a black-box use of a pseudorandom generator (PRG), as well as
information-theoretic protocols for branching programs. These pro-
tocols can tolerate a semi-honest adversary corrupting a strict minor-
ity of the parties, where in the information-theoretic case the com-
plexity is exponential in the number of parties.

1 Introduction

There is an enormous body of work on the round complexity of protocols for
secure multiparty computation (MPC). While the feasibility of constant-round
MPC has been established a long time ago [Yao86,BB89,BMR90], some of
the most basic questions about the exact number of rounds required for MPC
remained wide open until recently.

A single round of interaction is clearly insufficient to realize the standard
notion of MPC. The focus of this work is on MPC protocols that require only
two rounds. Two-round MPC protocols are not only interesting because of the
quantitative aspect of minimizing the number of rounds, but also because of the
following qualitative advantage. In a two-round MPC protocol, a party can send
its first round messages and then go offline until all second-round messages are
received and the output can be computed. (In fact, for two-round protocols over
insecure channels, the first round messages can be publicly posted.) Moreover,
the first round messages can be potentially reused for several computations in
which the receiver’s input remains the same. Indeed, in the two-party setting,
such two-round protocols are sometimes referred to as “non-interactive secure
computation” [IKO+11].

The state of the art on two-round MPC can be briefly summarized as follows.
Unless otherwise specified, we restrict our attention to semi-honest adversaries,
who may non-adaptively corrupt an arbitrary subset of parties, and allow the
protocols to use a common random string.

In the information-theoretic setting, 2-round protocols over secure point-
to-point channels are known to exist with t < n/3 corrupted parties [IK00],
leaving open the existence of similar protocols with an optimal threshold of
t < n/2. These information-theoretic protocols, like all current general constant-
round protocols in the information-theoretic setting, have complexity that grows
polynomially with n and with the branching program size of the function being
computed, and thus can only efficiently apply to rich but limited function classes
such as NC1, NL, or other log-space classes.
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Settling for computational security, the above information-theoretic proto-
cols imply (via the multi-party garbling technique of [BMR90]) similar protocols
for circuits, capturing all polynomial-time computable functions, where the pro-
tocols only require a black-box use of any pseudorandom generator (PRG), or
equivalently a one-way function. In this setting too, it was open whether the
optimal1 threshold of t < n/2 can be achieved.

Under stronger cryptographic assumptions, a lot of recent progress has been
made on two-round MPC protocols that tolerate an arbitrary number of cor-
rupted parties. The first such protocols required a public-key infrastructure
(PKI) setup, where each party can post a public key before its input is known,
and were based on the Learning With Errors (LWE) assumption via threshold
fully homomorphic encryption [AJW11]. This was followed by protocols with-
out PKI setup, first under indistinguishability obfuscation [GGHR14] or wit-
ness encryption [GLS15], and later under LWE via multi-key fully homomorphic
encryption [MW16] or spooky encryption [DHRW16]. Using PKI setup, two-
round protocols could also be constructed under the Decisional Diffie-Hellman
(DDH) assumption via homomorphic secret sharing [BGI17,BGI+18].

In recent works, a new general technique for collapsing rounds via “protocol
garbling” [GS17] has been used by Garg and Srinivasan [GS18] and Benhamouda
and Lin [BL18] to settle the minimal assumptions required for two-round MPC.
These works show that general two-round MPC can be based on any two-round
protocol for oblivious transfer (OT) [Rab81,EGL85], namely a protocol allowing
a receiver to obtain only one of two bits held by a sender without revealing the
identity of the chosen bit. This assumption is clearly necessary, since two-round
OT is an instance of two-round general MPC.

Remaining Challenges. Despite apparently settling the problem of two-round
MPC, many challenges still remain. First and foremost, the recent OT-based
protocols from [GS18,BL18] inherently make a non-black-box use of the under-
lying OT protocol. This results in poor concrete efficiency, which is unfortunate
given the appealing features of two-round MPC discussed above. Second, the
recent results leave open the possibility of obtaining information-theoretic secu-
rity, or alternatively, computational security using symmetric cryptography, in
other natural settings. These include protocols for the case of an honest majority
(t < n/2) using secure point-to-point channels,2 or alternatively protocols for
dishonest majority based on an ideal OT oracle. Finally, the two-round MPC pro-
tocols from [GS18,BL18] did not seem to apply to the more general client-server

1 Protocols that offer security with no honest majority imply oblivious transfer. Thus,
they provably do not admit a black-box reduction to a PRG [IR89], and a non-black-
box reduction would be considered a major breakthrough in cryptography.

2 A recent work of Ananth, Choudhuri, Goel, and Jain [ACGJ18] obtains honest-
majority, two-round MPC protocols from one-way functions satisfying the notion
of security with abort against malicious adversaries. Our work was done in part
following a public announcement of this result.
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setting, where only clients hold inputs and receive outputs, and communication
only involves messages from clients to servers and from servers to clients.3

1.1 Our Contribution

In this work we address the above challenges, focusing mainly on the goal of con-
structing information-theoretic and “black-box” implementations of two-round
MPC protocols. We obtain the following results:

Two-Round MPC from OT Correlations. We start by studying two-round
MPC using an OT correlations setup, which can be viewed as a minimal4 setup
for MPC with no honest majority under assumptions that are weaker than OT.
An OT correlation setup allows each pair of parties to share many independent
instances of correlated randomness where party Pi gets a pair of random bits
(or strings) (s0, s1) and party Pj gets a random bit b and the bit sb. Using such
an OT correlations setup, we get protocols that make a black-box use of a PRG
and are secure against either a semi-honest5 or malicious adversary corrupting
an arbitrary number of parties. For a semi-honest adversary, we get similar
information-theoretic protocols for branching programs.

This OT correlation setup can be implemented with good concrete effi-
ciency via OT extension [IKNP03], requiring roughly 128 bits of commu-
nication per string-OT. Alternatively, the communication complexity of the
setup can be made independent of the circuit size (at a much higher com-
putational cost) by using homomorphic secret sharing based on LWE, DDH,
or DCRA [BGI16,DHRW16,FGJI17,BCG+17]. Finally, a fully non-interactive
option for implementing the OT correlation setup is discussed next.

New NIOT Constructions. An appealing method of realizing the OT cor-
relation setup is via non-interactive OT (NIOT) [BM90]. An NIOT protocol is
the OT analogue of non-interactive key exchange: it allows two parties to obtain
a joint OT correlation via a simultaneous message exchange. We present sev-
eral new constructions of NIOT. First, we extend the DDH-based construction
3 An additional disadvantage of the protocols from [GS18,BL18] compared to most

earlier protocols is that their communication complexity is always bigger than the
circuit size of the function being computed. However, breaking this circuit size bar-
rier under general assumptions such as OT would require a major breakthrough,
regardless of round complexity.

4 Two-round MPC was previously known to follow from a global correlated randomness
setup that includes garbled circuits [CEMY09,IMO18] or truth-tables [IKM+13]
whose keys are secret-shared between all parties. Our setup assumption is weaker in
that it only involves a simple pairwise correlation.

5 Our protocol for semi-honest adversaries is expensive but not prohibitively so. With
some simple optimizations, the online communication consists of roughly 1750 · n3

standard garbled circuits, which is about 135 times the cost of the BMR proto-
col [BMR90], and the total number of OTs required by the setup is less than 7% of
the communication.
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from [BM90] to the malicious security model, improving over an earlier construc-
tion based on bilinear maps from [GS17]. Second, we present new NIOT con-
structions from the Quadratic Residuosity Assumption (QRA) and from LWE.

Two-Round Black-Box MPC with Strong PKI Setup. Combining the
protocols based on OT correlations and the NIOT constructions, we get two-
round MPC protocols that make a black-box use of any DDH-hard or QRA-
hard group. The protocols can offer security against a malicious adversary, and
require a strong PKI setup that depends on the number of parties and the size of
computation, but not on the inputs or the identity of the participating parties.
This is arguably the first “black box” two-round MPC protocol that does not
rely on an honest majority or a correlated randomness setup. Our DDH-based
protocol can be compared with previous DDH-based two-round MPC protocols
from [BGI+18] that require a weaker PKI setup and have better asymptotic
communication complexity, but make a non-black-box use of the underlying
group except when there are n clients and 2 servers.

Two-Round Honest-Majority MPC from Secure Channels. Given
secure point-to-point channels, we get protocols that make a black-box use of a
PRG, as well as information-theoretic protocols for branching programs. These
protocols can tolerate a semi-honest adversary corrupting a strict minority of
the parties, where in the information-theoretic case the complexity of the pro-
tocol grows exponentially with the number of parties. Our work leaves open the
question of eliminating this slightly super-polynomial dependence as well as the
question of obtaining similar results for malicious adversaries. This question has
been resolved in the concurrent and independent work of Applebaum, Brakerski
and Tsabary [ABT18].

From Standard MPC to Client-Server MPC. Finally, we present a general
(non-black-box) transformation that allows converting previous two-round MPC
protocols (including the recent OT-based protocols from [GS18,BL18]) to the
stronger client-server model. Concretely, we use a PRG to transform any n-
party, two-round, MPC protocol with security against semi-honest adversaries
corrupting an arbitrary subset of parties to a similar protocol with n clients and
m servers, where in the first round each client sends a message to each server and
in the second round each server sends a message to each client. The resulting
protocol is secure against a semi-honest adversary that corrupts an arbitrary
subset of clients and a strict subset of the servers. This setting is particularly
appealing when clients would like to be offline except when their input changes
or they would like to receive an output.

1.2 Overview of Techniques

In this subsection, we describe the main techniques used to obtain our results.
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1. We start with a high-level overview of the OT correlations model and describe
the technical challenges in constructing a non-interactive OT protocol.

2. Later, we will show how to use OT correlations to make the compiler of Garg
and Srinivasan [GS18] information theoretic. This gives efficient, two-round
protocols in the OT correlations model with information theoretic security for
branching programs and computational security for circuits making black-box
use of a pseudorandom generator.

3. We then explain the main ideas in constructing a two-round, protocol in the
honest majority setting with secure point-to-point channels.

OT Correlations Model. The OT correlation is modeled by a two-party ideal
functionality. When this functionality is invoked by a (sender, receiver) pair, it
samples three bits (s0, s1) and b uniformly at random and provides (s0, s1) to
the sender and (b, sb) to the receiver. For simplicity, we focus only for the case
where sender’s output (s0, s1) are bits as there are perfect, round-preserving
reductions from bit OT correlations to string OT correlations (refer [BCS96,
BCW03]). Given such OT correlations, there is an information theoretic, two-
round OT protocol as follows. In the first round, the receiver sends u = b ⊕ c to
the sender where c is the choice bit and in the second round, the sender computes
(x0, x1) = (m0 ⊕ su,m1 ⊕ s1⊕u) and sends them to the receiver. The receiver
outputs xc ⊕ rb.

Bellare-Micali Non-interactive Oblivious Transfer. Bellare and
Micali [BM90] gave an efficient, single-round protocol based on Decisional Diffie-
Hellman (DDH) assumption [DH76] for computing OT correlations when the
adversary corrupting either of the two parties is semi-honest. The protocol is in
the common reference string model and is as follows. Let us assume that G is
a DDH hard group and g is a generator. The CRS is an uniform group element
X. The sender chooses a ← Z

∗
p and sends A = ga to the receiver. The receiver

chooses a random b ← Z
∗
p and sends (B0, B1) = (gb,X/gb) in a randomly per-

muted order. The sender computes (Ba
0 , Ba

1 ) and outputs it and the receiver
computes Ab and outputs it. The receiver’s choice bit b is statistically hidden
from an adversarial sender and the string s1−b is computationally hidden from
the receiver based on the DDH assumption. However, this protocol only works in
the semi-honest model as there is no efficient way to extract the receiver’s choice
bit or the sender’s correlations. In [GS17], Garg and Srinivasan additionally used
Groth-Sahai proofs [GS08] to enable efficient extraction of the correlations from
a malicious adversary but this construction relies on bilinear maps.

Our Construction of Non-interactive Oblivious Transfer. Our approach
of constructing non-interactive oblivious transfer is via a generalization of the
dual-mode framework introduced in the work of Peikert, Vaikuntanathan and
Waters [PVW08]. In the dual mode framework, the common reference string
can be in one of two indistinguishable modes: namely, the receiver extraction
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mode or the sender extraction mode. In the receiver extraction mode, the CRS
trapdoor enables the simulator to extract the receiver’s correlation b and in the
sender extraction mode, the it enables the simulator to extract the sender’s cor-
relation (s0, s1) from the malicious party. In either of the two modes, the secrets
of the honest party are statistically hidden. We give efficient instantiations of
this framework from DDH, Quadratic Residuocity assumption [GM82] and the
Learning with Errors assumption [Reg05]. Our DDH and QR based construc-
tions make black-box use of the underlying group. We stress that constructions
of dual-mode cryptosystem in [PVW08] do not yield non-interactive oblivious
transfer and we need to come up with new constructions. We refer the reader to
Sect. 3.1 for the details.

Round-Collapsing Compiler in the OT Correlations Model. Indepen-
dent works by Benhemouda and Lin [BL18] and Garg and Srinivasan [GS18]
gave a “round-collapsing” compiler that takes an arbitrary multi-round MPC
protocol and collapses it to two-rounds assuming the existence of a two-round
oblivious transfer and garbled circuits. The compiler makes use of the code of the
underlying protocol and thus, if the underlying protocol performs cryptographic
operations then the resultant two-round protocol makes non-black box use of
cryptography. In this work, we will use OT correlations to modify the compiler
of [GS18] so that the resulting protocol makes black-box use of cryptography
even if the underlying protocol performs cryptographic operations. Let us see
how this is done.

We start by observing that OT correlations allow for perfect (resp.,
statistical) information-theoretic protocols in the presence of an arbitrary
number of semi-honest (resp., malicious) corrupted parties. Hence, we will
round-collapse, perfectly/statistically secure protocols that are in the OT-
hybrid model (e.g., [GMW87,Kil88,IPS08]). We first give a reduction from
perfectly/statistically secure protocols in the OT-hybrid model to a per-
fectly/statistically secure protocols in the OT correlations model. This reduction
has a property that all the OT correlations are generated before the actual exe-
cution of the protocol and the operations performed in the protocol are informa-
tion theoretic. Another useful property is that number of OT correlations needed
depends only the number of parties and the size of the computation to be per-
formed and in particular, is independent of the actual inputs. At a high level,
this reduction relies on the fact that OT correlations can be used to perform
information theoretic OTs. Now, given such a protocol in the OT correlations
model, we modify the compiler of Garg and Srinivasan to have a pre-processing
phase where all the OT correlations needed for the underlying protocol and those
consumed by the round-collapsing compiler are generated. Later, these OT cor-
relations are used to perform information theoretic OTs both in the underlying
protocol and the round-collapsing compiler. Additionally, we also replace the
garbled circuits used in the round-collapsing compiler with a perfectly secure
analogue, namely a so-called “decomposable randomized encodings” for low-
depth circuits [IK00,AIK04]. With these changes to the [GS18] compiler, we get
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a perfectly secure two-round protocol in the OT correlations model for constant
size functions. Later, we use a result from [BGI+18] to bootstrap this to a per-
fectly secure, two-round protocol in the OT correlations model for NC0 circuits.
Two immediate corollaries of this result are a perfectly secure, two-round proto-
col in the OT correlations model for polynomial sized branching programs and
a computationally secure, two-round protocol in the OT correlations model for
arbitrary circuits making black-box use of a pseudorandom generator.

Two-Round Protocol in the Honest Majority Setting. To construct a
two-round protocol in the plain model (with secure point-to-point channels)
when the adversary corrupts a strict minority of the parties, we use the same
high level idea of the [GS18] compiler. That is, we take a larger round protocol
secure with honest majority and round-collapse it to two-rounds. Two immedi-
ate issues arise: (1) The first issue is that the round-collapsing compiler requires
the existence of two-round oblivious transfer, (2) the second issue is that round-
collapsing compiler could only compress protocols in the presence of a broad-
cast channels and fails for protocols with secure channels. To address the first
issue, we construct a perfectly secure, two-round OT protocol in the presence
of honest majority (building on the work of [IKP10]) and to address the sec-
ond issue, we give a generalization of the [GS18] compiler to compress protocols
that may require secure channels. We then use this OT protocol in parallel with
the round-collapsing compiler of [GS18] (enhanced to work for protocols with
secure channels) to obtain a two-round protocol in the honest majority setting.
However, the resulting communication complexity of the protocol grows super-
polynomially with the number of parties n. Still, for constant n, the protocol is
efficient.

1.3 Organization

In Sect. 2, we will recall some standard definitions about secure computation and
tools such as garbled circuits and decomposable randomized encoding. In Sect. 3,
we define the OT correlations functionality and give various methods to realize
it. In Sect. 4 we give the construction of 2-round semi-honest MPC in the OT
correlations hybrid model. We point the reader to the full version of our paper
for the other results.

2 Preliminaries

We recall some standard cryptographic definitions in this section. Let λ denote
the security parameter. A function μ(·) : N → R

+ is said to be negligible if
for any polynomial poly(·) there exists λ0 such that for all λ > λ0 we have
μ(λ) < 1

poly(λ) . We will use negl(·) to denote an unspecified negligible function
and poly(·) to denote an unspecified polynomial function.

For a probabilistic algorithm A, we denote A(x; r) to be the output of A on
input x with the content of the random tape being r. When r is omitted, A(x)
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denotes a distribution. For a finite set S, we denote x ← S as the process of
sampling x uniformly from the set S. We will use PPT to denote Probabilistic
Polynomial Time algorithm.

2.1 Decomposable Randomized Encoding

We recall the definitions of randomized encoding [Yao86,IK00,AIK04].

Definition 1 (Randomized Encoding). Let f : {0, 1}n → {0, 1}m be some
function. We say that a function ̂f : {0, 1}n × {0, 1}ρ → {0, 1}m is a perfect
randomized encoding of f if for every input x ∈ {0, 1} , the distribution ̂f(x; r)

induced by an uniform choice of r
$← {0, 1}ρ , encodes the string f(x) in the

following sense:

– Correctness. There exists a decoding algorithm Dec such that for every x ∈
{0, 1}n, it holds that:

Pr
r

$←{0,1}ρ

[Dec( ̂f(x; r)) = f(x)] = 1

– Privacy: There exists a randomized algorithm S such that for every x ∈
{0, 1}n and uniformly chosen r

$← {0, 1}ρ it holds that

S(f(x)) is distributed identically to ̂f(x; r).

Definition 2 (Decomposable Randomized Encoding). We say that
̂f(x; r) is decomposable if ̂f can be written as ̂f(x; r) = ( ̂f0(r), ̂f1(x1; r),
. . . , ̂fn(xn; r)) where ̂fi is chooses between two vectors based on xi , i.e., it can
be written as ai,xi

and (ai,0,ai,1) arbitrarily depend on the randomness r. We
will use ̂f(; r) to denote ( ̂f0(r), (a1,0,a1,1), . . . , (an,0,an,1)).

We will recall the following two constructions of randomized encoding.

Lemma 1 ([Kil88,IK00]). Let f : {0, 1}n → {0, 1}m be a function computable in
NC0. Then f has a perfectly secure decomposable randomized encoding ̂f where
the size of the encoding is 2O(d)(n + m) where d is the depth of the circuit.

Lemma 2 ([Yao86]). Let f : {0, 1}n → {0, 1}m be a function computable by an
arbitrary circuit. Assuming the existence of one-way functions, f has a compu-
tationally secure randomized encoding ̂f .

2.2 Universal Composability Framework

We work in the Universal Composition (UC) framework [Can01] to formalize
and analyze the security of our protocols. (Our protocols can also be analyzed
in the stand-alone setting, using the composability framework of [Can00], or in
other UC-like frameworks, like that of [PW00].) We give the details in the full
version. We only focus on static (non-adaptive) adversaries but we note that our
perfectly secure protocols are also secure against adaptive adversaries.
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3 OT Correlations Functionality

In this section, we define the FOTCor functionality in Fig. 1. Intuitively, the
FOTCor functionality obtains a bit b from the receiver and samples two bits
(s0, s1) randomly from {0, 1} and outputs (s0, s1) to the sender and sb to the
receiver.6 In the definition, we focus on the case where the sender’s output are
just two bits (s0, s1) instead of two strings as there are efficient reductions from
1-out-of-2 string OTs to 1-out-of-2 bit OTs using self-intersecting codes or ran-
domness extractors [BCS96,BCW03]. By abusing notation, we will interchange-
ably use the same functionality to sample two strings instead of two bits.

Parametrized with parties P1, . . . , Pn and an adversary S controlling a subset of
the parties. Let H be the set of parties not controlled by the adversary.

On receiving (sid, receiver, pid, b) (where b ∈ {0, 1}) or (sid, sender, pid) from a
party with id pid, store this message.

On receiving (sid, pid1, pid2) from a party with id pid1, check if
(sid, receiver, pid2, b) and (sid, sender, pid1) are stored. If not stored, then
do nothing. Else, do the following:
– If both pid1, pid2 ∈ H , sample (s0, s1)

$← {0, 1}, send (s0, s1) to the party
pid1 and sb to the party pid2.

– If pid1 H but pid2 ∈ H then send the message (sender, pid1) to S and
receive (s0, s1) from S. Send sb to the party pid2.

– If pid1 ∈ H but pid2 H , send the message (receiver, pid2) to S and

receive sb from S. Sample s1−b
$← {0, 1} and send (s0, s1) to the party

pid1.
– If both pid1, pid2 H , ignore the message.

Fig. 1. OT Correlations Functionality FOTCor.

We first discuss two generic ways from literature for realizing FOTCor func-
tionality and then give two new ways for realizing it.

OT Extension. We first note that any OT protocol can be used to realize
FOTCor functionality. A more efficient way would be to use an oblivious transfer
extension protocol [Bea96,IKNP03,ALSZ13,ALSZ15,KOS15]. Any OT exten-
sion protocol with security against semi-honest/malicious adversaries can be
used to realize the FOTCor functionality against semi-honest/malicious adver-
saries. The only downside of this approach is that it involves multiple rounds of
interaction (which is inherent if we want to make black-box use of cryptogra-
phy [GMMM18]).

6 Here, we let the receiver to choose the bit b and provide as input to the function-
ality. We can also work with a weaker formulation wherein the functionality can
sample a random bit b. However, we chose this formulation as it will lead to concrete
improvements in the cost of our two-round MPC protocols.
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Homomorphic Secret Sharing/Threshold FHE. A reusable and a non-
interactive approach to realize the weaker formulation wherein the receiver’s
choice bit is sampled randomly by the functionality is to use Homomorphic
Secret Sharing (HSS) [BGI16,BGI17,BGI+18,BCG+17]. Using Homomorphic
Secret Sharing, each party can generate a HSS encoding of a randomly chosen
PRG seed and broadcasts this encoding to all other parties. When an OT correla-
tion is to be generated, the parties (using the encodings) locally compute a func-
tionality that expands the receiver’s and the sender’s PRG seed to the required
length and samples the prescribed OT correlation from the expanded seeds. At
the end of this local computation, the parties hold an additive secret sharing of
the OT correlation and the actual correlation can be obtained non-interactively
by sending these additive shares to the receiver. This approach is reusable as the
encodings just needs to be sent once and can be resused to generate fresh correla-
tions each time.7 We also note that we can replace the above homomorphic secret
sharing with any threshold FHE construction [MW16,DHRW16,BGG+18]. The
downsides of using HSS or threshold FHE is that they make non-black box use
of one-way functions in expanding the short seed to a pseudorandom string and
they are computationally expensive when compared to the OT extension. Addi-
tionally, HSS requires the use of secure channels between every pairs of parties.

In Sect. 3.1, we describe a non-interactive approach to realize FOTCor. The
advantage of this approach over HSS/threshold-FHE is that it makes black-box
use of a groups where either DDH or QR is hard (we also provide an efficient
construction from the LWE assumption). However, unlike HSS/threshold-FHE
they are not reusable.

3.1 Realizing FOTCor: Non-interactive Oblivious Transfer

In this subsection, we define a Non-interactive Oblivious Transfer (NIOT) and
show how to realize FOTCor functionality from NIOT.

Definition. A Non-interactive Oblivious Transfer (NIOT) is a tuple of algo-
rithms (KR,KS,Sen,Rec, outS, outR) having the following syntax, correctness and
security guarantees.

– KR and KS are randomized algorithms that take as input the security param-
eter (encoded in unary) and output a common random string σ along with
some trapdoor information τ .

– Sen is a randomized algorithm that takes σ as input and outputs msgS along
with secret randomness ω.

– Rec is a randomized algorithm that takes σ and a bit b as input and outputs
msgR along with secret randomness ρb.

7 The HSS constructions in [BGI16,BGI17,BGI+18,BCG+17] have a polynomial error
probability and this might leak information about the correlations to an adversary.
[BCG+17] mentions two ways to prevent such leakages: either bootstrap random
pads or use a punctured OT [BGI17]. We refer the reader to [BCG+17] for the
details.
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– outS is a deterministic algorithm that takes as input σ, msgR and the secret
randomness ω and outputs two bits k0, k1.

– outR is a deterministic algorithm that takes as σ, msgS and the secret ran-
domness ρb and outputs a bit k′

b.

Correctness. We require that for all b ∈ {0, 1},

Pr
[

k′
b = kb : (σ, τ) ← KR(1λ), (msgS, ω) ← Sen(σ), (msgR, ρb) ← Rec(σ, b),

(k0, k1) ← outS(σ, ω,msgR), k′
b ← outR(σ, ρb,msgS)

] ≥ 1 − negl(λ)

Security. We require the following security properties to hold.

– CRS Indistinguishability. We require that
{

σ : (σ, τ) ← KR(1λ)
} c≈ {

σ : (σ, τ) ← KS(1λ)
}

– Sender Security. We require that there exists a PPT a lgorithm ExtR such
that for all non-uniform PPT adversarial Rec∗ the following two distributions
are statistically close.

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(σ, τ) ← KR(1λ),
(msgS, ω) ← Sen(σ),
msgR ← Rec∗(σ,msgS)
(k0, k1) ← outS(σ, ω,msgR):
Output (msgS,msgR, k0, k1)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

s≈

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(σ, τ) ← KR(1λ),
(msgS, ω) ← Sen(σ),
msgR ← Rec∗(σ,msgS)
b′ ← ExtR(σ,msgR, τ):
(k0, k1) ← outS(σ, ω,msgR),
�b′ := kb′ , �1−b′ ← {0, 1}:
Output (msgS,msgR, �0, �1).

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

– Receiver Security. We require that there exists a PPT algrithm ExtS such
that for all non-uniform PPT adversarial Sen∗ and for all b ∈ {0, 1}, the
following two distributions are statistically close.
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(σ, τ) ← KS(1λ),
(msgR, ρb) ← Rec(σ, b),
msgS ← Sen∗(σ,msgR),
k′

b ← outR(σ, ρb,msgS):
Output (msgS,msgR, k′

b)

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

s≈

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(σ, τ) ← KS(1λ),
(msgR, ρ0, ρ1) ← ExtS(σ, τ),
msgS ← Sen∗(σ,msgR),
k′

b ← outR(σ, ρb,msgS):
Output (msgS,msgR, k′

b)

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

NIOT ⇒ FOTCor. In this subsection, we give a realization of the FOTCor

functionality from any non-interactive oblivious transfer.

Theorem 1. Assuming the existence of non-interactive oblivious transfer, there
is a single round protocol for realizing FOTCor against malicious adversaries in
the common reference string model.

Construction. We give a construction realizing the FOTCor functionality in
Fig. 2.
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Let (KR,KS, Sen,Rec, outS, outR) be a non-interactive oblivious transfer.

Inputs: Party Pi for i ∈ [n], receives a session id sid.

Common Reference String: For every i, j ∈ [n], sample (σi,j , τi,j) ← KR(1λ).
Publish {σi,j}i,j∈[n] as the common reference string.

Let us assume that Pi is the sender and Pj is the receiver.
Message sent by Pi → Pj: Compute (msgS, ω) ← Sen(σi,j) and send msgS to

Pj .
Message sent by Pj → Pi: On input b ∈ {0, 1}, compute (msgR, ρb) ←

Rec(σi,j , b). Send msgR to Pi.
Computation: Pi sets (s0, s1) := outS(σi,j , ω,msgR). Pj sets sb :=

outR(σi,j , ρb,msgS).

Fig. 2. Realizing the FOTCor functionality

Description of the Simulator. We assume that A is static and hence the
set of honest parties H is known before the execution of the protocol. Recall
the properties of ExtR and ExtS from the definition of non-interactive oblivious
transfer.

Simulating the CRS. For every i ∈ [n],

– If Pi ∈ H, sample (σi,j , τi,j) ← KR(1λ) for every j ∈ [n] \ {i}.
– If Pi 	∈ H, sample (σi,j , τi,j) ← KS(1λ) for every j ∈ [n] \ {i}.

Publish {σi,j}i,j∈[n] as the common reference string.

Simulating the Interaction with Z. For every input value for the set of
corrupted parties that S receives from Z, S writes that value to A’s input tape.
Similarly, the output of A is written as the output on S’s output tape.

Simulating the Interaction with A. For every concurrent interaction with
the session identifier sid that A may start and for every choice of sender Pi and
the receiver Pj , the simulator does the following:

– Both Pi, Pj ∈ H:
1. Compute (msgS, ω) ← Sen(σi,j) on behalf of Pi and send msgS to Pj .
2. Sample b ← {0, 1} and compute (msgR, ρb) ← Rec(σi,j , b) on behalf of Pj .

Send msgR to Pi.
– Pi ∈ H and Pj 	∈ H:

1. Compute (msgS, ω) ← Sen(σi,j) on behalf of Pi and send msgS to A.
2. A outputs msgR.
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3. Run b′ ← ExtR(σi,j , τi,j ,msgR).
4. Compute (s0, s1) := outS(σi,j , ω,msgR).
5. Send sb′ to the FOTCor functionality and output whatever A outputs.

– Pi 	∈ H and Pj ∈ H:
1. Compute (msgR, ρ0, ρ1) ← S(σi,j , τi,j) and send msgR to A.
2. A outputs msgS.
3. Compute sb := outR(σi,j , ρb,msgS) for all b ∈ {0, 1}.
4. Send (s0, s1) to the FOTCor functionality and output whatever A outputs.

Lemma 3. Assuming the security of non-interactive oblivious transfer, for
every Z that obeys the rules of interaction for UC security we have
EXECF,S,Z

c≈ EXECπ,A,Z .

We prove this lemma in the full version.

NIOT from Quadratic Residuocity. In this section we present a construc-
tion of non-interactive oblivious transfer from the quadratic residuocity (QR)
assumption. We will begin by reviewing the assumption, then describe the con-
struction, and finally prove its correctness and security.

Notations. For a positive integer N , we use J (N) to denote the set {x ∈
Z/NZ :

(

x
N

)

= 1}, where
(

x
N

)

is the Jacobi symbol of x in Z/NZ. We use
QR(N) to denote the set of quadratic residues in J (N). The security of our
scheme is based on the following computational assumption.

Definition 3 (Quadratic Residuocity (QR) Assumption [GM82]). Let
QRgen(·) be a PPT algorithm that generates two equal size primes p, q and
N = pq. The following two distributions are computationally indistinguishable:

{

(p, q,N) ← QRgen(1λ);V ← QR(N) : (N,V )
} c≈

{

(p, q,N) ← QRgen(1λ);V ← J (N) \ QR(N) : (N,V )
}

In the construction and the proof of security, we make use of the notion IBE
compatible algorithm proved in [BGH07].

Definition 4 ([BGH07]). Let Q be a deterministic algorithm that takes as input
(N,S,R) where N ∈ Z

+ and R,S ∈ Z/NZ. The algorithm outputs two polyno-
mials f, g ∈ Z/NZ[x]. We say that Q is IBE-compatible if the following two
conditions hold:

1. (Condition 1) If S and R are quadratic residues then f(s)g(r) is a quadratic
residue for all square roots r of R and s of S.

2. (Condition 2) If S is a quadratic residue then f(s)f(−s)R is a quadratic
residue for all square roots s of S.

Boneh et al. [BGH07] showed a concrete instantiation of such an IBE-compatible
algorithm.

Theorem 2. Assuming the Quadratic Residuocity assumption, there exists a
construction of non-interactive oblivious transfer.
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The Construction. We give the construction of non-interactive oblivious trans-
fer in Fig. 3.

– KR(1λ) :
1. (p, q, N) ← QRgen(1λ)..
2. Sample a random u ← J (N) \ QR(N).
3. Output σ := (N, u), τ := (p, q).

– KS(1λ):
1. (p, q) ← QRgen(1λ).
2. Sample a random u ← QR(N).
3. Output σ := (N, u), τ := (p, q).

– Sen(σ):
1. Pick a random s ∈ Z/NZ.
2. S := s2.
3. Output msgS := S, ω := s.

– Rec(σ, b):
1. Pick a random r ∈ Z/NZ.
2. If b = 0, let msgR := r2, otherwise let msgR := r2u.
3. Output msgR and ρb := (r, b,msgR).

– outS(σ, ω,msgR):
1. Parse ω as s, and let S := s2.
2. (f, g) ← Q(N, S,msgR), (f̄ , ḡ) ← Q(N, S, u · msgR).

3. Output k0 :=
(

f(s)
N

)
, k1 :=

(
f̄(s)
N

)
.

– outR(σ, ρb,msgS):
1. Parse ρb as (r, b,msgR); parse msgS as S.

2. If b = 0, let (f, g) ← Q(N, S, r2) and k′
b :=

(
g(r)
N

)
;

otherwise let (f̄ , ḡ) ← Q(N, S, (ru)2) and k′
b :=

(
ḡ(ru)

N

)
.

3. Output k′
b.

Fig. 3. Non-interactive oblivious transfer from QR

Correctness. We start with the correctness proof. Notice that if b = 0 then
msgR is a quadratic residue and otherwise, u ·msgR is a quadratic residue. Let us
first consider the case where msgR is a quadratic residue. In that case, Condition
1 in Lemma 4 implies that

(

f(s)
N

)

=
(

g(r)
N

)

. Hence, k′
0 = k0. A similar argument

can be used to show that if u · msgR is a quadratic residue then k′
1 = k1.

CRS Indistinguishability. The CRS indistinguishability property follows
directly from quadratic residuocity assumption.
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Sender Security. We first give the description of the extractor ExtR. On input
msgR, the extractor uses the trapdoor τ = (p, q) to check if msgR is a quadratic
residue. It outputs b′ = 0 if it is the case and 1 otherwise. We now need to show
that k1−b′ is statistically indistinguishable to random and this follows directly
from the following lemma given in [BGH07].8

Lemma 4 ([BGH07]). Let N = pq be a QR modulus, X ∈ QR(N) and R 	∈
QR(N). Let x be a random variable uniformly chosen among the four square
roots of X. Let f be a polynomial such that f(x)f(−x)R is a quadratic residue
for all four values of x. Then,

(

f(x)
N

)

is uniformly distributed in {±1}.

Proof. Some parts of the proof are taken verbatim from [BGH07]. Let x, x′ be two
square-roots of X such that x = x′ mod p and x = −x′ mod q. Then, the four
square roots of X are {±x,±x′}. By definition, we have that

(

f(x)
p

)

=
(

f(x′)
p

)

and
(

f(x′)
q

)

=
(

f(−x)
q

)

. Also, from the fact that f(x)f(−x)R is a quadratic

residue, we have that
(

f(x)
p

)(

f(−x)
p

) (

R
p

)

= 1 and
(

f(x)
q

) (

f(−x)
q

)(

R
q

)

= 1.

Since R 	∈ QR(N) either
(

R
p

)

= −1 or
(

R
q

)

= −1. We consider two cases:

– Case-1:
(

R
q

)

= −1. In this case,
(

f(x)
q

)

= −
(

f(−x)
q

)

= −
(

f(x′)
q

)

. Thus,
(

f(x)
N

)

= −
(

f(x′)
N

)

. Similarly, one can show that
(

f(−x)
N

)

= −1
(

f(−x′)
N

)

.
Thus, among f(x), f(x′), f(−x), f(−x′), the first two have different Jacobi
symbols and the last two have different Jacobi symbols modulo N . Thus,
(

f(x)
N

)

is uniformly distributed over {±1}.

– Case-2:
(

R
p

)

= −1. In this case,
(

f(x)
p

)

= −
(

f(−x)
p

)

= −
(

f(−x′)
p

)

. Thus,
(

f(x)
N

)

= −
(

f(−x′)
N

)

. Similarly, one can show that
(

f(x′)
N

)

= −
(

f(−x)
N

)

.
Thus, among f(x), f(−x′), f(−x), f(x′), the first two have different Jacobi
symbols and the last two have different Jacobi symbols modulo N . Thus,
(

f(x)
N

)

is uniformly distributed over {±1}.

Receiver Security. We first give the description of the extractor ExtS. On
input σ, τ , it uses τ to find the square root u′ of u. It samples a random r and
sets msgR = r2u, ρ0 = ru′ and ρ1 = r. It is easy to see that this extractor
satisfies the receiver security definition.

4 Two-Round Semi-Honest MPC in the FOTCor Model

In this section, we give our construction of two-round MPC against semi-honest
adversaries in the FOTCor model when the adversary is allowed to corrupt an
8 The lemma in [BGH07] was shown only for R ∈ J (N). We extend it to arbitrary
R �∈ QR(N).
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arbitrary subset of the parties. The results we obtain against semi-honest adver-
saries are as follows (all our results are in the FOTCor model):

1. We first give a perfectly secure, two-round protocol for constant-size func-
tionalities.

2. Next, using s result in [BGI+18] and the protocol from Step 1, we will give a
protocol with perfectly (resp. statistical) secure, two-round protocol for func-
tionalities with perfect (resp. statistical) randomized encodings with constant
degree. Following [AIK04], we will denote the class of functions with perfectly
(resp. statistically) secure constant degree randomized encodings as PREN
(resp. SREN). Applebaum et al. [AIK04] showed that some of the natural
complexity classes such as NC1 and mod-2 branching programs ⊕L/poly are
contained in PREN. A complexity class that is in SREN but not known to be
in PREN is NL.

3. Next, using the result in [BMR90] and the protocol from Step 1, we will give
a protocol for all circuits making black-box use of a pseudorandom generator.

4.1 Protocols for Constant-Size Functionalities

For a constant n, let f : {0, 1}n → {0, 1} be a function with constant circuit
size.9 For each i ∈ [n], the party Pi has input bit xi and the parties want to
securely compute f(x1, . . . , xn).10 We give perfectly secure, two-round protocols
for computing f both in the dishonest majority setting in the FOTCor hybrid
model.

To construct a two-round protocol in the dishonest majority setting, we will
use the same high level idea of Garg and Srinivasan [GS18]. To be more precise,
we will take an arbitrary round protocol that securely computes the function f
and compress it to two-rounds. However, to construct a perfectly secure protocol
we will make the following changes to the round-collapsing compiler of [GS18],

1. All the executions of two-round oblivious transfer used by the round-
collapsing compiler in [GS18] are replaced with perfectly secure, two-round
oblivious transfer from OT correlations.

2. The garbled circuits used in [GS18] compiler are replaced with perfectly
secure, decomposable randomized encodings for NC0 circuits (cf. Definition 2).

3. The underlying multi-round protocol that we want to round-compress might
use cryptographic operations (which is necessary in the dishonest major-
ity setting) and this creates the following two problems: (i) we can no
longer argue perfect/statistical security, (ii) a subtle but a more impor-
tant problem is that the compiler in [GS18] makes use of the code of the

9 For simplicity, we restrict ourselves to functions that output a single bit. We note
that all our results can be generalized to functions with multiple bits with efficiency
growing linearly with this number. We also assume that all the parties get the output
of this functionality. We can also generalize our result for the case where some specific
parties get the output.

10 Again, for simplicity we restrict ourselves to parties with a single input bit and our
results naturally generalize to parties with multiple bits as input.
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underlying protocol and hence if the underlying protocol involves crypto-
graphic operations then the resultant two-round protocol makes non-black
box use of cryptographic primitives. To solve the first problem, we will only
round-compress perfect/statistical protocols in the OT-hybrid model (e.g.,
[GMW87,Kil88,IPS08]). Notice that any protocol in the OT-hybrid model
can be reduced information theoretically to a protocol in the FOTCor func-
tionality. To make the operations performed by all the parties information
theoretic, we will generate OT correlations and make these correlations as
part of the party’s input. For example, consider two parties P1 and P2 who
wish to do an OT in some round of the underlying protocol. Now, P1 and
P2 will use the OT correlations from their input to perform an information
theoretic OT.

The rest of the subsection is organized as follows. We will first recall the
notion of conforming protocols from [GS18]. Intuitively, conforming protocols are
MPC protocols with some additional structure. [GS18] showed that any MPC
protocol can be transformed to a conforming protocol (with some efficiency loss).
We give a generalization of the notion of conforming protocols to work in FOTCor

model. Then, we will describe our construction of two-round MPC in the FOTCor

hybrid model.

Conforming Protocol. We will now recall the notion of conforming protocols
from [GS18]. We introduce an additional parameter s such that in each round of
the conforming protocol, a single party computes s NAND gates and broadcasts
the output of these NAND gates to every party. We note that in the formulation
of [GS18], the parameter s was set to 1. We introduce this parameter for better
concrete efficiency.

Consider a n-party deterministic11 MPC protocol Φ between parties
P1, . . . , Pn with inputs x1, . . . , xn, respectively. For each i ∈ [n], we let xi ∈
{0, 1}m denote the input of party Pi (xi’s also include the randomness used in
the protocol and hence they are m bits long). A conforming protocol Φ in the
FOTCor is defined by functions pre, post, and a OT correlations generation phase
and computations steps or what we call actions φ1, · · · φT . The protocol Φ pro-
ceeds in four stages: the OT correlations generation phase, the pre-processing
stage, the computation stage and the output stage.

– OT correlations generator: For every instance of the OT to be performed
in the protocol, interact with the FOTCor functionality to generate OT cor-
relations.

– Pre-processing phase: For each i ∈ [n], party Pi computes

(zi, vi) ← pre(i, xi)

where pre is a randomized algorithm and the input xi is now augmented with
the OT correlations generated in the previous step. The algorithm pre takes

11 Randomized protocols can be handled by including the randomness used by a party
as part of its input.
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as input the index i of the party, its input xi and outputs zi ∈ {0, 1}�/n and
vi ∈ {0, 1}� (where � is a parameter of the protocol). Finally, Pi retains vi

as the secret information and broadcasts zi to every other party. We require
that vi,k = 0 for all k ∈ [�]\ {(i − 1)�/n + 1, . . . , i�/n}.

– Computation phase: For each i ∈ [n], party Pi sets

sti := (z1‖ · · · ‖zn).

Next, for each t ∈ {1 · · · T} parties proceed as follows:
1. Parse action φt as (i, (a1, b1, c1), . . . , (as, bs, cs)) where i ∈ [n] and

aj , bj , cj ∈ [�] for all j ∈ [s].
2. Party Pi computes s NAND gates as

sti,cj
= NAND(sti,aj

⊕ vi,aj
, sti,bj

⊕ vi,bj
) ⊕ vi,cj

for all j ∈ [s] and broadcasts {sti,cj
}j∈[s] to every other party.

3. Every party Pk for k 	= i updates stk,cj
for all j ∈ [s] to the bits received

from Pi.
We require that for all t, t′ ∈ [T ] such that t 	= t′, if φt =
(·, (·, ·, c1), . . . , (·, ·, cs)) and φt′ = (·, (·, ·, c′

1), . . . , (·, ·, c′
s)) then {cj} ∩ {c′

j} =
∅. We use Ai ⊂ [T ] to denote the set of rounds in which the party Pi sends
a message. Namely, Ai = {t ∈ T | φt = (i, (·, ·, ·), . . . , (·, ·, ·))} .

– Output phase: For each i ∈ [n], party Pi outputs post(i, sti, vi).

We now show the following lemma which is a generalization of the lemma proved
in [GS18].

Lemma 5. For s = 1, any MPC protocol Π in the OT hybrid model can be
transformed into a conforming protocol Φ in the FOTCor model while inheriting
the correctness and the security of the original protocol. Furthermore, there exists
a choice of s such that the number of rounds of the resulting conforming protocol
is O(n·dmax·r) where dmax is the maximum depth of the boolean circuit computing
the next message function of any party and r is the number of rounds of the
original protocol Π.

We prove the lemma in the full version.

Remark 1. We note that if the i-th party’s output is public then the algorithm
post need not take vi as input.

Compiled Protocol. We describe the compiled protocol in Fig. 4 and give an
informal overview below.

Overview. Our construction involves a pre-preprocessing phase followed by
the two-rounds of interaction (described in Fig. 4) and a local evaluation phase
(described below). In the pre-processing phase, the parties interact with the
FOTCor functionality to generate two sets of OT correlations. The first set of OT
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correlations are generated to execute the two-round oblivious transfer used in
the compiler of Garg and Srinivasan [GS18]. The second set of OT correlations
are to be hardwired as part of the input in the conforming protocols so that
the operations done by each party in the conforming protocol are information
theoretic. To obtain perfect security, we also use a decomposable randomized
encoding in place of garbled circuits. Apart from these changes, our two-round
protocol is exactly same as in [GS18].

Evaluation. To compute the output of the protocol, each party Pi does the
following:

1. For each k ∈ [n], let x̂k,1 be the input encoding received from Pk at the end
of round 2.

2. for each t from 1 to T do:
(a) Parse φt as (i∗, (a1, b1, c1), . . . , (as, bs, cs)).
(b) Compute ({(ξj , ωj)}j∈[s], x̂

i∗,t+1) := Dec( ˜f i,t, x̂i,t).
(c) Set sti,cj

:= ξj .
(d) for each k 	= i∗ do:

i. Compute ({ots2j}j∈[s], {x̂k,t+1
h }h∈[�]\{cj}j∈[s]

) := Dec( ˜f i,t, x̂i,t).
ii. For every j ∈ [s]:

A. Parse ots2j as (Y0, Y1) and ωj as {γk
j }k∈[n]\{i∗}.

B. Recover x̂k,t+1
cj

:= Yξj
⊕ γk

j .
iii. Set x̂k,t+1 := {x̂k,t+1

h }h∈[�].
3. Compute the output as post(i, sti, vi).

Asymptotic Cost. Since the function f is constant size, the number of rounds
of the underlying protocol and the maximum depth of the next message functions
are constant (e.g., if we use [GMW87] as the underlying protocol). As a result
of Lemma 5, the number of rounds of the conforming protocol is also a constant
since k is a constant. Hence, the asymptotic cost of our protocol is a constant
(though concretely it grows as 2O(T ) where T is the number of rounds of the
conforming protocol).

Security. The only changes that we make when compared to the protocol in
[GS18] is that we use information theoretic, two-round oblivious transfer (based
on OT correlations) and perfectly secure DRE in place of garbled circuits. We
prove the security in the full version.

Theorem 3. For every constant size function f , the protocol in Fig. 4 perfectly
computes f against a semi-honest adversaries who might corrupt an arbitrary
subset of the parties.
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Let Φ be an n-party conforming semi-honest MPC protocol (with T rounds in the
computation phase) and f̂ be a DRE (See Definition 2).

Pre-processing Phase: On input the number of parties n, the number of func-
tions s, the size of each of these functions and the size of each party’s input
m, the party Pi does the following:
1. For each j ∈ [s] and α, β ∈ {0, 1}:

(a) For each t ∈ Ai (recall the definition of Ai from the descrip-
tion of conforming protocol), send ((t, j, α, β), receiver, i, rt,j,α,β)
(where rt,j,α,β is chosen randomly) and for each t ∈ [T ] \ Ai, send
((t, j, α, β), sender, i) to FOTCor functionality.

(b) Receive ωt,j,α,β = {γk
t,j,α,β}k∈[n]\{i} for each t ∈ Ai and

(γ0
t,j,α,β , γ1

t,j,α,β) if t ∈ [T ] \ Ai from FOTCor.
2. Execute the OT correlations generation phase of the conforming protocol

Φ.
Round-1: Each party Pi does the following:

1. Compute (zi, vi) ← pre(i, xi).
2. For each t ∈ Ai, for each j ∈ [s] and α, β ∈ {0, 1}, compute

ots1t,j,α,β ← vi,cj ⊕ NAND(vi,aj ⊕ α, vi,bj ⊕ β)
) ⊕ rt,j,α,β ,

where φt = (i, (a1, b1, c1), . . . , (as, bs, cs)).
3. Send zi, {ots1t,j,α,β}t∈Ai,j∈[s],α,β∈{0,1}

)
to every other party.

Round-2: In the second round, each party Pi does the following:
1. Set sti := (z1‖ . . . ‖zi‖ . . . ‖zn).
2. Set ai,T+1

k,0 = ai,T+1
k,1 = ⊥ for all k ∈ [�].

3. for each t from T down to 1,
(a) Parse φt as (i∗, (a1, b1, c1), . . . , (as, bs, cs)).
(b) If i = i∗ then

i. Let f i,t be a NC0 function that takes st as input, updates stcj as
per the action for every j ∈ [s] and outputs ωt,j,staj

,stbj
for every

j ∈ [s] along with ai,t+1
k,stk

for every k ∈ [�].
(c) If i �= i∗ then for every α, β ∈ {0, 1},

i. Compute ots2t,j,α,β := (ai,t+1
cj ,0 ⊕ X0,ai,t+1

cj ,1 ⊕ X1) where Xb =

γ
b⊕ots1t,j,α,β

t,j,α,β for every j ∈ [s].
ii. Let f i,t be a NC0 function that takes st as input and outputs

ai,t+1
k,stk

for all k ∈ [�] \ {cj} and ots2t,j,staj
,stbj

for every j ∈ [s].

(d) Compute (f̃ i,t, {(ai,t
k,0,a

i,t
k,1)}k∈[�]) ← f̂ i,t(; r).

4. Send {f̂ i,t}t∈[T ], {ai,1
k,stk

}k∈[�]

)
to every other party.

Fig. 4. Two-round MPC for constant size functions in the FOTCor hybrid model

Extensions. We will now describe two-extensions to the protocol in Fig. 4.
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– f need not be known until the second round. We will now describe
how to augment the protocol so that the function f to be computed need
not be known until the beginning of the second round and only the size of
these functions need to be known before the first round. Let us assume for
simplicity that, |f | = m′. We define a (k + m′k)-party functionality C that
takes xi from party Pi for every i ∈ [k] and takes a bit yi� from party Pi� for
each i ∈ [k] and � ∈ [m′] and does the following: it checks if for each i, i′ ∈ [n]
and � ∈ [m′], yi,�

?= yi′,�; if yes, it interprets y1,1, . . . , y1,m′ as the function f
and computes an universal circuit U(x1, . . . , xk, f) that outputs f(x1, . . . , xk).
With this functionality, let us now see how to change the two-round protocol
so that the parties need not know f until the beginning of the second-round.
We will use an underlying conforming protocol that securely computes the
constant size circuit C. In the compiled protocol, we will let each party Pi to
additionally emulate the parties {Pi�}�∈[m′]. To be more precise, in the first
round of the protocol, for each � ∈ [m′], the party Pi sends two first round
messages on behalf of party Pi�; the first message assuming the bit yi� = 0 and
the second message assuming the bit yi�′ = 1. In the beginning of the second
round, all the parties know the description of the functions f and hence can
choose the first round message corresponding to the correct value of yi� and
ignore the other message. Based on the chosen messages, the parties generate
the second round message in the compiled protocol.

– Extension to the Client-Server setting. We now describe an extension
of our two-round protocol to the client-server setting. In the client server
setting, there are n-input clients who holds the inputs, m servers who do
not have any input and one output client. The input clients send a single
message to each of the m servers and the servers send a single message to
the output client and the output client learns the output of the function
based on the server’s message. We will assume that any number of clients
can be corrupted but there is at least one server who is uncorrupted. We will
transform our 2-round protocol in the FOTCor model to one in the client-server
model. In the full version, we give a general transformation from any two-
round MPC protocol with security against semi-honest adversaries who might
corrupt an arbitrary subset of the parties to a protocol in the client-server
model. However, this general transformation might make non-black-box use
of cryptography but the transformation we give here is specific to protocol in
Fig. 4 and is information theoretic.
1. The i-th input client computes the

first round message (zi, {ots1t,j,α,β}t∈Ai,j∈[s],α,β∈{0,1}) of our two-round
protocol and sends it to each of the servers.

2. In addition to the protocols first round message, the client will generate a
randomized encoding of NC0 circuits f

i,t
for every t ∈ [T ], and sends these

randomized encodings along with an additive secret share of the input
encoding (ai,1

0 ,ai,1
1 ) to the servers. Let us now describe the functionality

computed by f
i,t

. The functionality takes in the first round messages of
all parties and reconstructs sti. If t ∈ Ai, then it computes the same
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function as that of fi,t (described in Fig. 4). If t 	∈ Ai, it will use ots1t,j,α,β

(obtained from the first round messages of the parties) and will generate
ots2t,j,α,β exactly as described in the protocol. Then, it computes the same
functionality as that of f i,t.

3. The servers on receiving the first round messages from all the input clients,
choose the secret share of the input encodings corresponding to the first
round messages from all the clients and sends the chosen secret shares to
the output client.

4. The output client reconstructs the input encodings from the shares and
decodes the randomized encodings exactly as given the evaluation proce-
dure of our two-round protocol to obtain the output.

4.2 Protocols for PREN and SREN

In this subsection, we will use the protocols described in Sect. 4.1 to construct
protocols for functions in PREN and SREN. We first define the dMULTPlus func-
tion below.

dMULTPlus((x1, z1), . . . , (xd, zd)) = x1 · . . . · xd +
d

∑

i=1

zi.

We recall the following lemma from [BGI+18].

Lemma 6 ([BGI+18]). Let g : {0, 1}n → {0, 1} be a constant degree function
i.e., there exists a constant d such that g(x1, . . . , xn) =

∑

a�
i1...id

xi1xi2 . . . xid
.

There exists a perfectly secure, two-round protocol in the presence of secure chan-
nels between every pair of parties for computing g against semi-honest adversary
(corrupting an arbitrary subset of parties) in the FdMULTPlus hybrid model. The
efficiency of the protocol is O(m + n2) where m is the number of monomials in
g.

We obtain the following corollary of our Theorem3.

Corollary 1. There exists a perfectly secure, two-round protocol for realizing
FdMULTPlus functionality against semi-honest adversary (corrupting an arbitrary
subset of parties) in the FOTCor hybrid model. The efficiency of the protocol is
2poly(d).

Combining Lemma 6 and Corollary 1 and the observation that FOTCor implies
secure channels, we get the following lemma.

Lemma 7. Let g : {0, 1}n → {0, 1} be a constant degree function i.e., there
exists a constant d such that g(x1, . . . , xn) =

∑

a�
i1...id

xi1xi2 . . . xid
. There exists

a perfectly secure, two-round protocol for computing g against semi-honest adver-
sary (corrupting an arbitrary subset of parties) in the FOTCor hybrid model. The
efficiency of the protocol is O(m + n2) where m is the number of monomials in
g.
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We now show our main theorem regarding securely computing functions in
PREN and SREN.

Theorem 4. Every f : {0, 1}n → {0, 1} in PREN (resp. SREN) has an efficient,
perfectly secure (resp., statistically secure) two-round protocol in the FOTCor

model against a semi-honest adversary corrupting an arbitrary subset of par-
ties. The computational cost incurred by each party is O(m+n2) where m is the
size of the randomized encoding for f .

Proof. Let ̂f : {0, 1}n × {0, 1}ρ → {0, 1} be the randomized encoding of the
function f . Each party Pi chooses ri uniformly at random from {0, 1}ρ and the
parties wish to securely compute the functionality ̂f(x1, . . . , xn; r1 ⊕ r2 . . . ⊕ rn)
(i.e., the input of party Pi is set as (xi, ri)).

Let ̂f(x1, . . . , xn; r1 ⊕ r2 . . . ⊕ rn) =
∑

a�
i1i2...id

vi1vi2 . . . vid
where each vid

is either some input bit xj or a bit of some random string rj . We will use the
protocol from Lemma 7 to securely compute ̂f .

It now follows from the privacy of randomized encodings and the security of
the protocol for computing ̂f the above protocol securely computes f against
semi-honest corruptions.

Remark 2. For simplicity, in Theorem4, we considered a setting where each
party holds a single bit as input and the output of the function f is also a
single bit. This can be naturally generalized to a setting wherein each party
holds a string as input and the number of outputs of the functions is greater
than 1.

We obtain the following corollary from Theorem4.

Corollary 2. There is a perfectly (resp. statistical) secure two-round proto-
col for branching programs (resp. non-deterministic branching programs) in the
FOTCor model against a semi-honest adversary corrupting an arbitrary subset of
parties.

4.3 Protocols for Circuits

In this subsection, we will use the protocols described in Sect. 4.1 and make black-
box use of a PRG to obtain secure protocols for computing circuits. Without loss
of generality, we will restrict ourselves to circuits with fan-in 2 NAND gates. The
high level idea is to use the protocol in Sect. 4.1 to compute the BMR garbling
of a gate [BMR90]. To obtain the labels for executing the BMR garbled circuit,
we run the BMR online phase in parallel.

BMR Garbling. We will now recall the semantics of a BMR garbled gate. The
BMR garbling for a NAND gate g that takes wires a and b as input and the
output wire is c is a set of values { ˜Gi

r1,r2
}r1,r2∈{0,1},i∈[n], where

˜Gj
r1,r2

=

(

n
⊕

i=1

Fki
a,r1

(g, j, r1, r2) ⊕ Fki
b,r2

(g, j, r1, r2)

)

⊕ kj
c,0 ⊕ (χr1,r2 ∧ (kj

c,1 ⊕ kj
c,0))
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where χr1,r2 = ((
⊕n

i=1 λi,a ⊕ r1) · (
⊕n

i=1 λi,b ⊕ r2) ⊕ 1)⊕(
⊕n

i=1 λi,c). Here, F is
a PRF, ki

x,r where x ∈ {a, b, c, } and r ∈ {0, 1} is a PRF key, λi,x for x ∈ {a, b, c, }
are bits.12 The PRF keys ki

x,r and the bits λi,x are chosen by each party before
the first round of the protocol.

We notice that each output bit of { ˜Gi
r1,r2

}r1,r2∈{0,1},i∈[n] is a constant degree
(precisely, a degree 3 functionality). We will use the protocol in Lemma 7 to
securely compute each output bit of { ˜Gi

r1,r2
}r1,r2∈{0,1},i∈[n].13

Online Phase of BMR. We now describe the two-round BMR online phase.

1. For every wire w, which is the input wire of a party Pi, the other parties Pj

will set λj,w = 0. The party Pi will compute αw = λi,w ⊕ xw and broadcast
it to all other parties.

2. For every αw obtained, the party Pi will broadcast ki
w,αw

to every other party.

Asymptotic Cost. The cost of computing every bit of ˜Gi
r1,r2

is O(n2) since
the number of monomials in ˜Gi

r1,r2
is O(n2). So the overall complexity of our

protocol is O(n3|C|λ). This gives a factor of n improvement over the cost in
[GS18].

Using the above protocol for computing the BMR garbled gate in parallel
with the online phase, we obtain the following theorem:

Theorem 5. There is a computationally secure two-round protocol for any cir-
cuit C in the FOTCor model against a semi-honest adversary corrupting an arbi-
trary subset of parties, where the protocol makes a black-box use of a PRG. The
computational cost incurred by each party is dominated by O(n3|C|) invocations
of a length-doubling PRG.

We the following two corollaries by realizing FOTCor under DDH/QR or LWE
in the strong-PKI model.

Corollary 3 (DDH/QR). There is a computationally secure, two-round pro-
tocol for any circuit C in the strong-PKI model against a semi-honest adversary
corrupting an arbitrary subset of parties, where the protocol makes a black-box
use of a PRG and black-box use of a DDH/QR hard group.

Corollary 4 (LWE). Under the LWE assumption, there is a computationally
secure, two-round protocol for any circuit C in the strong-PKI model against
a semi-honest adversary corrupting an arbitrary subset of parties, where the
protocol makes a black-box use of a PRG.

12 For simplicity we consider a PRF. But all our results also work with a length doubling
pseudorandom generator.

13 Here, the parties will compute the PRF outputs locally and give these as inputs to
the protocol.
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