
Registration-Based Encryption: Removing
Private-Key Generator from IBE

Sanjam Garg1(B), Mohammad Hajiabadi1,2, Mohammad Mahmoody2,
and Ahmadreza Rahimi2

1 University of California, Berkeley, Berkeley, USA
sanjamg@berkeley.edu

2 University of Virginia, Charlottesville, USA

Abstract. In this work, we introduce the notion of registration-based
encryption (RBE for short) with the goal of removing the trust parties
need to place in the private-key generator in an IBE scheme. In an RBE
scheme, users sample their own public and secret keys. There will also
be a “key curator” whose job is only to aggregate the public keys of all
the registered users and update the “short” public parameter whenever
a new user joins the system. Encryption can still be performed to a par-
ticular recipient using the recipient’s identity and any public parameters
released subsequent to the recipient’s registration. Decryption requires
some auxiliary information connecting users’ public (and secret) keys
to the public parameters. Because of this, as the public parameters get
updated, a decryptor may need to obtain “a few” additional auxiliary
information for decryption. More formally, if n is the total number of
identities and κ is the security parameter, we require the following.

Efficiency requirements: (1) A decryptor only needs to obtain
updated auxiliary information for decryption at most O(log n) times in
its lifetime, (2) each of these updates are computed by the key curator in
time poly(κ, log n), and (3) the key curator updates the public parameter
upon the registration of a new party in time poly(κ, log n). Properties
(2) and (3) require the key curator to have random access to its data.

Compactness requirements: (1) Public parameters are always at
most poly(κ, log n) bit, and (2) the total size of updates a user ever needs
for decryption is also at most poly(κ, log n) bits.

S. Garg—Research supported in part from DARPA/ARL SAFEWARE Award
W911NF15C0210, AFOSR Award FA9550-15-1-0274, AFOSR YIP Award, DARPA
and SPAWAR under contract N66001-15-C-4065, a Hellman Award and research
grants by the Okawa Foundation, Visa Inc., and Center for Long-Term Cybersecu-
rity (CLTC, UC Berkeley). The views expressed are those of the author and do not
reflect the official policy or position of the funding agencies.
M. Hajiabadi—Supported by NSF award CCF-1350939 and AFOSR Award FA9550-
15-1-0274.
M. Mahmoody—Supported by NSF CAREER award CCF-1350939, and two Univer-
sity of Virginia’s SEAS Research Innovation Awards.
A. Rahimi—Supported by NSF award CCF-1350939.

c© International Association for Cryptologic Research 2018
A. Beimel and S. Dziembowski (Eds.): TCC 2018, LNCS 11239, pp. 689–718, 2018.
https://doi.org/10.1007/978-3-030-03807-6_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03807-6_25&domain=pdf
https://doi.org/10.1007/978-3-030-03807-6_25

690 S. Garg et al.

We present feasibility results for constructions of RBE based on indis-
tinguishably obfuscation. We further provide constructions of weakly effi-
cient RBE, in which the registration step is done in poly(κ, n), based on
CDH, Factoring or LWE assumptions. Note that registration is done
only once per identity, and the more frequent operation of generating
updates for a user, which can happen more times, still runs in time
poly(κ, log n). We leave open the problem of obtaining standard RBE
(with poly(κ, log n) registration time) from standard assumptions.

1 Introduction

Public-key encryption [10,15,21] allows Alice to send Bob private messages with-
out any a-priori shared secrets. However, before Alice can send any messages to
Bob, she must obtain Bob’s public key. Enabling Alice to obtain Bob’s public
key often requires additional public-key infrastructure and in some cases com-
plex certification authorities; consequently, making implementation of public-key
encryption rather cumbersome.

With the goal of simplifying key-management in public-key encryption,
Shamir [23] introduced the notion of identity based encryption (IBE). An IBE
scheme allows Alice to encrypt her messages to Bob knowing just the identity of
Bob and some additional system public parameters. In this setup, Bob can then
decrypt Alice’s ciphertexts using an identity-specific secret key that he obtains
from the private key generator (PKG). In their celebrated work, Boneh and
Franklin [3] provided the first construction of IBE using bilinear maps. A long
line of subsequent research has provided many other constructions of IBE based
on a variety of assumptions [9,11]. IBE serves as the basis of several real-world
systems (e.g., in systems by Voltage security) to simplify key-management.

Despite its significant advantages, one important limitation of IBE schemes
is the so-called key-escrow problem. Namely, in an IBE scheme a PKG can
generate the identity-specific secret key for any identity. This allows the PKG
to arbitrarily decrypt messages that are intended for specific recipients. While
in certain applications it is reasonable to place trust in a PKG, doing so is not
always acceptable. This limitation of IBE often attracts significant criticism and
restricts applicability in certain scenarios. In words of Rogaway [22],

“But this convenience is enabled by a radical change in the trust model:
Bob’s secret key is no longer self-selected. It is issued by a trusted authority.
That authority knows everyone’s secret key in the system. IBE embeds key-
escrow indeed a form of key-escrow where a single entity implicitly holds
all secret keyseven ones that haven’t yet been issued. [...] Descriptions of
IBE don’t usually emphasize the change in trust model. And the key-issuing
authority seems never to be named anything like that: it’s just the PKG,
for Private Key Generator. This sounds more innocuous than it is, and
more like an algorithm than an entity.”

With the goal of enhancing the applicability of IBE, prior works suggested
ways for reducing the level of trust that parties need to place in the PKG. Boneh

Registration-Based Encryption 691

and Franklin [3] suggested the use of multiple PKGs, instead of just one, with
the goal of making the trust de-centralized. This idea was further explored in
subsequent work (e.g., see [5,19,20]). In a different approach, Goyal [16], later
followed by Goyal et al. [17], studied the notion of accountable IBE, which allows
users to get their decryption keys from the PKG using a secure key generation
protocol. Such schemes provide safeguard against a malicious PKG who might
distribute the identity-specific secret key for a particular user to unauthorized
parties, as by doing so it risks the possibility of being caught in the future.
Another approach to the key escrow problem, studied in [6,8,24], involves set-
tings in which the number of identities is huge, limiting the server’s ability of
finding out the receiver identity when it is chosen at random; hence, guarantee-
ing a form of anonymity. Finally, Al-Riyami and Paterson [1] put forward the
notion of “Certificateless” Public Key Cryptography which is a hybrid of IBE
and public-key directories, but which, on the down side, does not let the sender
use the system as a true IBE, because more information about the user needs
to be read from the public-key infrastructure before a message can be encrypted
to them.

None of the above approaches, however, resolve the key-escrow problem
entirely, as the PKG (or a collection of several of them) can still decrypt all
ciphertexts in the system. Indeed even a trusted PKG may not be able to pro-
tect ciphertexts against a subpoena requesting decryption keys. This state of
affairs leads us to the main question of this work:

Can we entirely remove PKG from IBE schemes?

A New Primitive: Registration-Based Encryption (RBE). In this work,
we pursue a new approach to constructing IBE schemes by introducing a new
notion which we call registration-based encryption, and which does not suffer
from the key-escrow problem. Recall that in traditional IBE schemes, the PKG
plays an active role in maintaining the cryptographic secrets corresponding to the
public parameters of the system, leading to the key-escrow problem. Deviating
from this approach, in our RBE we replace the PKG with a much weaker entity
that we call a key curator. A key curator does not possess any cryptographic
secrets and just plays the role of aggregating the public keys of the users.

In more detail, in an RBE scheme each user samples its own public key and
secret key and provides its identity and the chosen public key to the key curator.1

The key curator is now tasked with the goal of curating this new user’s public
key in the public parameters. Towards this, the key curator updates the public
parameters and publicizes the new public parameters. Thus, unlike traditional
IBE schemes, the public parameters in an RBE scheme evolve as new users reg-
ister in the system. For example, let pp0, pp1, . . . , ppn be the different instances
of the public parameters in the system, where ppi is the public parameter after
i users have registered in the system. Just like an IBE scheme, we require that

1 The key curator will need to verify the identity of the user requesting the registration
as it is done by certification authorities in public-key infrastructure.

692 S. Garg et al.

the size of the public parameter is always small: |ppi| ≤ poly(κ, log n) for i ≤ n,
where κ is the security parameter and n is the number of users in the system.

In an RBE scheme, decryption by a user is performed using its secret key
and some auxiliary information that connects its public key with system’s public
parameters. Note that as new users join the system and public parameters are
updated, an update to the auxiliary information connecting a user’s public key
to the new public parameters is necessary.2 However, it would be prohibitive to
update each user’s auxiliary information (needed for decryption) after each single
registration. Thus, we require that the effect of registration by new users on the
previously registered users is minimal. In particular, we require that a registered
user needs to query the key curator for auxiliary information connecting its
public key to the public parameters at most O(log n) times in its lifetime where
n is the total number of registered users. Additionally, we require that the total
size of the auxiliary information provided by the key curator needed for any
decryption is at most poly(κ, log n) for security parameter κ.

Our Results. We consider two variants of RBE schemes based on the efficiency
of the registration and give constructions for both of them. In particular, we con-
struct (standard) RBE using indistinguishability obfuscation, and we construct a
“weakly efficient” variant of this primitive based on more standard assumptions.

– RBE based on IO : First, we construct (standard) RBE schemes in which the
running time of key curator for every new user registration is poly(κ, log n)
for security parameter κ assuming the key curator has random access to its
auxiliary information. Other than the desired efficiency itself, one motivation
for such minimization in curator’s complexity is that since the work done
in each user registration is small, it is then more reasonable to distribute
the key curator’s job between the users themselves, removing the need of a
dedicated key curator entirely. In such a system, a new user will only need to
do a “small” amount of public computation to update the public parameters
at the time of joining the system. Moreover, any previously registered user
could obtain its updated auxiliary information needed for decryption from
the public ledger as well. We obtain a feasibility result for this notion based
on somewhere statistically binding hash functions [18] and indistinguishably
obfuscation [2,13].

– RBE with weakly-efficient registration: Second, we consider a setting where the
key curator is allowed to be “weakly efficient”; i.e., the running time of key
curator for updating the public parameters as a single new user registers can
poly(κ, n). We call such RBE schemes weakly efficient and obtain a construc-
tion of weakly-efficient RBE based on any hash garbling scheme. The notion of
hash garbling and its construction has been implicit in prior works [4,7,11,12],
and it was shown there that hash garbling can be realized based on CDH, Fac-
toring or LWE assumptions. In this work, we give a formal definition of this
primitive (Definition 19) and use it to construct RBE.

2 Note that since the public parameters are small, they cannot contain the public keys
of all the registered parties.

Registration-Based Encryption 693

Our two constructions above leave open the problem of constructing (stan-
dard) RBE with poly(κ, log n) registration time based on standard assump-
tions.

Communication Cost of RBE Compared with PKE and IBE. We view
RBE as a hybrid between PKE and traditional IBE. PKE schemes are commu-
nication heavy for encryptors. In other words, each encryptor must obtain the
public keys of each recipient that it sends encrypted messages to. In contrast, IBE
schemes remove the need for the communication by the encryptors—specifically,
encryptors no longer need to recover the public key of each user separately.
However, the decryptor must still obtain its identity-specific secret key via com-
munication with the PKG. Note that since this communication with PKG is
only done once, the communication cost of an IBE is much smaller than the
communication cost of a PKE. However, this efficiency comes at the cost of the
key-escrow problem. Our RBE achieves, in large parts, the communication ben-
efits of IBE without the key-escrow problem. More specifically, in an RBE, the
encryptors do not need to recover the public key of each recipient individually.
Additionally, a decryptor only needs to interact with the key curator to obtain
the relevant updates at most log n times in total.

IBE was originally proposed with the goal of simplifying key management in
IBE, yet the problem of key-escrow has prevented it from serving as a substitute
for PKE—specifically, its applicability remains limited to specialized settings
where trust is not a problem. We believe that efficient variants of our RBE
constructions could indeed provide an alternative for PKE while also simplifying
key management as IBE does.

1.1 Technical Overview

Here we describe the high level ideas behind our two constructions. The main
challenge in realizing our RBE is to have the key curator gather together public
keys of registering users in such a way that no individual’s relation to the public
parameter is affected too many times. Doing that is the key for having few
necessary updates for decryption. We start by describing how we resolve this
challenge using indistinguishability obfuscation (IO). Next, we give our ideas
for realizing a (registration) weakly efficient version of this primitive based on
standard assumptions such as CDH and Factoring. The IO-based construction,
however, remains conceptually simpler and achieves all the desirable efficiency
properties asymptotically.

Our IO based solution is inspired by prior works on using witness encryp-
tion [14], if we interpret the decryption key (i.e., the secret key together with the
required auxiliary updates) as a witness that enables decryption. Additionally,
both our IO-based and the hash obfuscation based solutions (and in particular
their tree-based hashing of the public keys) use ideas developed recently in the
context of laconic OT [7] and IBE from the CDH assumption [11]. In both of
these settings, our contribution is in formalizing the subtle aspects of RBE and
then realizing RBE schemes (as mentioned above) using these ideas.

694 S. Garg et al.

High Level Description of Our IO-Based Construction of RBE. A natu-
ral first try for the solution would be for the curator to just Merkle hash together
the public keys of all the users in the system (along with their corresponding
identities). Here encryption could be performed by an obfuscation of the follow-
ing program P[h,m], with the Merkle hash root h and the encrypted message
m hardwired. Given input (pk, id, pth), the program P[h,m] outputs an encryp-
tion of m under the public key pk only if pth is a “Merkle opening” (i.e., the
right leaf to root path with siblings) for (pk, id) as a pair of sibling leaves in the
Merkle hash tree with root h, and it outputs ⊥ otherwise. Decryption can pro-
ceed naturally with the right Merkle opening as auxiliary information that the
key curator needs to provide for decryption. The main issue with this solution
is that the Merkle hash root h changes with every new user registering in the
system. Our idea for solving this problem is to maintain multiple Merkle hash
trees such that any individual user is affected only a bounded number of times.
Below, we explain this idea in more detail.

– Public parameters and auxiliary information. At a high level, in our construc-
tion, after n parties have registered, the key curator holds an auxiliary infor-
mation auxn of the following form: it consists of η full binary Merkle trees,
Tree1, . . . ,Treeη with corresponding depths d1 > · · · > dη and number of
leaves 2d1 , . . . , 2dη . The public parameter would be the set of the labels of the
roots of these trees. Every leaf in either of these trees is either an identity id
or its public key pk as the sibling of the leaf id, and every registered identity id
appears exactly once as a leaf. Thus, half of the leaves of these trees contain
the strings encoding the registered identities, and for each leaf id, the sibling
leaf contains the public key pk of id. So, if there are n people registered so far
in the system, then the total number of leaves in the trees is equal to 2n. Since
we stated that d1 > · · · > dη, it means that the number of these trees η is at
most log(n), simply because (d1, . . . , dη) would be the binary representation
of number 2n. This point implies that the public parameter is indeed short.

– What is needed for decryption. Even though in general it is more natural to
describe encryption first, in our case it is easier to describe the information
that is needed for decryption. Each identity id will hold is own secret key sk
which will be necessary for decryption, but it would need more information for
doing so. Indeed, if Tree is the tree hold by the curator that contains (sibling
leaves) (id, pk) in its leaves, then the identity id needs to know the “Merkle
opening” of (id, pk) to the root of Tree in order to do any decryption. Since
the length of this path is at most the depth of Tree, which is at most log(n),
the total size of the decryption key dk (which includes sk and the knowledge
of such opening to the root of Tree) is at most κ · log(n). This makes dk also
short enough.

– How to encrypt. For simplicity, suppose there is only one tree Tree held by the
key curator and that all the identities are leaves of this tree. The encryptor,
knows the public parameter, which is the root rt of Tree. For any message
m, the encryptor then sends the obfuscation of the following program P. The
program P takes as input any Merkle opening that contains the path from

Registration-Based Encryption 695

leaves (id, pk) to the root rt of Tree, and if such opening is given, then P
outputs an encryption of m under the corresponding registered public key pk.
Since id is the only identity who knows the corresponding sk to the registered
pk, nobody other than id can decrypt the message m encrypted that way.
When there are multiple trees Tree1, . . . ,Treeη held by the key curator, the
ciphertext includes η obfuscations, one for every Treei.

– How to register. When a new party id joins to register, we first create a single
tree Tree for that party, with id, pk as its only leaves. But creating too many
trees naively increases the length of the public parameter. So, to handle this
issue we “merge” the trees every now and then. In particular, upon any reg-
istration, so long as there are any two trees Tree1,Tree2 of the same size held
by the key curator, it “merges” them by simply hashing their roots rt1, rt2
into a new root rt. This way, the key curator keeps the invariance property
(stated above) that the trees are always full binary trees of different sizes.
After doing any such merge, the key curator sends the generated update of
the form (rt1, rt, rt2) to all of the identities that are in either of the trees
Tree1,Tree2. That is because, the identities in Tree1 would now need to know
rt2 and the identities in Tree2 now need the label rt1 in order to decrypt what
is encrypted for them. Alternatively, if the key curator is passive and does
not send updates, the users who are in the merged tree Tree would need to
pull their updates whenever they have a ciphertext that they cannot decrypt,
realizing that their auxiliary information is outdated.

To prove security of the above construction, collision-resistance of the used
hash function is not enough, and we rely on somewhere statistically binding hash
functions [18] (see Definition 3).

Weakly-Efficient Construction Based on Standard Assumptions. In
order to replace the use of obfuscation in the above construction, we build on
the techniques by Cho, Döttling, Garg, Gupta, Miao, and Polychroniadou [7]
and Döttling and Garg [11]. We abstract their idea of using hash encryption
and garbled circuits as a new primitive that we call hash garbling. Use of this
abstraction simplifies exposition. A hash garbling scheme consists of algorithms
(Hash,HG,HInp).3 Hash function is a function from {0, 1}� to {0, 1}κ. HG takes
as input a secret state stt and an arbitrary program P and outputs ˜P. HInp takes
as input a secret state stt and a value y ∈ {0, 1}κ and outputs ỹ. Correctness
and security require that ˜C, ỹ, x can be used to compute C(x), but also that they
reveal nothing else about C.

Our construction of RBE from standard assumption is very similar to the IO-
based construction except that we replace the use of IO with the less powerful
primitive hash garbling. The key challenge in making this switch comes from
the fact that hash garbling, unlike IO, cannot process the entire root to leaf
Merkle opening in one shot. Thus, our construction needs to provide a sequence
of hash garblings that traverse the root to leaf path step by step. Therefore, as

3 The hash function also has a key setup function which we ignore here for the sake
of simplicity.

696 S. Garg et al.

the tree is being traversed, the hash garblings need to identify whether to go left
or to go right. Note that this decision must be taken without any knowledge of
what identities are included in the leaves of the left sub-tree and what identities
are included in the leaves of the right sub-tree. We resolve this challenge by
modifying the Merkle tree in two ways:

1. We ensure that the identities in the leave of any tree are always sorted.
2. In addition to the hashes of its two children, in the computation of the Merkle

hash, we also hash the information about the largest identity that is present
any leaf of the left subtree at any node. (The latter information allows us to
traverse down a Merkle tree using it as a binary search tree.)

Using these enhancements over the simple Merkle trees, we can indeed substi-
tute IO with the less powerful primitive of hash garbling, which in turn can
be obtained from more standard assumptions. On the down side, this new con-
struction needs to sort the identities for every registration, and in particular
the registration cannot run in sublinear time poly(κ, log n). We refer the reader
Sect. 5 for more details on this construction.

2 Preliminaries

Notation. For a probabilistic algorithm A, by A(x) → y, we denote the ran-
domized process of running A on input x and obtaining the output y. We use
PPT to denote a probabilistic polynomial-time algorithms, where running time
is polynomial over the length of their main input (not the random seed). For
randomized algorithms A1, A2, . . . , by PrA1,A2,...[E] we denote the probability
of event E when the randomness is over the algorithms A1, A2, . . . as well. For
deterministic algorithms A1, A2, by A1 ≡ A2, we denote that they have the
same input-output functionality; namely, for all x (of the right length, if A1, A2

are circuits), A1(x) = A2(x). For distribution ensembles Xn, Yn, by Xn
c≈ Yn

we mean that they are indistinguishable against poly(n)-time algorithms. By
x||y we denote the concatenation of the strings x, y. By negl(κ) we denote some
function that is negligible in input κ; namely for all k, negl(κ) ≤ O(1/κk). Un

denotes the uniform distribution over {0, 1}n. For algorithm A, by AB we denote
an oracle access by A to oracle B. By A[B] we denote A accessing oracle B with
read and and write operations. So, if A writes y at location x, reading a query
x next time will return y.

Definition 1 (Public key encryption). A public key encryption scheme con-
sists of three PPT algorithms (G,E,D) as follows.

– G(1κ) → (pk, sk): This algorithm takes a security parameter 1κ as input and
outputs a pair of public key pk secret key sk. Without loss of generality we
assume that |pk| = |sk| = κ.

– E(pk,m) → ct: takes a message m and a public key pk as input and outputs
a ciphertext ct.

Registration-Based Encryption 697

– D(sk, ct) → m: takes a ciphertext ct and a secret key sk as inputs and outputs
a message m.

The completeness and security properties are defined as follows.

– Completeness. The PKE scheme is complete if for every message m:

Pr
G,E,D

[D(sk,E(pk,m)) = m : (sk, pk) ← G] = 1.

– Semantic Security. Any PPT adversary Adv wins the following game with
probability 1

2 + negl(κ):
• The challenger generates (pk, sk) ← G(1κ) and sends pk to Adv.
• The challenger chooses a random bit b and sends c ← E(pk, b) to Adv.
• Adv outputs b′ and wins if b = b′.

Definition 2 (Indistinguishability obfuscation). A uniform PPT algo-
rithm Obf is called an indistinguishability obfuscator for a circuit class {Cκ}κ∈N

(where each Cκ is a set indexed by a security parameter κ) if the following holds:

– Completeness. For all security parameters κ ∈ N and all circuits C ∈ Cκ,
we obtain an obfuscation with the same function:

Pr
Obf

[C′ ≡ C : C′ = Obf(1κ,C)] = 1.

– Security. For any PPT distinguisher D, there exists a negligible function
negl(·) such that for all κ ∈ N, for all pairs of functionally equivalent circuits
C1 ≡ C2 from the same family C1,C2 ∈ Cκ,

∣

∣

∣

∣

Pr
Obf

[D(1κ,Obf(1κ,C1)) = 1)] − Pr
Obf

[D(1κ,Obf(1κ,C2)) = 1)]
∣

∣

∣

∣

≤ negl(κ).

The next definition is a special case of the definition of somewhere statistically
binding (SSB) hash functions introduced by Hubacek and Wichs [18] for the
blockwise setting. Here we only use two-input blocks.

Definition 3 (SSB hash functions [18]). A somewhere statistically binding
hash system consists of two polynomial time algorithms HGen,Hash.

– HGen(1κ, b) → hk. This algorithm takes the security parameter κ and an
index bit b ∈ {0, 1}, and outputs a hash key hk.

– Hash(hk, x) → y. This is a deterministic algorithm that takes as input x =
(x0, x1) ∈ {0, 1}κ × {0, 1}κ and outputs y ∈ {0, 1}κ.

We require the following properties for an SSB hashing scheme:

– Index hiding. No poly(κ)-time adversary can distinguish between hk0 and
hk1 by more than negl(κ), where hkb ← HGen(1κ, b) for b ∈ {0, 1}.

– Somewhere statistically binding. We say that hk is statistically bind-
ing for index i ∈ {0, 1}, if there do not exist two values (x0, x1), (x′

0, x
′
1) ∈

{0, 1}� ×{0, 1}� such that xi 	= x′
i and Hash(hk, x) = Hash(hk, x′). We require

that for both i ∈ {0, 1},

Pr
HGen

[hk is statistically binding for i : hk ← HGen(1κ, i)] ≥ 1 − negl(κ).

698 S. Garg et al.

3 Formal Definition of Registration-Based Encryption

In this section, we formalize the new notion of RBE. After defining the “default”
version of RBE, we define weakened forms of this primitive with a specific relax-
ation in the efficiency requirements. The goal of this relaxation is to base the
(relaxed) RBE on more standard assumptions.

We start by defining the syntax of the default notion of RBE. We will then
discuss the required compactness, completeness, and security properties.

Definition 4 (Syntax of RBE). A registration-based encryption (RBE for
short) scheme consists of PPT algorithms (Gen,Reg,Enc,Upd,Dec) working as
follows. The Reg and Upd algorithms are performed by the key curator, which
we call KC for short.

– Generating common random string. Some of the subroutines below will
need a common random string crs, which could be sampled publicly using some
public randomness beacon. crs of length poly(κ) is sampled at the beginning,
for the security parameter κ.

– Key generation. Gen(1κ) → (pk, sk): The randomized algorithm Gen takes
as input the security parameter 1κ and outputs a pair of public/secret keys
(pk, sk). Note that these are only public and secret keys, not the encryption
or decryption keys. The key generation algorithm is run by any honest party
locally who wants to register itself into the system.

– Registration. Reg[aux](crs, pp, id, pk) → pp′: The deterministic4 algorithm
Reg takes as input the common random sting crs, current public parameter
pp, a registering identity id and a public key pk (supposedly for the identity
id), and it outputs pp′ as the updated public parameters. The Reg algorithm
uses read and write oracle access to aux which will be updated into aux′ during
the process of registration.5 (The system is initialized with public parameters
pp and auxiliary information aux set to ⊥.)

– Encryption. Enc(crs, pp, id,m) → ct: The randomized algorithm Enc takes
as input the common random sting crs, a public parameter pp, a recipient
identity id and a plaintext message m and outputs a ciphertext ct.

– Update. Updaux(pp, id) → u: The deterministic algorithm Upd takes as input
the current information pp stored at the KC and an identity id, has read only
oracle access to aux and generates an update information u that can help id
to decrypt its messages.6

4 In our constructions, the algorithms Reg, Upd and Reg are deterministic, and this
feature makes our KC transparent (see Remark 5), so we keep the default definition
based on deterministic version of these subroutines.

5 This is the step that needs the identity of the registering id to be verified. This
verification step is similar to IBE and its details are outside scope of this work.

6 Looking ahead, we will aim for schemes that require the identity id to launch this
request as rarely as possible. However, we note that this information u does not need
to be kept secret for the security of the scheme, and any user can request this update
without its identity being checked.

Registration-Based Encryption 699

– Decryption. Dec(sk, u, ct): The deterministic decryption algorithm Dec takes
as input a secret key sk, an update information u, and a ciphertext ct, and
it outputs a message m ∈ {0, 1}∗ or in {⊥, GetUpd}. The special symbol ⊥
indicates a syntax error, while GetUpd indicates that more recent update infor-
mation (than u) might be needed for decryption.

Remark 5 (Key curator is transparent). We emphasize that in the definition
above the KC has no secret state. In fact, the registration and update operations
are both deterministic. This makes KC’s job fully auditable. Even the generation
of the crs (that is done before KC takes control of the server’s information) only
needs common random strings (as opposed to a common reference string), so
that can be generated using public randomness beacon as well.

We will now first describe the completeness, compactness, efficiency proper-
ties (under the completeness definition) and then we will describe the security
properties. Both definitions are based on a security game that involves an “adver-
sary” that tries to break the security, completeness, compactness, or efficiency
properties by controlling how the identities (including the target/challenge iden-
tity) are registered and when the encryptions and decryptions happen.

Definition 6 (Completeness, compactness, and efficiency of RBE). For
any interactive computationally unbounded adversary Adv that still has a limited
poly(κ) round complexity, consider the following game CompAdv(κ) between Adv
and a challenger Chal.

1. Initialization. Chal sets pp = ⊥, aux = ⊥, u = ⊥, D = ∅, id∗ = ⊥, t = 0,
crs ← Upoly(κ) and sends the sampled crs to Adv.

2. Till Adv continues (which is at most poly(κ) steps), proceed as follows. At
every iteration, Adv chooses exactly one of the actions below to be performed.
(a) Registering new (non-target) identity. Adv sends some id 	∈ D and

pk to Chal. Chal registers (id, pk) by letting pp := Reg[aux](crs, pp, id, pk)
and D := D ∪ {id}.

(b) Registering the target identity. If id∗ was chosen by Adv already
(i.e., id∗ 	= ⊥), skip this step. Otherwise, Adv sends some id∗ 	∈ D
to Chal. Chal then samples (pk∗, sk∗) ← Gen(1κ), makes the updates
pp := Reg[aux](crs, pp, id∗, pk∗),D := D ∪ {id∗}, and sends pk∗ to Adv.

(c) Encrypting for the target identity. If id∗ = ⊥ then skip this step.
Otherwise, Chal sets t = t + 1, then Adv sends some mt ∈ {0, 1}∗ to
Chal who then sets m′

t := mt and sends back a corresponding ciphertext
ctt ← Enc(crs, pp, id∗,mt) to Adv.

(d) Decryption by target identity. Adv sends a j ∈ [t] to Chal. Chal then
lets m′

j = Dec(sk∗, u, ctj). If m′
j = GetUpd, then Chal obtains the update

u = Updaux(pp, id∗) and then lets m′
j = Dec(sk∗, u, ctj).

3. The adversary Adv wins the game if there is some j ∈ [t] for which m′
j 	= mj.

Let n = |D| be the number of identities registered till a specific moment. We
require the following properties to hold for any Adv (as specified above) and for
all the moments (and so for all the values of D and n = |D| as well) during the
game CompAdv(κ).

700 S. Garg et al.

– Completeness. Pr[Adv wins in CompAdv(κ)] = negl(κ).
– Compactness of public parameters and updates. |pp|, |u| are both ≤

poly(κ, log n).
– Efficiency of runtime of registration and update. The running time of

each invocation of Reg and Upd algorithms is at most poly(κ, log n). (This
implies the compactness property.)

– Efficiency of the number of updates. The total number of invocations
of Upd for identity id∗ in Step 2d of the game CompAdv(κ) is at most O(log n)
for every n during CompAdv(κ).

Remark 7 (Other definitions based on quantifying compactness and efficiency
parameters). Even though Definition 6 requires compactness and efficiency
requirements using function c(κ, n) ≤ poly(κ, log n), one can consider a more
general definition that uses different (e.g., sublinear) functions to obtain various
versions of RBE. In general, one can consider (c1, . . . , c5)-RBE schemes where
ci’s are functions of (κ, n), and that functions c1, c2 describe the compactness
requirements (of public-key and updates), and functions c3, c4, c5 describe the
efficiency requirements.

The following definition instantiates the general quantified definition of
Remark 7 by relaxing the efficiency of the registration and keeping the other
efficiency and compactness requirements to be as needed for Definition 6.

Definition 8 (WE-RBE). A registration weakly efficient RBE (or WE-RBE
for short) is defined similarly to Definition 6, where the specified poly(κ, log n)
runtime efficiency of the registration algorithm is not required anymore, but
instead we require the registration time to be poly(κ, n).

Remark 9 (Denial of service attacks using fake ciphertexts). A class of malicious
adversaries that are not captured by Definition 6 can potentially launch a “denial
of service” attack against the efficiency of the decryption procedure as follows.
Specifically, such malicious completeness adversary (that can also be seen as a
form of “environment”) can cause an honest user to request too many updates
by continually providing it with fake ciphertexts that seem to require an update
for decryption. Here, we propose a generic approach for dealing with this issue.
We can generalize the RBE primitive and allow the KC to have a secret state.
This will take away the appealing transparency feature of the KC, but it will
instead allow the KC to sign the public parameters, and those signed public
parameters can then be included in the ciphertexts. Doing this will allow the
decryption algorithm to detect fake ciphertexts that (maliciously) indicate that
the population has grown beyond the last update, and that new update is needed
for recent decryptions.

Security. For security, we require that no PPT adversary should be able to
distinguish between encryptions of two messages (of equal lengths) made to a
user who has registered honestly into the system, even if the adversary colludes
and obtains the secret keys of all the other users. This is formalized by the

Registration-Based Encryption 701

adversary specifying a challenge identity and distinguishing between encryptions
made to that identity. In order to prevent the adversary from winning trivially,
we require that the adversary does not know any secret key for a public key
registered for the challenge identity.

We present the formal definition only for the case of bit encryption, but any
scheme achieving this level of security can be extended to arbitrary length mes-
sages using independent bit-by-bit encryption and a standard hybrid argument.

Definition 10 (Security of RBE). For any interactive PPT adversary Adv,
consider the following game SecAdv(κ) between Adv and a challenger Chal. (Steps
that are different from the completeness definition are denoted with purple stars
(��). Specifically, Steps 2c and 2d from Definition 6 are replaced by Step 3 below.
Additionally, Step 3 from Definition 6 is replaced by Step 4 below.)

1. Initialization. Chal sets pp = ⊥, aux = ⊥, D = ∅, id∗ = ⊥, crs ← Upoly(κ)

and sends the sampled crs to Adv.
2. Till Adv continues (which is at most poly(κ) steps), proceed as follows. At

every iteration, Adv chooses exactly one of the actions below to be performed.
(a) Registering new (non-target) identity. Adv sends some id 	∈ D and

pk to Chal. Chal registers (id, pk) by letting pp := Reg[aux](crs, pp, id, pk)
and D := D ∪ {id}.

(b) Registering the target identity. If id∗ was chosen by Adv already
(i.e., id∗ 	= ⊥), skip this step. Otherwise, Adv sends some id∗ 	∈ D
to Chal. Chal then samples (pk∗, sk∗) ← Gen(1κ), makes the updates
pp := Reg[aux](crs, pp, id∗, pk∗),D := D ∪ {id∗}, and sends pk∗ to Adv.

3. (��) Encrypting for the target identity. If no id∗ was chosen by Adv
before (i.e., id∗ = ⊥) then Adv first sends some id∗ 	∈ D to Chal. Next, Chal
generates ct ← Enc(crs, pp, id∗, b), where b ← {0, 1} is a random bit, lets
D = D ∪ {id∗}, and sends ct to Adv.

4. (��) The adversary Adv outputs a bit b′ and wins the game if b = b′.

We call an RBE scheme secure if Pr[Adv wins in SecAdv(κ)] < 1
2 + negl(κ) for

any PPT Adv.

Equivalence to Other Definitions. One might consider a seemingly stronger
security definition in which the adversary chooses its challenge identity from a
set of previously chosen identities for which it does not know the keys. However,
since the adversary can guess its own selection with probability 1/poly(κ), that
definition becomes equivalent to Definition 10 above. Another seemingly stronger
definition would allow the adversary to register even more identities after receiv-
ing the challenge ciphertext (and before answering the challenge), however this
is again an equivalent definition as the information distributed in this extra step
is simulatable by the adversary and thus not helpful to her.

Choosing a Registered or an Unregistered Identity. Here we note a sub-
tle aspect of Definition 10. If the adversary chooses Step 2b, it means that it is

702 S. Garg et al.

attacking a target identity that is registered in the system. Otherwise, the adver-
sary shall choose the target identify in Step 3, which means that the attacked
target identity is not even registered in the system. In both cases, we require
that the adversary has negligible advantage in guessing the encrypted bit.

Why Not Giving Update Oracle to Adversary? In Definition 10, we did not
provide explicit oracle access to Upd subroutine for the adversary. The reason is
that the adversary receives the crs, chooses the identities and receives the public
keys. Moreover, KC is deterministic, has no secret state, and all the inputs it
receives in maintaining the auxiliary information is crs, identities, and the public-
keys. Therefore, throughout the attack, the adversary knows the exact state of
(pp, aux) hold by the key curator, and thus it can run the update operation itself.
However, if one considers a KC with a secret state (perhaps for the goal of signing
the public parameters as discussed in Remark 9) then the corresponding security
definition shall give the adversary oracle access to the update subroutine.

Remark 11 (Unauthorized registration of an identity). A malicious KC K∗, not
following the protocol as modeled in the security game of Definition 10 can gen-
erate a pair of keys (pk, sk) on its own and register pk on behalf of an identity id.
By that, K∗ can read messages that are subsequently encrypted to the identity
id. Here we describe two approaches to tackle this problem.

1. Bootstrapping public-key directories. RBE schemes could be launched
with respect to an external public-key directory D. Namely, only public-keys
in D could be registered for matching identities. This way, a malicious key
curator K∗ can only register the actual public keys of the identities, and thus
it is not able to decrypt the messages encrypted to them. Moreover, by also
including (public) verification keys of the signatures by the identities in the
public-key directory D, we can even prevent K∗ from successfully registering
any identities in the RBE scheme without having their permission (even by
using their real public keys) as follows. Whenever the public parameter pp is
updated, a signature of pp by the registering identity is added to the public
auxiliary aux. This way, a public auditor can detect a fake registration.

2. Proof of Knowledge. An alternative method to prevent fake identity regis-
trations is to use a similar approach to the one mentioned above, but replace
the signature with a zero-knowledge proof of knowledge of an actual certifi-
cate from some trusted party (e.g., their driving licence information) that
validates the ownership of an identity.

4 IO-Based Construction of RBE

In this section we present a formal construction of (efficient) RBE based on
indistinguishability obfuscation and SSB hash functions (see Sect. 2 for formal
definitions of the standard primitives used). We first describe the construction
along the line of Definition 4 and then will prove its completeness, compactness,

Registration-Based Encryption 703

and security based on Definitions 6 and 10. We will then describe minor modifi-
cations that make the construction efficient according to Definition 8 (basically
by not producing the updates in the registration).

Notation on Binary Trees. In our construction below, Tree is always a full
binary tree (with 2i leaves for some i), where the label of each node in Tree is
calculated as the “hash” of its left and right children. We define the size of a tree
Tree as the number of its leaves, denoted by size(Tree) (so if size(Tree) = s, the
total number of nodes will be 2s−1), and we denote the root of Tree as rt(Tree),
and we use d(Tree) to refer to the depth of Tree. Since we assume that Tree is
always a full tree, we always have 2d(Tree) = size(d(Tree)). When it is clear from
the context, we use rt and d to denote the root and the depth of Tree.

Simplifying Assumption on Lengths. We note that without loss of gener-
ality, we can assume that public keys, secret keys and identities are all of the
length security parameter κ.

Construction 12 (RBE from IO and SSB Hashing). We will use an IO
scheme (Obf,Eval) and a SSB hash function system (Hash,HGen) and a PKE
scheme (G,E,D). Using them, we show how to implement the subroutines of
RBE according to Definition 4.

– Stp(1κ) → (pp0, aux0). This algorithm outputs pp0 = (hk1, . . . , hkκ) where
each hki is sampled from HGen(1κ, 0) and aux = ∅ is empty.

– Reg[aux](ppn, id, pk) → ppn+1. This algorithm works as follows:
1. Parse aux := ((Tree1, . . . ,Treeη), (id1, . . . , idn)) where the trees have cor-

responding depths d1 > d2 · · · > dη, and (id1, . . . , idn) is the order by
which the current identities have registered.7

2. Parse ppn as a sequence ((hk1, . . . , hkκ), (rt1, d1), . . . , (rtη, dη)) where rti ∈
{0, 1}κ represents the root of Treei, and di represents the depth of Treei.

3. Create new tree Treeη+1 with leaves id, pk and set its root as rtη+1 :=
Hash(hk1, id||pk) and thus its depth would be dη+1 = 1.

4. Let T = {Tree1, . . . ,Treeη+1}. (We will keep changing T in steps below.)
5. While there are two different trees TreeL,TreeR ∈ T of the same depth d

and same size s = 2d (recall that our trees are always full binary trees),
and roots rtL, rtR, do the following.
(a) Let Tree be a new tree of depth d + 1 that contains TreeL as its left

subtree, TreeR as its right subtree, and rt = Hash(hkd+1, rtL||rtR) as
its root.

(b) Remove both of TreeL,TreeR from T and add Tree to T instead.
6. Let T := (Tree1, . . . ,Treeζ) be the final set of trees where d′

1 > · · · > d′
ζ are

their corresponding depths and rt′1, . . . , rt
′
ζ are their corresponding roots.

Set ppn+1 and aux as follows:

ppn+1 := ((hk1, . . . , hkκ), (rt′1, d
′
1), . . . , (rt

′
ζ , d

′
ζ)) and

aux := (T , (id1, . . . , idn, idn+1 = id)).
7 Keeping this list is not necessary, but simplifies the presentation of the updates.

704 S. Garg et al.

– Enc(pp, id,m) → ct: First parse pp := ((hk1, . . . , hkκ), (rt1, d1), . . . , (rtη, dη)).
Generate programs P1, . . . ,Pη where each program Pi works as follows:
Hardwired values: rti, di, (hk1, . . . , hkdi

),m, id, r (the randomness)
Input: pth
1. Parse pth := [(h00, h

1
0), (h

0
1, h

1
1, b1) . . . , (h0di−1, h

1
di−1, bdi−1), rt].

2. If rti 	= rt, then output ⊥.
3. If id 	= h00, then output ⊥.
4. If rt = Hash(hkdi

, h0di−1||h1di−1) and h
bj

j = Hash(hkj , h
0
j−1||h1j−1) for all

j ∈ [di − 1], then output E(h10,m; r) by using h10 as the public key and r as
the randomness, otherwise output ⊥.

Then, output ct := (pp,Obf(P1), . . . ,Obf(Pη)) where Obf is IO obfuscation.
– Updaux(pp, id) → u: Letting aux := (Tree1, . . . ,Treeζ) and letting i be the index

of the tree that holds id, return the whole Merkle opening of the path that leads
to id in Treei.

– Dec(sk, u, ct) → m: Parse ct = (pp,P1, . . . ,Pη). Form mi = Decsk(Pi(u)) for
each program Pi. Output the first mi 	= ⊥.

Theorem 13. The RBE of Construction 12 satisfies the compactness, complete-
ness properties according to Definition 6 and security according to Definition 10.

In the rest of this section, we prove Theorem 13. Along the way, we describe
the modifications that are needed to Construction 12 to make it efficient accord-
ing to Definition 8.

4.1 Proofs of Completeness, Compactness and Efficiency

Completeness is straightforward. Below we sketch why compactness holds.

Compactness of Public Parameters and Updates. The public param-
eter’s format is of the form pp = ((hk1, . . . hkκ), (rt1, d1), . . . (rtη, dη)) where
rti ∈ {0, 1}κ. Also, the identities are of length κ, so the depth of each tree
is at most κ bits. It only remains to show that the number of trees at any
moment is at most log(n). This is because the trees are full binary trees (of size
2di) and the size of the trees are always different (otherwise, the registration
step keeps merging them). Therefore, η ≤ log(n), and so the length of the ppn

will be at most O(κ2 + κ · log(n)). In fact, we can optimize this length to be at
most O(κ · log(n)) by only generating the hash keys when needed (i.e., when the
registered population reaches 2k, we will generate hkk and put it in the public
parameter). Compactness of updates is trivial.

Efficiency of Runtime of Registration and Update. The efficiency of reg-
istration follows from the fact that the total number of merges is at most log n.
The efficiency of update runtime can also be easily guaranteed by using an appro-
priate data structure that maps a given identity to the leafs containing it in each
tree (e.g., we can use a Trie data structure for this purpose to get such list in
minimal time over the input length).

All other measures of efficiency either follows trivially, or by the log(n) upper-
bound on the number of merges.

Registration-Based Encryption 705

4.2 Proof of Security

We now prove the security of Construction 12. We start by giving intuition about
the security proof for a simple case. We will then give a detailed proof for the
general case.

Simple Case of One User. Consider the case in which only one user has
registered, and that the adversary wants to distinguish between encryptions of
m ∈ {0, 1} made to that user. Let id∗ be the identity of the user who has
registered, and let (pk∗, sk∗) ← G(1κ) be the pair of public/secret keys that the
challenger Chal produced at the time of registration as per Definition 10. Since
we have only one user, the public parameter is pp := Hash(hk, id∗||pk∗), where
hk ← HGen(1κ, 0). Recall that w.l.o.g., we have |id∗| = |pk∗| = |pp| = κ.

An encryption of a bit m ∈ {0, 1} to identity id∗ is an IO obfuscation of the
circuit P in Fig. 1.

Hardwired: m ∈ {0, 1}, id∗, pp, hk and randomness r
Input: (id, pk)

1. If Hash(hk, id||pk) �= pp, then output ⊥ and end.
2. If id �= id∗, then output ⊥ and end.
3. Output E(pk,m; r) and end.

Fig. 1. Circuit P used for encryption of m to identity id∗

Theorem 14 (Security). For any id∗ we have

Obf(P[0, id∗, pp, hk, r])
c≈ Obf(P[1, id∗, pp, hk, r]), (1)

for (pk∗, sk∗) ← G(1κ), hk ← HGen(1κ, 0), pp := Hash(hk, id∗||pk∗), r ← {0, 1}∗.

Roadmap for the Proof of Theorem 14. We first alter the circuit P to obtain
a circuit P1, which works similarly except that P1 checks whether or not its given
input path is exactly (id∗, pk∗) (i.e., the already registered identity along with
its public key); if not, P1 will return ⊥, even if the two leaves (id, pk) correctly
hashe to pp. If yes, P1 will encrypt the hardwired bit m under the public key
pk∗ and the hardwired randomness r. The circuit P1 is defined in Fig. 2.

Equipped with this new circuit P1, first in Lemma 15 we show that under P1

we may switch the underlying hardwired plaintext bit m from 0 to 1 while keeping
the obfuscations of the resulting circuits indistinguishable. Then, in Lemma16
we will show that for any fixed plaintext bit m, the obfuscations of P and P1 are
computationally indistinguishable. These two lemmas imply Theorem14.

706 S. Garg et al.

Hardwired: m ∈ {0, 1}, id∗, pk∗, pp, hk and randomness r
Input: (id, pk)

1. If (id, pk) �= (id∗, pk∗), then output ⊥ and end.
2. Output E(pk,m; r) and end.

Fig. 2. Circuit P1

We start by defining the circuit P1, which is a modified version of P.
We now formally show that under P1 we may switch the underlying plaintext

bit while keeping their obfuscations indistinguishable.

Lemma 15. For any id∗ and hk we have

Obf(P1[0, id∗, pk∗, pp, hk, r])
c≈ Obf(P1[1, id∗, pk∗, pp, hk, r]), (2)

where (pk∗, sk∗) ← G(1κ), r ← {0, 1}∗ and pp := Hash(hk, id∗||pk∗).

Proof. Fix id∗ and hk. We slightly change the circuit P1 into a circuit P2, so that
the circuit P2, instead of getting m, pk∗ and r hardwired into itself, it gets the
resulting ciphertext c∗ hardwired, and it will return this ciphertext if the check
inside the program holds. This new circuit P2 is defined in Fig. 3.

Notice that for all fixed m ∈ {0, 1}, id∗, pk∗, r and pp := Hash(hk, id∗||pk∗),

Obf(P1[m, id∗, pk∗, pp, hk, r])
c≈ Obf(P2[id∗, pp, hk, c∗]), (3)

where c∗ := E(pk∗,m; r). The reason behind Eq. 3 is that the underlying two
circuits are functionally equivalent, and so their obfuscations must be computa-
tionally indistinguishable by the property of IO.

We now show that under P2 we may switch the hardwired ciphertext from an
encryption of zero to one, by relying on semantic security of the PKE. Formally,

Obf(P2[id∗, pp, hk, c∗
0])

c≈ Obf(P2[id∗, pp, hk, c∗
1]), (4)

for (pk∗, sk∗) ← G(1κ), c∗
0 ← E(pk∗, 0), c∗

1 ← E(pk∗, 1), pp := Hash(hk, id∗||pk∗).
Equation 4 directly follows from the semantic security of the underlying public-
key encryption scheme. Finally, note that Eqs. 4 and 3 imply Eq. 2 of the lemma,
and so we are done. �

We now show that for any fixed plaintext m ∈ {0, 1}, the obfuscations of the
two circuits P and P1 are computationally indistinguishable.

Lemma 16. For fixed m ∈ {0, 1}, id∗ ∈ {0, 1}κ, pk∗ ∈ {0, 1}κ and randomness
r, it holds that

Obf(P[m, id∗, pp, hk, r])
c≈ Obf(P1[m, id∗, pk∗, pp, hk, r]), (5)

where hk ← HGen(1κ, 0) and pp := Hash(hk, id∗||pk∗).

Registration-Based Encryption 707

Hardwired: id∗, pp, hk and c∗

Input: (id, pk)

1. If (id, pk) �= (id∗, pk∗), then output ⊥ and end.
2. Output c∗ and end.

Fig. 3. Circuit P2

Proof. Let a hash key hk1 be sampled as follows: hk1 ← HGen(1κ, 1). We show
that Eq. 5 will hold if hk is replaced with hk1. This will complete our proof
because by the index hiding property of (HGen,Hash) we know hk

c≈ hk1. Thus,
it only remains to prove

Obf(P[m, id∗, pk∗, pp, hk1, r])
c≈ Obf(P1[m, id∗, pk∗, pp, hk1, r]), (6)

where hk1 ← HGen(1κ, 1) and pp := Hash(hk1, id∗||pk∗). To prove Eq. 6 we claim
that the underlying two circuits are functionally equivalent; namely,

P[m, id∗, pk∗, pp, hk1, r] ≡ P1[m, id∗, pk∗, pp, hk1, r]. (7)

Note that by security definition of IO, Eq. 7 implies Eq. 6, and thus we just need
to prove Eq. 7. To prove equivalence of the circuits, assume to the contrary that
there exists an input (id, pk) for which we have P(id, pk) 	= P1(id, pk). (Here for
better readability we dropped the hardwired values.) By simple inspection, we
can see that we have P(id, pk) 	= P1(id, pk) iff all the following conditions hold:

1. Hash(hk1, (id, pk)) = pp; and
2. id = id∗; and
3. pk 	= pk∗.

This, however, is a contradiction because by the somewhere statistical binding
property of (HGen,Hash) and by the fact that hk1 ← HGen(1κ, 1), Conditions 1
and 2 imply pk = pk∗, a contradiction to Condition 3. �

General Case of Multiple Users. We will prove our security for the case
in which at the time of encryption, we only have one tree (of any arbitrary
depth). This is without loss of generality for the following reason. Recall that
for encryption, if we have m roots, we obfuscate a circuit individually for each
root. Suppose at the time of encryption, we have m trees with respective roots
rt1, . . . , rtm. Then, between the two main hybrids which correspond to an encryp-
tion of zero and an encryption of one, we may consider m intermediate hybrids,
where under the ith hybrid we encrypt 0 under the roots {rt1, . . . , rti} and we
encrypt 1 under the roots {rti+1, . . . , rtm}. Thus, using a hybrid argument, the
result will follow.

708 S. Garg et al.

Roadmap of the Security Proof. We will define four hybrids, where the first
hybrid corresponds to an encryption of bit 0 and the last hybrid corresponds to
an encryption of bit 1. We will prove that the views of the adversary in each of
the two adjacent hybrids are computationally indistinguishable.

High-Level Proof Sketch. Let Tree be the underlying tree at the time of
encryption. An encryption of a bit m to an identity id corresponds to an IO
obfuscation of a circuit P, which takes as input a path, and which will release
an encryption of m under a public key given as a leaf of the path, if the given
path is “valid.” As a hybrid, we will consider a circuit P1, which does all the
checks that are already performed by P, but which also does the following: if
the given path is not present in the tree, then P1 will return ⊥, even if the path
is valid. We will show that for any fixed bit m, if we encrypt m by obfuscating
either the circuit P or P1, the result will be indistinguishable. We will make use
of the somewhere statistical binding and index hiding of the underlying hash
function in order to prove this. Now under an obfuscation of P1, one may easily
switch the hardwired plaintext bit. The reason is that since under P1, a given
input path to the circuit must be present in the tree, and since the challenge
identity id∗ is registered only once (say under a public key pk), one may consider
a related circuit which, instead of hardwiring a plaintext bit m, it hardwires into
itself an encryption c ← E(pk,m). The rest follows by semantic security of the
PKE scheme.

We now go over the formal proof. We start by defining some notation.

Notation. Consider a path pth := [(id, pk), (h01, h
1
1, b1), . . . , (h

0
t−1, h

1
t−1, bt−1), rt]

where rt is the root and id and pk are the two leaves and b1, . . . , bt−1 ∈
{left, right}. For a tree Tree of depth t, we write pth ⊆ Tree if pth is a valid
path in Tree in the usual sense. The procedure Valid(hk1, . . . , hkt, pth) checks
if the given path is a ‘valid path’ according to the given hash keys hk1, . . . , hkt

then it output �, otherwise outputs ⊥. For a path pth and integer i we write
Last(pth, i) to refer to the last i node “elements” in pth. Note that we do not
consider the left-or-right bits as part of this counting. For example, letting pth
be as above,

Last(pth, 5) = ((h0t−2, h
1
t−1, bt−2), (h0t−1, h

1
t−1, bt−1), rt).

We also extend the notation ⊆ given above to define Last(pth, i) ⊆ Tree in the
straightforward way (Figs. 4 and 5).

Notation Used in Hybrids. We will write id∗ ← Adv(hk1, . . . , hkκ) to mean
that the adversary Adv receives pp := (hk1, . . . , hkκ) as input, interacts with the
challenger Chal as per Definition 10 and outputs id∗ as the challenge identity.

– Hybrid H1: Encrypt m = 0 using P. The ciphertext ct given to the adver-
sary is formed as follows.
1. For j ∈ [κ] sample hkj ← HGen(1κ, 0).
2. id∗ ← Adv(hk1, . . . , hkκ).
3. ct ← Obf(P[0, id∗, rt, hk1, . . . , hkt, r]), where rt is the root of the tree, t is

the depth of the tree, and r ← {0, 1}∗.

Registration-Based Encryption 709

Hardwired: m ∈ {0, 1}, id∗, rt, hk1, . . . , hkt and randomness r
Input: pth := [(id, pk), (h01, h

1
1, b1), . . . , (h

0
t−1, h

1
t−1, bt), rt′]

1. If id �= id∗, rt �= rt′ or Valid(hk1, . . . , hkt, pth) �= �, then output ⊥ and
end.

2. Output E(pk,m; r).

Fig. 4. Circuit P

Circuit P1

Hardwired: m ∈ {0, 1}, id∗, pth∗, rt, hk1, . . . , hkt and randomness r
Input: pth := [(id, pk), (h01, h

1
1, b1), . . . , (h

0
t−1, h

1
t−1, bt), rt′]

1. If pth = pth∗, then output E(pk,m; r) and end.
2. Else, output ⊥ and end.

Fig. 5. Circuit P1

– Hybrid H2: Encrypt m = 0 using P1. The ciphertext ct given to the
adversary is formed as follows.
1. For j ∈ [κ] sample hkj ← HGen(1κ, 0).
2. id∗ ← AdvRegsel,Regsmp(hk1, . . . , hkκ).
3. ct ← Obf(P1[0, id∗, pth∗, rt, hk1, . . . , hkt, r]), where pth∗ is the path in the

tree leading to the challenge node, rt is the root of pth∗, t is the depth of
the tree, and r ← {0, 1}∗.

– Hybrid H3: Encrypt m = 1 using P1. The ciphertext ct given to the
adversary is formed as follows.
1. For j ∈ [κ] sample hkj ← HGen(1κ, 0).
2. id∗ ← Adv(hk1, . . . , hkκ).
3. ct ← Obf(P1[1, id∗, pth∗, rt, hk1, . . . , hkt, r]), where pth∗ is the path in the

tree leading to the challenge node, rt is the root of pth∗, t is the depth of
the tree, and r ← {0, 1}∗.

– Hybrid H4: Encrypt m = 1 using P. The ciphertext ct given to the adver-
sary is formed as follows.
1. For j ∈ [κ] sample hkj ← HGen(1κ, 0).
2. id∗ ← Adv(hk1, . . . , hkκ).
3. ct ← Obf(P[1, id∗, rt, hk1, . . . , hkt, r]), where rt is the root of the underly-

ing tree, t is the depth of the tree, and r ← {0, 1}∗.

Notation. We use ct〈Hi〉 to denote the value of the ciphertext ct in Hybrid Hi.

710 S. Garg et al.

Lemma 17. We have,

1. ct〈H1〉
c≈ ct〈H2〉,

2. ct〈H3〉
c≈ ct〈H4〉.

Proof. We will prove Part 1, and the proof for Part 2 will be exactly the same.
Recall that in hybrid H1 we encrypt m = 0 by obfuscating P and that in

hybrid H2 we encrypt m = 0 by obfuscating P1. Let t be the depth of the tree
at the time of encryption.

We will define intermediate hybrids P2,i for i ∈ [2t + 1], and we will show
P ≡ P2,1, P1 ≡ P2,2t+1 and for all i ∈ [2t], Obf[P2,i]

c≈ Obf[P2,i+1]. These circuit
programs are given in Fig. 6.

Informally, the program P2,i works as follows: it checks whether its given
path is “correct” and whether, in addition, the last i elements of the path are in
accordance with the challenge path pth∗ that was hardwired into the program.
For example, if i = 5, then the root of the path and the two levels below it (five
nodes in total) should match the corresponding nodes in the challenge path pth∗.
If both these conditions hold, then P2,i will encrypt the hardwired plaintext bit
(m = 0) using the public key provided in the corresponding leave of the path.

We will now define a Hybrid H2,i below, which uses program P2,i.

– Hybrid H2,i: Encrypt m = 0 using P2,i. The given ciphertext ct is as:
1. For j ∈ [κ] sample hkj ← HGen(1κ, 0).
2. id∗ ← Adv(hk1, . . . , hkκ).
3. ct ← Obf(P2,i[0, id∗, pth∗, rt, hk1, . . . , hkt, r]), where pth∗ is the challenge

path in the system, rt is the root of pth∗, t is the depth of the tree, and
r ← {0, 1}∗.

First, by inspection we can see that ct〈H1〉
c≈ ct〈H2,1〉 and ct〈H2〉

c≈
ct〈H2,2t+1〉. This is because the underlying two circuits P and P2,1 are func-
tionally equivalent. Same holds for P1 and P2,2t+1.

Thus, for any fixed w ∈ [2t] we just need to prove

ct〈H2,w〉 = ct〈H2,w+1〉. (8)

Below, we fix w ∈ [2t]. To prove Eq. 8, we introduce two hybrids H′
2,w,H′

2,w+1

and show
ct〈H2,w〉 c≈ ct〈H′

2,w〉 c≈ ct〈H′
2,w+1〉

c≈ ct〈H2,w+1〉. (9)

This will establish Eq. 8.
Informally, the hybrids H′

2,w and H′
2,w+1 are defined similarly to H2,w and

H2,w+1, except that one of the many hash keys is now sampled in a different
way, in order to make some binding property happen.

For z ∈ {w,w + 1}, the hybrid H′
2,z is defined as follows.

– Hybrid H′
2,z for z ∈ {w,w+1}. The given ciphertext ct is formed as follows.

Registration-Based Encryption 711

1. Let q := t − �w
2 � − 1 Intuitively, q denotes the level index in the tree for

which we want to use a different hash key. For all i ∈ [κ] \ {q}: sample
hk′

i ← HGen(1κ, 0). Sample

hk′
q ← HGen(1κ, v), where v := (w + 1) mod 2.

2. id∗
1 ← Adv(hk′

1, . . . , hk
′
κ).

3. ct ← Obf(P2,i[0, id∗
1, pth

∗
1, rt1, hk

′
1, . . . , hk

′
t, r]), where pth∗

1 is the challenge
path in the system, rt1 is the root of pth∗ and r ← {0, 1}∗.

Toward proving Eq. 9, first note that by the index hiding property of
(HGen,Hash) we have ct〈H2,w〉 c≈ ct〈H′

2,w〉 and ct〈H2,w+1〉
c≈ ct〈H′

2,w+1〉. Thus,
it remains to prove

ct〈H′
2,w〉 c≈ ct〈H′

2,w+1〉. (10)

To prove Eq. 10, we claim that the underlying two programs are equivalent;
namely,

P2,w[0, id∗
1, pth

∗
1, rt1, hk

′
1, .., hk

′
t, r] = P2,w+1[0, id∗

1, pth
∗
1, rt1, hk

′
1, .., hk

′
t, r]. (11)

By IO security, Eq. 11 implies Eq. 10, and thus we just need to prove Eq. 11.
To prove equivalence of the two circuits in Eq. 11, assume to the contrary that
there exists an input pth for which we have P2,w(pth) 	= P2,w+1(pth). (Here for
better readability we dropped the hardwired values.) By simple inspection we
can see that we have P2,w(pth) 	= P2,w+1(pth) iff all the following conditions
hold:

1. Valid(hk′
1, . . . , hk

′
t, pth) = �; and

2. Last(pth, w) ⊆ pth∗
1; and

3. Last(pth, w + 1) 	⊆ pth∗
1.

This, however, is a contradiction because by the somewhere statistical bind-
ing property of (KGen,Hash) and by the way in which we have sampled hk′

q,
Conditions 1 and 2 contradict Condition 3. �

Description of Circuit P2,i.

Hardwired: m ∈ {0, 1}, id∗, pth∗, rt, hk1, . . . , hkt and randomness r

Input: pth := [(id, pk), (h01, h
1
1, b1), . . . , (h

0
t−1, h

1
t−1, bt), rt′]

1. If id �= id∗ or rt �= rt′ or Valid(hk1, . . . , hkt, pth) �= �, then output ⊥ and
end.

2. If Last(pth, i) ⊆ pth∗, then output E(pk,m; r) and end.
3. Otherwise, output ⊥ and end.

Fig. 6. Circuit P2,i for i ∈ [�]

712 S. Garg et al.

Lemma 18. ct〈H2〉
c≈ ct〈H3〉.

Proof. The proof is similar to the proof of Lemma15. �

5 Basing Weakly-Efficient RBE on Standard Assumptions

In this section, we describe our construction of RBE based on hash garbling
and is inspired by our IO based construction from previous section. This notion
and its construction has been implicit in prior works [7,11], and it was shown
[4,11,12] that hash garbling can be realized based on CDH, Factoring or LWE
assumptions. Specifically, implicit in these prior works are constructions of hash
garbling based on hash encryption and garbled circuits. Below, we abstract out
this notion and use it in our work directly. This abstract primitive significantly
simplifies exposition.

Definition 19 (Hash garbling). A hash garbling scheme consists of four PPT
algorithms HGen, Hash, HG, and HInp, defined as follows.

– HGen(1κ, 1�) → hk. This algorithm takes the security parameter κ and an
output length parameter 1� for � ≤ poly(κ), and outputs a hash key hk. (HGen
runs in poly(κ) time.)

– Hash(hk, x) = y. This takes hk and x ∈ {0, 1}� and outputs y ∈ {0, 1}κ.
– HG(hk,C, stt) → ˜C. This algorithm takes a hash key hk, a circuit C, and a

secret state stt ∈ {0, 1}κ as input and outputs a circuit ˜C.
– HInp(hk, y, stt) → ỹ. This algorithm takes a hash key hk, a value y ∈ {0, 1}κ,

and a secret state stt as input and outputs ỹ.

We require the following properties for a hash garbling scheme:

– Correctness. For all κ, �, hk ← HGen(1κ, 1�), circuit C, input x ∈ {0, 1}�,
stt ∈ {0, 1}κ, ˜C ← HG(hk,C, stt) and ỹ ← HInp(hk,Hash(hk, x), stt), then
˜C(ỹ, x) = C(x).

– Security. There exists a PPT simulator Sim such that for all κ, � (recall that
� is polynomial in κ) and PPT (in κ) A we have that

(hk, x, ˜C, ỹ)
c≈ (hk, x,Sim(hk, x, 1|C|,C(x))), where

hk ← HGen(1κ, 1�), (C, x) ← A(hk), stt ← {0, 1}κ, ˜C ← HG(hk,C, stt) and
ỹ ← HInp(hk,Hash(hk, x), stt).

Notation on Binary Trees. Just like the IO construction, in our construction
below, Tree is a full binary tree where the label of each node in Tree is calculated
as the hash of its left and right children and, now additionally, with an an extra
identity. Looking ahead, this identity will be the largest identity among the users
registered in the left child. (Such information is useful if one wants to a binary
search of an identity over this tree.) Just as in the IO-based construction, we
define the size of a tree Tree as the number of its leaves, denoted by size(Tree),

Registration-Based Encryption 713

and we denote the root of Tree as rt(Tree), and use d(Tree) to refer to the depth
of Tree. Again, when Tree is clear from the context, we use rt and d to denote
the root and the depth of Tree.

Before describing the construction, recall that without loss of generality, we
can assume that public keys, secret keys, and identities, are all of length security
parameter κ.
Comparison with Construction 12 Using Signs (=) and (��). To help
the reader familiar with Construction 12, we have denoted the steps that are
identical to Construction 12 by (=) and the steps that are significantly different
by (��). Other steps are close but not identical.

Construction 20 (Construction of RBE from hash garbling). We will
use a hash garbling scheme (HGen,Hash,HG,HInp) and a public key encryption
scheme (G,E,D). Using them we show how to implement the subroutines of RBE
according to Definition 4.

– Stp(1κ) → (pp0), where pp0 = hk is sampled from HGen(1κ, 13κ).
– Reg

[aux]
(ppn, id, pk) → ppn+1. This algorithm works as follows:

1. (=) Parse auxn := ({Tree1, . . . ,Treeη}), (id1, . . . , idn)) where the trees
have corresponding depths d1 > d2 · · · > dη, and (id1, . . . , idn) is the order
the identities registered.8

2. Parse ppn as a sequence (hk, (rt1, d1), . . . , (rtη, dη)) where rti ∈ {0, 1}κ

represents the root of tree Treei and di represents the depth of Treei.
3. Create a new tree Treeη+1 with leaves id, pk and set its root as rtη+1 ←

Hash(hk, id||pk||0κ) and thus its depth would be dη+1 = 1.
4. (=) Let T = {Tree1, . . . ,Treeη+1}. (We will keep changing T in step

below.)
5. While there are two different trees TreeL,TreeR ∈ T of the same depth d

and size s = 2d (recall that our trees are always full binary trees).
(a) Obtain new Tree of depth d + 1 by merging the two trees TreeL and

TreeR as follows.
(b) (��) Let id1 . . . idn′ and pk1 . . . pkn′ be the identities and public keys

of n′ users in both trees TreeL and TreeR combined in sorted order
according to identities.

(c) For each i ∈ [n′], let h0,i := Hash(hk, idi||pki||0κ).
(d) (��) Next for each j ∈ {1, . . . log n′} and k ∈ {0, . . . , (n′/2j) − 1}, let

hj,k = Hash(hk, hj−1,2k||hj−1,2k+1||id[j, k])

where id[j, k] is the largest identity in the left child (which is the node
with label hj−1,2k); namely id[j, k] = id(2k+1)·2j−1 . This completes the
description of Tree.

(e) (=) Remove both of TreeL,TreeR from T and add Tree to T instead.

8 Keeping this list is not necessary, but simplifies the presentation of the updates.

714 S. Garg et al.

6. Let T = {Tree1, . . . ,Treeζ} where d′
1 > · · · > d′

ζ is their corresponding
depth and rt′1, . . . , rt

′
ζ is their corresponding roots. Set ppn+1, auxn+1 as

auxn+1 = (T , (id1, . . . , idn, idn+1 = id)), ppn+1 = (hk, (rt′1, d
′
1), . . . , (rt

′
ζ , d

′
ζ)).

– Enc(pp, id,m) → ct:
1. Parse pp := (hk, (rt1, d1), . . . , (rtη, dη)).
2. For each i ∈ {1, . . . η} and j ∈ {1, . . . , di}, sample stti,j ← {0, 1}κ and

generate ˜Pi,j ← HG(hk,Pi,j , stti,j), where Pi,j is explained below.
3. For each i ∈ [η] obtain ỹi,1 ← HInp(hk, rti, stti,1).
4. Output the ciphertext ct = (pp, {˜Pi,j}i,j , {ỹi,1}i).

The program Pi,j works as follows:
Hardwired values: rti, di, hk,m, id, r, stti,j+1 (where stti,di+1 = ⊥)
Input: a||b||id∗

1. If id∗ = 0κ9 and a = id then output E(b,m; r).
2. If id∗ = 0κ and a 	= id then output ⊥.
3. If id > id∗ then output HInp(hk, b, stti,j+1), else output HInp(hk, a,

stti,j+1).
– Updaux(pp, id) → u: If id is a leaf in a tree of aux, say Tree, return the whole

Merkle opening pth of leaf id and its sibling pk to the root rt(Tree). Otherwise,
return ⊥.

– Dec(sk, u, ct) → m: Parse ct = (pp, {˜Pi,j}i,j , {ỹi,1}i) and u := (z1 . . . zdi∗).
Let i∗ be the index of the tree that holds the corresponding identity.10 Decryp-
tion proceeds as follows:
1. For j = {1 . . . di∗ − 1} do

• ỹi∗,j+1 = ˜Pi∗,j(ỹi∗,j , zj).
2. Let ct := ˜Pi∗,di∗ (ỹi∗,di∗ , zdi∗).
3. Output D(sk, ct).

Theorem 21. The RBE of Construction 20 satisfies the compactness, complete-
ness (Definition 6), and security (Definition 10) properties.

In the rest of this section, we prove Theorem 21. The completeness and com-
pactness properties are proved similar to those of Construction 12. We can again
verify that over the course of the system’s execution, the tree that holds a user id,
will not be merged with other trees more than log n times. (Each merge increases
the depth of the tree by one, and the depth cannot bypass log n.) We may use
this fact to conclude all the efficiency features for the constructed RBE scheme.

In the rest of this section, we focus on proving security.

5.1 Proof of Security

Similar to our presentation of the proof of Construction 12, here also we first
start by giving the proof for the case in which only one user has registered. We
will then present the general proof (Fig. 7).
9 Without loss of generality we assume that no user is assigned the identity 0κ.

10 Alternatively, we may perform this with respect to all values of i∗, which is up to
the number of trees in the system.

Registration-Based Encryption 715

Hardwired: rt, hk, m ∈ {0, 1}, id′, r and stt

Input: (id, pk, id∗)

1. If id∗ �= 0κ or id �= id′, then output ⊥ and end.
2. Output E(pk,m; r) and end.

Fig. 7. Circuit P used for encryption of m to identity id′

Theorem 22 (Security). For any identity id′ we have

(HG(hk,P0, stt),HInp(hk, rt, stt))
c≈ (HG(hk,P1, stt),HInp(hk, rt, stt)) (12)

where hk ← HGen(1κ, 13κ), stt ← {0, 1}κ, (pk, sk) ← G(1κ), rt :=
Hash(hk, (id′, pk, 0κ)) and for m ∈ {0, 1} the circuit program Pm is defined as

Pm := P[rt, hk,m, id′, r, stt]. (13)

Proof. For m ∈ {0, 1} let ctm denote the challenge ciphertext, namely

ctm := (HG(hk,P0, stt),HInp(hk, rt, stt)) , (14)

where all the variables are sampled as in the theorem. We need to show ct0
c≈ ct1.

By simulation security of the hash garbling scheme, for both m ∈ {0, 1} we have

ctm
c≈ Sim(hk, (id′, pk, 0κ), 1|Pm |,E(pk,m; r)). (15)

By semantic security of the underlying public-key encryption scheme we have

Sim(hk, (id′, pk, 0κ), 1|P0 |,E(pk, 0; r))
c≈ Sim(hk, (id′, pk, 0κ), 1|P1 |,E(pk, 1; r)),

(16)
and so we obtain ct0

c≈ ct1. �

Proof for the General Case. As in the proof in Sect. 4.2 we may assume
that at the time of encryption we have only one tree. The proof for the case of
multiple trees is the same.

Proof. Suppose at the time of encryption the underlying tree with root rt has
depth d. In the sequel we shall write Pj for j ∈ [d] to refer to the circuit program
P1,j described in our RBE construction. That is,

P1 ≡ P1,1[rt, d, hk,m, id, r, stt1,2], (17)

and for j > 1
Pj ≡ P1,j [rt, d, hk,m, id, r, stt1,j+1], (18)

716 S. Garg et al.

where all the variables above are as in the encryption of the construction.
For j ∈ [d] we define rtj to be the node in the jth level of the tree (where we

consider the root as level one), whose sub-tree contains the leaf with label id.11

For example, if the path leading to id is

[(id, pk, 0κ), (a1, b1, id1, left), . . . , (ad−1, bd−1, idd−1, right), rt],

then rt3 = bd−1. For j > 1 we define

ỹj := HInp(hk, rtj , stt1,j). (19)

We also define Xj for j ∈ [t + 1] to be the concatenate result of the node
values in level j of the path leading to id. For instance, in the example above we
have X1 = (ad−1, bd−1, idd−1).

Let stti := stt1,i. Recall that Pi has stti+1 hardwired, which is the state used
to hash-garble Pi+1. Via a sequence of hybrids, we show how to replace garbled
versions of Pi’s, starting with i = 1, so that in the ith hybrid the values of
stt1, . . . , stti are never used.

– Hybrid 0 (true encryption): The ciphertext is ct0 := (˜P1, ˜P2, . . . , ˜Pd, ỹ1),
where all of the values are sampled as in the construction.

– Hybrid 1: The ciphertext is ct1 := (˜P1,sim, ˜P2, . . . , ˜Pd, ỹ1,sim), where ˜P2,
. . . , ˜Pd are sampled as in the construction, and where ˜P1,sim and ỹ1,sim are
sampled as follows:

(˜P1,sim, ỹ1,sim) ← Sim(hk,X1, 1|P1 |, ỹ2). (20)

– Hybird i ∈ [d − 1]:

cti := (˜P1,sim, . . . , ˜Pi,sim, ˜Pi+1, . . . , ˜Pd, ỹ1,sim),

where for j ∈ [i]:

(˜Pj,sim, ỹj,sim) ← Sim(hk,Xj+1, 1|Pj |, ỹj+1) (21)

– Hybrid d:

ctd := (˜P1,sim, . . . , ˜Pd,sim, ỹ1,sim)),

where for j ∈ [d − 1]:

(˜Pj,sim, ỹj,sim) ← Sim(hk,Xj+1, 1|Pj |, ỹj+1), (22)

and
(˜Pd,sim, ỹd,sim) ← Sim(hk, (id, pk, 0κ), 1|Pd |,E(pk,m; r)). (23)

Now exactly as in the proof of Theorem 22, using the simulation security of
the underlying HO scheme, we can show the indistinguishability of each two
adjacent hybrids. Moreover, in the last hybrid, again using simulation security
and as in the proof of Theorem22, we may switch the underlying bit value of m.
The proof is now complete. �
11 Recall that by Definition 10 the challenge identity id must have been registered

before, and exactly once.

Registration-Based Encryption 717

References

1. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Laih,
C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-40061-5 29

2. Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 1

3. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 13

4. Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous IBE,
leakage resilience and circular security from new assumptions. In: Nielsen, J.B.,
Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 535–564.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 20

5. Chen, L., Harrison, K., Soldera, D., Smart, N.P.: Applications of multiple trust
authorities in pairing based cryptosystems. In: Davida, G., Frankel, Y., Rees, O.
(eds.) InfraSec 2002. LNCS, vol. 2437, pp. 260–275. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45831-X 18

6. Cheng, Z., Comley, R., Vasiu, L.: Remove key escrow from the identity-based
encryption system. In: Levy, J.-J., Mayr, E.W., Mitchell, J.C. (eds.) TCS 2004.
IIFIP, vol. 155, pp. 37–50. Springer, Boston, MA (2004). https://doi.org/10.1007/
1-4020-8141-3 6

7. Cho, C., Döttling, N., Garg, S., Gupta, D., Miao, P., Polychroniadou, A.: Laconic
oblivious transfer and its applications. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017, Part II. LNCS, vol. 10402, pp. 33–65. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-63715-0 2

8. Chow, S.S.M.: Removing escrow from identity-based encryption. In: Jarecki, S.,
Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 256–276. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00468-1 15

9. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45325-3 32

10. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. The-
ory 22(6), 644–654 (1976)

11. Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman assump-
tion. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp.
537–569. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 18

12. Döttling, N., Garg, S., Hajiabadi, M., Masny, D.: New constructions of identity-
based and key-dependent message secure encryption schemes. In: Abdalla, M.,
Dahab, R. (eds.) PKC 2018, Part I. LNCS, vol. 10769, pp. 3–31. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-76578-5 1

13. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
Annual Symposium on Foundations of Computer Science, Berkeley, CA, USA, 26–
29 October 2013, pp. 40–49. IEEE Computer Society Press (2013)

14. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applica-
tions. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th Annual ACM
Symposium on Theory of Computing, Palo Alto, CA, USA, 1–4 June 2013, pp.
467–476. ACM Press (2013)

https://doi.org/10.1007/978-3-540-40061-5_29
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-319-78381-9_20
https://doi.org/10.1007/3-540-45831-X_18
https://doi.org/10.1007/1-4020-8141-3_6
https://doi.org/10.1007/1-4020-8141-3_6
https://doi.org/10.1007/978-3-319-63715-0_2
https://doi.org/10.1007/978-3-319-63715-0_2
https://doi.org/10.1007/978-3-642-00468-1_15
https://doi.org/10.1007/3-540-45325-3_32
https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-319-76578-5_1

718 S. Garg et al.

15. Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental poker
keeping secret all partial information. In: 14th Annual ACM Symposium on Theory
of Computing, San Francisco, CA, USA, 5–7 May 1982, pp. 365–377. ACM Press
(1982)

16. Goyal, V.: Reducing trust in the PKG in identity based cryptosystems. In: Menezes,
A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 430–447. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-74143-5 24

17. Goyal, V., Lu, S., Sahai, A., Waters, B.: Black-box accountable authority identity-
based encryption. In: Proceedings of the 15th ACM Conference on Computer and
Communications Security, pp. 427–436. ACM (2008)

18. Hubacek, P., Wichs, D.: On the communication complexity of secure function eval-
uation with long output. In: Roughgarden, T. (ed.) ITCS 2015: 6th Conference on
Innovations in Theoretical Computer Science, Rehovot, Israel, 11–13 January 2015,
pp. 163–172. Association for Computing Machinery (2015)

19. Kate, A., Goldberg, I.: Distributed private-key generators for identity-based cryp-
tography. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp.
436–453. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15317-
4 27

20. Paterson, K.G., Srinivasan, S.: Security and anonymity of identity-based encryp-
tion with multiple trusted authorities. In: Galbraith, S.D., Paterson, K.G. (eds.)
Pairing 2008. LNCS, vol. 5209, pp. 354–375. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-85538-5 23

21. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signature
and public-key cryptosystems. Commun. Assoc. Comput. Mach. 21(2), 120–126
(1978)

22. Rogaway, P.: The moral character of cryptographic work. Cryptology ePrint
Archive, Report 2015/1162 (2015). http://eprint.iacr.org/2015/1162

23. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985). https://doi.org/10.1007/3-540-39568-7 5

24. Wei, Q., Qi, F., Tang, Z.: Remove key escrow from the BF and Gentry identity-
based encryption with non-interactive key generation. Telecommun. Syst. 69, 1–10
(2018)

https://doi.org/10.1007/978-3-540-74143-5_24
https://doi.org/10.1007/978-3-642-15317-4_27
https://doi.org/10.1007/978-3-642-15317-4_27
https://doi.org/10.1007/978-3-540-85538-5_23
https://doi.org/10.1007/978-3-540-85538-5_23
http://eprint.iacr.org/2015/1162
https://doi.org/10.1007/3-540-39568-7_5

	Registration-Based Encryption: Removing Private-Key Generator from IBE
	1 Introduction
	1.1 Technical Overview

	2 Preliminaries
	3 Formal Definition of Registration-Based Encryption
	4 IO-Based Construction of RBE
	4.1 Proofs of Completeness, Compactness and Efficiency
	4.2 Proof of Security

	5 Basing Weakly-Efficient RBE on Standard Assumptions
	5.1 Proof of Security

	References

