
Chapter 5
The Two Volumes of the Book of Nature

Abstract The Book of Nature has been found. The mathematical description of
the universe gives the human mind the power to manipulate reality and technol-
ogy becomes possible. However, this miraculous knowledge generation has been
very specific: fundamental aspects of reality (from the quantum realm to cosmic
scales) are encoded analytically, i.e., as equations. This appears to exclude real-
world complexity, for instance, the emergent property of consciousness appearing
in a self-organizing biological neural network. A fluke of reality allows the human
mind to also conquer this domain. What appears as complexity, turns out to be the
result of simple rules. Only very recently have the fruits of technology given humans
a new level of abstraction: the magic of computation. Now, complex systems can
be encoded algorithmically, i.e., by utilizing algorithms and simulations running in
computers.As a result, complexity can be tamed and comprehended. This newknowl-
edge generation is understood as Volume II of the Book of Nature, whereas physical
science represents Volume I. Underlying the analytical and algorithmic formal rep-
resentations are two fundamental structures of mathematics: the continuous and the
discrete. In this sense, all human knowledge generation is unified mathematically.
Level of mathematical formality: medium to low.

The age-old dream that mathematics represents the blueprint for reality has started
to become fulfilled: the Book of Nature is intelligible to the human mind and deep
truths about the workings of the world have been decoded. In other words, the human
mind has begun to venture into realms in the abstract world which interrelate with
the workings of the physical world—from the quantum foam comprising reality to
the awe-inspiring vastness of the cosmic fabric. This main theme is encapsulated in
Fig. 2.1, which is reproduced below.

However, this translation of aspects of reality into abstract representations has
been very specific. For instance, the considered reality domains interestingly omit the
very cornerstone of thewhole enterprise of knowledge seeking: the human brain. And
with it, a whole branch of reality is ignored, relating to self-organization, structure
formation, and emergent complexity in general. Curiously, the Book of Nature does
not speak much about the everyday structures and systems surrounding us humans.
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Fig. 5.1 A copy of Fig. 2.1
on Page 46, illustrating the
human mind’s journey into
the abstract world, retrieving
knowledge about the
physical world

The complexity of life is mostly excluded. Furthermore, the focus of the abstract
representation has been on a scheme of mathematization first introduced by Isaac
Newton and Gottfried Wilhelm Leibniz (see also Sect. 2.1.1). In a nutshell, this
approach can be labeled as equation-driven.

These observations allow the Book of Nature to be classified as follows. Its reality
domain, while excluding complex phenomena like life and consciousness, focuses on
fundamental aspects of the physical world. For instance, describing how subatomic
particles interact via a unification of three of the four fundamental forces (Sect. 4.4)
and how the force of gravity, replaced by the dynamics of space-time geometry
(Sects. 4.1 and 10.1.2), sculptures the cosmos. The formal representation is equation-
based, in other words, it is analytical. This fundamental-analytical dichotomy is the
paradigm of the Book of Nature.

Only recently, with the advent of information processing,1 Fig. 5.1 could be
applied in a whole new context. By extending the validity domain of the formal
representation to encompass computational aspects, a novel reality domain becomes
intelligible that is much closer to human experience than, for instance, the elusive
entities comprising matter and transmitting forces. Now, the focus shifts away from
an equation-driven effort and embraces computational and simulational tools. This
formal approach can essentially be denoted as algorithmic. Slowly, the everyday
complexity surrounding us can be tackled. This reality domain, in contrast to the
fundamental, will be called complex in the following. Miraculously, the human mind

Reality Domain

Fundamental Complex

Formal Representation

Analytical Algorithmic

Fig. 5.2 The dichotomies of reality and understanding. (Left) partitioning the world into the two
domains labeled fundamental and complex. (Right) the two main modes of formal representation
of reality relating to analytical and algorithmic descriptions

1Which, in itself, is a prime example of the enormous effectiveness of this scientific knowledge-
generating process.
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has suddenly stumbled upon an extension of the Book of Nature. A new dichotomy
emerges, relating to the complex-algorithmic classification, uncovering the next vol-
ume of the Book of Nature. In Fig. 5.2 a conceptual demarcation of these concepts
is shown.

The Pythagoreans’ dream of the mathematization of nature (Chap.2) turns out
to be only the beginning of a profound knowledge generation process. Building
on the tools enabled by the fundamental-analytical dichotomy, new abstract worlds
become accessible by the aid of computation and the complex-algorithmic paradigm
is uncovered. In summary, the Book of Nature has been greatly expanded and is now
comprised of:

VOLUME I The fundamental reality domain made accessible to the mind via
analytical formal representations.

VOLUME II Real-world complexity encoded via algorithmic formalizations.

In the following, essential features of Volume I and II of the Book ofNaturewill be
independently summarized and analyzed (Sects. 5.1 and 5.2), before a unifying theme
is unveiled (Sect. 5.3). Finally, the entire landscape spanned by the fundamental-
complex and analytical-algorithmic classifications is examined (Sect. 5.4). Elements
are taken or adapted from Glattfelder et al. (2010) and Appendix A in Glattfelder
(2013). Note that the contents of Volume II, relating to complex systems, is presented
in detail in Chaps. 6 and 7.

5.1 Volume I: Analytical Tools and Physical Science

The tremendous success of the first volume of the Book of Nature is summarized
in the next section and some cornerstones of its analytical powers highlighted. Then
the limitations are exposed.

5.1.1 The Success

Staying faithful to the credo “Shut up and calculate!” (Sect. 2.2.1) has allowed a
lot of ground to be covered. By not being consumed by philosophical questions
relating to the nature of the abstract world, the human mind’s capacity to host or
access it, and the correspondence between the physical and the abstract (the topics
addressed in Fig. 2.2), progress can be made. Although, as mentioned, the reality
domain is restricted to exclude complex systems, it still covers most of physical
science. In effect, laws of nature can be understood as regularities and structures in a
highly complicated universe. They critically depend on only a small set of conditions
and are independent of many other conditions which could also possibly have an
effect. Science can be understood as the quest to capture fundamental processes of
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nature within formal mathematical representations, i.e., in an analytical framework.
To understand more about the nature of the physical system under investigation,
experiments are performed yielding new insights. Historically, Robert Boyle was
instrumental in establishing experiments as the cornerstone of physical sciences
around 1660 (insights later published as Boyle (1682). Approximately at the same
time, the philosopher Francis Bacon introduced modifications to Aristotle’s nearly
two thousand year old ideas, introducing what came to be known as the scientific
method, where inductive reasoning plays an important role (Bacon 2000). This paved
the way for a modern understanding of scientific inquiry. From this initial thrust our
modern knowledge of the world emerged, laying the fertile groundwork on which
technology would flourish. All our current technologicontinuouscal advances, and
the increasing speed at which progress is made, trace back to this initial spark.

A powerful example within the fundamental-analytical dichotomy, highlighting
the success of the interplay between the abstract and physical worlds, is the notion of
symmetry. This simple idea found its formal expression in the concept of invariance
(Chap. 3). This is a prime example illustrating the translation process described in
Fig. 5.1: a tangible idea is encoded as a mathematical abstraction. Digging deeper in
the abstract world further unearthed group theory and its ties to geometry (Sects. 3.1.1
and 4.1). Mathematical invariance was then seen to flow into various themes. For
instance, universal conservation laws (Sect. 3.1), the causal relation of space and time
(Sect. 3.2.1) elementary particles being categorized by the groups describing space-
time symmetries (Sect. 3.2.2), and the unification of the non-gravitational forces
(Chap. 4). Weaving a tapestry out of these threads made from symmetry necessarily
integrates a wide array of topics seen in physics. From

• classical mechanics (Sects. 2.1.1 and 3.1.1) to quantum mechanics (Sects. 4.3.4
and 10.3.2);

• special relativity (Sect. 3.2.1) to general relativity (Sects. 4.1 and 10.1.2);
• quantum field theory (Sects. 3.1.4, 3.2.2.1, 4.2, and 10.1.1) to the standard model
of particle physics (Sects. 4.2, 4.3, and 4.4);

• unified field theories (Sect. 4.3.3) to higher dimensional unification schemes
(Sect. 4.3.1).

And, last but not least, electromagnetism (Sect. 2.1.2 and Eq. (4.18)).

5.1.2 The Paradigms of Fundamental Processes

From the fundamental and universal importance of symmetry, three paradigms appli-
cable to physics can be derived:

Mathematical models of the physical world are either:

P f
1 : independent of the choice of representation in a coordinate system;
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P f
2 : unchanged by symmetry transformations;

P f
3 : constrained to transform according to a symmetry group.

To illustrate P f
1 , imagine an arrow located in space. It has a length and an ori-

entation. In the mathematical world, this can be represented by a vector, labeled
a. By choosing a coordinate system, the abstract entity a can be given physi-
cal meaning a = (a1, a2, a3). For each axis direction x1, x2, x3, the ai describe
the number of increments along the axis the vector is projected on. For instance
a = (3, 5, 1). The problem is, however, that depending on the choice of the coor-
dinate system, which is arbitrary, the same vector is described very differently:
a = (3, 5, 1) = (0, 23.34,−17). The paradigm above states that the physical con-
tent of the mathematical model should be independent of the decision of how one
chooses to represents the mathematical model.

The first two requirements P f
1 and P f

2 , seemingly innocuous, straightforward and
commonsensical, are conceptualized as the powerful ideas of general covariance
and invariance. The notion that vectors and tensors should be independent of the
choice of coordinates used to express and compute these quantities, leads to one
of the two main ingredients in the theory of general relativity, describing gravity
(Sect. 4.1 and 10.1.2). Moreover, expecting the outcome of an experiment to be inde-
pendent of the exact time and location the experiment was conducted at, results, via
Noether’s theorem, in the conservation of energy and momentum in the universe
(Sect. 3.1.4). Alternatively, imposing a theory to be invariant under gauge transfor-
mations (Sect. 4.2) yields a unifying theme on the basis of which the standard model
of particle physics is constructed (Sect. 4.4). In Fig. 5.3 a schematic overview is given,
of how P f

1 leads to the theory of general relativity and P f
2 to the standard model.

While the former utilizes the external symmetry of space-time, the latter relies on
internal gauge symmetry. It is indeed amazing, how the adoption of such simple
paradigms leads to such effective and complete physical theories. P f

3 is more subtle,
as it describes a link between the quantum world and the structure of the symme-
try groups of space-time: the mathematical representation of the groups encode the
transformation properties of quantum fields and particle states (Sects. 3.2.2.1 and
3.2.2.2). This gives rise to a mathematical lever with which the unseen quantum
entities can be manipulated.

5.1.3 The Limitations

In the last chapters, it was unveiled howmathematics underlies physics. From classi-
cal mechanics, electromagnetism, the non-gravitational forces unified in the standard
model of particle physics to gravitational forces. In spite of this tremendous success
there is still one omission, relating to many-body problem. This is a large category
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Fig. 5.3 Conceptual overview of the structure of the two main physical theories describing all
known forces in the universe: the standard model and general relativity. Focusing on specific reality
domains (the quantum world or the arena of space-time) and guided by symmetry principles, it is
possible to translate the physical essence into an abstract structure. Once encoded, this information
is subjected to the dictum of mathematical theories, yielding the physical theories. Finally, decoding
these formal representations allows the effects of the fundamental physical forces to be calculated.
Adapted from Glattfelder (2013)

of physical problems pertaining to the properties of microscopic systems that are
comprised of a large number of interacting entities.

Condensed matter physics attempts to explain the macroscopic behavior of matter
based onmicroscopic properties and quantum effects (Ashcroft andMermin 1976). It
is one of physics first ventures intomany-body problems in quantum theory.Although
the employed notions of symmetry do not act at such a fundamental level as in
the above mentioned theories, they are a cornerstone of the theory. Namely, the
complexity of the problems can be reduced using symmetry in order for analytical
solutions to be found. Technically, the symmetry groups are boundary conditions
of the Schrödinger equation. This leads to the theoretical framework describing, for
example, semiconductors. In the super-conducting phase (Schilling et al. 1993), the
wave function becomes symmetric.

Another macroscopic characteristic of matter based onmicroscopic properties are
quasicrystals (Mackay 1982). A quasicrystalline pattern can fill an entire space, but
lacks translational symmetry. In short, quasicrystals are structures which are ordered
but not periodic. They have fractal properties (Sect. 5.2.1). Until Dan Shechtman
received the 2011 Nobel Prize for the discovery of quasicrystals, the topic was con-
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troversial. Eminent chemist and two-time Nobel laureate2 Linus Pauling exclaimed
that “there are no quasi-crystals, just quasi-scientists” (quoted inTheGuardian 2013).
Shechtman faced disdain from his peers and his research was rejected as erroneous.
Lesley Yellowlees, president of the Royal Society of Chemistry, summarized the
ordeal (quoted in The Guardian 2013):

Dan Shechtman’s Nobel prize celebrated not only a fascinating and beautiful discovery, but
also dogged determination against the closed-minded ridicule of his peers, including leading
scientists of the day. His prize didn’t just reward a difficult but worthy career in science; it
put the huge importance and value of funding basic scientific research in the spotlight.

Overall, many-body problems in physics represent a vast category of challenges
which are notoriously hard to tackle. Determining the precise physical behavior of
systems composed of many entities is, in general, hard, as the number of possi-
ble combinations of states increases exponentially with the number of entities to be
considered. This intricacy drains the analytical formal representation’s power, as cal-
culations become intractable. In contrast, the understanding of many-body problems
often relies on approximations specific to the problem being analyzed and result in
computationally intensive calculations. The algorithmic approach to decoding such
complexity, defining a new dichotomy, emerges.

As an example, in classicalmechanics the n-body problem describes the challenge
of predicting the motions of n celestial bodies interacting with each other via New-
ton’s law of universal gravity. Already 3-body problems—for instance, describing a
Sun-Earth-Moon system given their initial positions, masses, and velocities—yield
equations with no closed form solutions. As a result, numerical methods or computer
simulations need to be invoked in order to solve such seemingly simple problems
(Valtonen and Karttunen 2006).

A further challenge related to the understanding of systems of many interacting
agents, rendering equations mute but emphasizing the power of algorithmic tools,
is the discovery of chaos theory (Mandelbrot 1982; Gleick 1987). For instance, the
behavior of water molecules in a dripping faucet becomes unpredictable, when the
system enters the chaotic state (Shaw 1984). One critical aspect of chaotic systems
in nature is their dependence on initial conditions. The Butterfly Effect describes
this sensitivity metaphorically: The flapping of the wings of a butterfly creates tiny
perturbations in the atmosphere which set the stage for the occurrence of a tornado
weeks later. More precisely, the exact values of the initial conditions determine how
the system evolves in time. However, as these initial conditions can never be set with
infinite accuracy in the real world, the system’s evolution shows a path-dependence.
In otherwords, two dynamical systemswith nearly identical initial conditions can end
up in two vastly different end states. More on chaos theory is presented in Sect. 5.2.1.

The Butterfly Effect was coined by Edward Lorenz, a mathematician, meteorolo-
gist, and a pioneer of chaos theory. Meteorology is a prime example of how inquiries
into the workings of a complex system are stifled by chaotic behavior. In theory, if

2He was awarded the Nobel Prize in chemistry and the Nobel Peace Prize. Marie Curie was the
first person to ever be honored twice, with a Nobel Prize in physics and chemistry. To this day, the
illustrious group of people to have received two Nobel Prizes is comprised of four people.
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there existed an infinitely small grid of atmospheric measurements stations scattered
all over the world, weather predictions would be accurate. Facing such impossibil-
ity, scientists have devised simulational methods able to tackle the uncertainty. As
an example, the Monte Carlo method utilizes computational simulations which are
repeatedmany times over with random sampling to obtain numerical results. The key
insight is to use the statistical properties of seeming randomness to solve problems
that might be deterministic in principle. The algorithmic Monte Carlo methods are
mostly employed, and often useful, when it is difficult or even impossible to use
other approaches, like analytical tools.

Another key limiting factor for the equation-based understanding of the workings
of the world comes in the guise of non-linearity, a cornerstone of chaos theory. For
linear systems the change of the output is proportional to the change of the input.
Expressed mathematically

f (x) ∼ x . (5.1)

Already the square of a variable is non-linear, i.e., f (x) = x2. Here we see an
emerging conflict between the fundamental-analytical and the complex-algorithmic
dichotomies. Linear algebra is the branch of mathematics describing vector spaces
and, crucially, linear mappings between such spaces. The linear mappings are
expressed as matrices. This mathematical language, relying on linear systems, has
been extremely fruitful in describing quantum mechanics. However, most physi-
cal systems in nature are inherently non-linear (Mandelbrot 1982; Strogatz 1994).
Moreover, this non-linear (and chaotic) behavior is, again, analytically hard to tackle.
To conclude, a final limitation in physics comes from dissipative effects, like fric-
tion or turbulence, where the system loses energy (or matter) over time and exhibits
non-linear dynamics. Hence calculations in physics often rely on idealizations. For
instance, Newton’s classical mechanics can easily describe a game of pool, i.e., colli-
sions between billiard balls, if friction is ignored, the balls are assumed to be perfectly
spherical, and the collisions taken to be elastic (i.e., the kinetic is energy conserved).

In essence, while physics has had an amazing success in describing most of the
observable universe in the last 300 years, it appears as thought its powerful mathe-
matical formalism is ill-suited to address the real-world complexity surrounding and
including us. Namely, situations where many agents are interacting with each other.
For instance, ranging from particles, chemical compounds, cells, biological organ-
isms to celestial bodies, and systems thereof. In order to approach real-life complex
phenomena, one needs to adopt a more systems oriented focus.

5.2 Volume II: Algorithmic Tools and Complex Systems

For centuries, the fundamental-analytical dichotomy of understanding the universe
has prevailed. A vast array of knowledge has been accumulated. However, only
recently our focus has shifted to the intricate realities of systems of interacting agents
surrounding us, contained within us, and comprising us. A new dichotomy relating
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to the complex-algorithmic classification emerged. Equipped with new computa-
tional and simulational tools we started to probe a new reality domain encompassing
complex systems. A true paradigm shift occurred in our understanding, away from
a reductionist philosophy prevailing in science towards a holistic, networked, and
systems-based outlook.

Complex systems theory is the topic of Chap. 6. Here, in a nutshell, we introduce
complex systems and networks, describe the paradigms of the complex-algorithmic
dichotomy, and outline the success of this endeavor.

5.2.1 The Paradigms of Complex Systems

A complex system is usually understood as being comprised of many interacting
or interconnected parts (or agents). A characteristic feature of such systems is that
the whole often exhibits properties not obvious from the properties of the individual
parts. This is called emergence. In other words, a key issue is how themacro behavior
emerges from the interactions of the system’s elements at the micro level. Moreover,
complex systems also exhibit a high level of adaptability and self-organization. The
domains complex systems originate from are mostly socio-economical, biological,
or physio-chemical (Chaps. 6 and 7).

The study of complex systems appears complicated, as it implies an approach
very different from the reductionistic thinking of established science. Now, breaking
down, identifying, and analyzing the behavior of a single constituent of a system
does not reveal anything about the dynamics of the system as a whole. A quote
from Anderson (1972), an influential article succinctly titled “More is Different”,
illustrates this fact:

At each stage [of complexity] entirely new laws, concepts, and generalizations are necessary
[. . . ]. Psychology is not applied biology, nor is biology applied chemistry.

In the same vein, it is far from clear how to get from a description of quarks and
leptons, via DNA, to an understanding of the human brain and consciousness. It
appears as though these hierarchical levels of order defeat any reductionistic attempts
of understanding by their very design.

As discussed, complex systems are usually very reluctant to be cast into closed-
form analytical expressions. This means that it is generally hard to derive mathemat-
ical quantities describing the properties and dynamics of the system under study. If
the paradigms of fundamental processes described on Page 143 fail, what is needed
to replace them? Indeed, can we even hope to find such succinct guiding principles a
second time?Remarkably and, again, unexpectedly, the answer is yes. The paradigms
of complex systems are, once again, very concise:
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Pc
1: Every complex system is reduced to a set of objects anda set of functions

between the objects.
Pc
2: Macroscopic complexity is the result of simple rules of interaction at

the micro level.

Pc
1 is reminiscent of the natural problem solving philosophy of object-oriented

programming, where the objects are implementations of classes (code templates)
interacting via functions (public methods). A programming problem is analyzed in
terms of objects and the nature of communication between them. When a program
is executed, objects interact with each other by sending messages. The whole sys-
tem obeys specific rules (encapsulation, inheritance, polymorphism, etc.). See, for
instance Gamma et al. (1995).

Similarly, in the mathematical field of category theory a category is defined as
the most basic structure: a set of objects and a set of morphisms (maps between the
sets) (Hillman 2001). Special types of mappings, called functors, map categories
into each other. Category theory was understood as the “unification of mathematics”
in the 1940s. A natural incarnation of a category is given by a graph or a network,
where the nodes represent the objects and the links describe their relationship or
interactions. Now the structure of the network (i.e., the topology) determines the
function of the network. This new science of networks, emerging from the study
of complex systems and building on the formal representation of Pc

1 as a graph, is
presented in the Sect. 5.2.3.

Paradigm Pc
2, the topic of the following section, describes how order emerges

out of chaos, driven by a set of simple rules describing the interaction of the parts
making up a complex system. Together, these two paradigms represent a shift away
from mathematical models of reality towards algorithmic models, computing and
simulating reality. In other words, a change inmodus operandi from the fundamental-
analytical to the complex-algorithmic dichotomy has occurred. Now, the analytical
description of complex systems can be abandoned in favor of the algorithms describ-
ing the interaction of the objects, i.e., agents, in a system, according to specified rules
of local interaction. This is the fundamental distinguishing characteristic outlined on
the right-hand side of Fig. 5.2. Instead of encoding certain aspects of reality into
mathematical equations, now computers are programmed with step-by-step recipes
which are conjured up to tackle problems. Only by letting the algorithm run new
knowledge is generated and the design of algorithms and the existence of algorith-
mic solutions become relevant.

This prominent approach is called agent-based modeling. One key realization is
that the structure and complexity of each agent can be ignored when one focuses on
their interactional structure. Hence the neurons in a brain, the chemicals interacting
in metabolic systems, the ants foraging, the animals in swarms, the humans in a
market, etc., can all be understood as being comprised of featureless interacting
agents and modeled within this paradigm. By encapsulating the algorithms into a
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system of agents, complex behavior can be simulated. Some successful agent-based
models are Axelrod (1997), Lux and Marchesi (2000), Schweitzer (2003), Andersen
and Sornette (2005), Miller et al. (2008), Šalamon (2011), Helbing (2012).

5.2.2 The Science of Simple Rules

Paradigm Pc
2 of complex systems, stating that complexity emerges from simplicity,

is unexpected and very surprising. It is perhaps as puzzling as Eugene Wigner’s
comments on the “unreasonable effectiveness ofmathematics in the natural sciences”
(Sect. 9.2.1). Prompted by the tremendous success of Volume I of the Book of Nature
in decoding the workings of the universe by utilizing equations, scientists expressed
their bafflement. For instance, also Albert Einstein (quoted in Isaacson 2007, p. 462):

The eternal mystery of the world is its comprehensibility. The fact that it is comprehensible
is a miracle.

Now compounding the enigma is the discovery of Volume II. What appeared as
intractable complexity from afar is uncovered to be the result of simple rules of
interaction closeup. First, the universe speaks a mathematical language the human
mind can discover or create. Then, what appeared as hopeless complicatedness is in
fact derived from pure simplicity.

A New Kind of Science

Although the simplicity of complexity (Chap.6) has attracted less philosophical
interest than the “unreasonable effectiveness of mathematics”, some scientists have
expressed their total bewilderment at the realization. For instance, StephenWolfram,
a physicist, computer scientist, and entrepreneur.Wolframstarted his academic career
as a child prodigy, publishing his first peer-reviewed and single-author paper in par-
ticle physics at the age of sixteen (Wolfram 1975). Three years later, a publication
appeared which is still relevant and referenced today, forty years later (Fox andWol-
fram 1978). In 1981, he won the MacArthur Fellows Program,3 colloquially know
as the “Genius Grant”, a prize awarded annually to researchers who have shown
“extraordinary originality and dedication in their creative pursuits and a marked
capacity for self-direction”. In parallel, Wolfram led the development of the com-
puter algebra system called SMP (Symbolic Manipulation Program) in the Caltech
physics department during 1979–1981. A dispute with the administration over the
intellectual property rights regarding SMP eventually caused him to hand in his res-
ignation. Continuing on this computational journey,Wolfram began the development
of Mathematica in 1986. This was a mathematical symbolic computation program
and would become an invaluable tool used in many scientific, engineering, math-
ematical, and computing fields. In 1987, the private company Wolfram Research
Inc. was founded, releasing Mathematica Version 1.0 in 1988. By 1990, Wolfram

3See https://www.macfound.org/programs/fellows/strategy.

https://www.macfound.org/programs/fellows/strategy
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Research reached $10 million in annual revenue.4 Today, Mathematica (Version
11.2.0) remains highly influential and most of its code is written in the Wolfram
Language. This is a general multi-paradigm programming language developed by
Wolfram Research.

However, Wolfram’s biggest fascination lies with complexity. It started with his
work on cellular automata in 1981. These are discrete models studied in com-
putability theory, mathematics, physics, complexity science, theoretical biology, and
microstructure modeling. A cellular automaton consists of a regular grid of cells,
each in one of a finite number of states. A famous cellular automaton was devised by
the mathematician John Conway in 1970, called the Game of Life (Gardner 1970).
It is an infinite two-dimensional orthogonal grid of square cells, which can be in
two sates (dead or alive). The game evolves according to four simple rules and the
whole dynamics are solely determined by the choice of the initial state. The Game
of Life attracted a lot of attention due to the complex patterns that could emerge
from the interaction of the game’s simple rules. In essence, an early computational
implementation demonstrating emergence and self-organization. In 1987, Wolfram
founded the journal Complex Systems,5 “devoted to the science, mathematics and
engineering of systems with simple components but complex overall behavior”. This
fascination with complexity had life-changing consequences for him.

In 2002, Wolfram wrote (Wolfram 2002, p. ix):

Just over twenty years ago I made what at first seemed like a small discovery6: a computer
experiment of mine showed something I did not expect. But the more I investigated, the
more I realized that what I had seen was the beginning of a crack in the very foundations of
existing science, and a first clue towards a whole new kind of science.

Developing this new science would become his passion. In 1991, Wolfram set out to
realize this vision, resulting in the 2002 book,A New Kind of Science, a one-thousand-
two-hundred-page tour de force (Wolfram2002).During the timeofwriting,Wolfram
became nocturnal and reclusive, totally devoted to his project. Indeed, when he
realized that there was no publisher who could print the book with the quality he
envisioned for the diagrams, he simply founded Wolfram Media Inc. to do the job.
See (Levy 2002) for more anecdotes. The book begins by setting the stage with the
demarcation described in Fig. 5.2 (Wolfram 2002, p. 1):

Three centuries ago science was transformed by the dramatic new idea that rules based on
mathematical equations could be used to describe the natural world. My purpose in this book
is to initiate another such transformation, and to introduce a new kind of science that is based
on the much more general types of rules that can be embodied in simple computer programs.

In other words, Wolfram describes the two opposing formal representations we
humans can access: analytical vs. algorithmic. In essence “the big idea is that the

4See http://www.stephenwolfram.com/scrapbook/timeline.
5See http://www.complex-systems.com.
6Wolfram is referring to a cellular automaton rule he introduced in 1983, called Rule 30, out of 256
possible rules. Rule 30 produces complex, seemingly random patterns from the simple, well-defined
rules of interaction.

http://www.stephenwolfram.com/scrapbook/timeline
http://www.complex-systems.com
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algorithm is mightier than the equation” (Levy 2002). Wolfram claims to have
re-expressed all of science utilizing the formal language of cellular automata, in
essence, simple programs. Indeed, looking at the table of contents reveals the great
scope in the topics that are covered:

1 The Foundations for a New Kind of Science
2 The Crucial Experiment
3 The World of Simple Programs
4 Systems Based on Numbers
5 Two Dimensions and Beyond
6 Starting from Randomness
7 Mechanisms in Programs and Nature
8 Implications for Everyday Systems
9 Fundamental Physics

10 Processes of Perception and Analysis
11 The Notion of Computation
12 The Principle of Computational Equivalence

From mathematics and its foundation, complex systems found in nature, physics
and its foundation, to the nature of computation, a vast array of subject matter is
covered diligently in great detail. Wolfram acknowledges the tremendous success of
the mathematical approach to science, but stresses that many central issues remain
unresolved, where the simple-programs paradigm could possibly shed new light on
the challenges (Wolfram 2002, p. 21):

The typical issue was that there was some core problem that traditional methods or intuition
had never successfully been able to address—and which the field had somehow grown to
avoid. Yet over and over again, I was excited to find that with my new kind of science I could
suddenly begin to make great progress—even on problems that in some cases had remained
unanswered for centuries.

A New Kind of Science was received with skepticism and ignited controversy. How-
ever, regardless of how one views Wolfram and his claims, one epiphany remains.
Namely, the counterintuitive realization that simplicity unlocks complexity (Wolfram
2002, p. 2):

Indeed, even some of the very simplest programs that I looked at had behavior that was as
complex as anything I had ever seen.

It took me more than a decade to come to terms with this result, and to realize just how
fundamental and far-reaching its consequences are.

Furthermore (Wolfram 2002, p. 19):

And I realized, that I had seen a sign of a quite remarkable and unexpected phenomenon:
that even from very simple programs behavior of great complexity could emerge.

Until this phenomenon was reliably demonstrated and studied by Wolfram, people
expected simple rules of interactions to lead to mostly simple outcomes. Discovering
simplicity to be the spawning seed of complex behavior was truly unexpected. But
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perhaps the boldest claim in the book relates to the computational nature of the
universe. Wolfram invokes a radical new level of reality, where beneath the laws of
physics there lies a computational core. This theme will reappear in Chap.13.

Quadratic and Logistic Maps

Another archetypal theme describing how simplicity encodes complexity comes
from chaos theory. This time the notion is nested deep within mathematics itself and
comes in the guise of fractal sets. Fractals are very particular abstract mathematical
objects. The term was coined by the mathematician Benoît Mandelbrot (Mandelbrot
1975). Fractals came to prominence in the 1980s with the advent of chaos theory, as
the graphs of most chaotic processes display fractal properties (Mandelbrot 1982)—
that is, foremost, self-similarity. This is a feature of an object to contain, exactly or
approximately, similar parts of itself. For instance, a coastline is self-similar: parts
of it show the same statistical properties at many scales (Mandelbrot 1967). Such
a characteristic is also called scale invariance, a topic discussed in Sect. 6.4 in the
context of scaling laws. Indeed, many naturally occurring objects display fractal
properties. So much so, that Mandelbrot chose the title of his seminal and hugely
influential work on fractals and chaos theory to read: The Fractal Geometry of Nature
(Mandelbrot 1982).

The most prototypical fractal, also entering pop culture, is the Mandelbrot set
(Douady et al. 1984). Due to the rise of computational power, graphical images
started to becomemore detailed around the 1980s, slowly unveiling the set’s aesthetic
appeal. But most stunning was the self-similar property of theMandelbrot set, where
the original iconic shape would reemerge over and over again, at all resolutions
accessible within the current computational limits. See Fig. 5.4 for an illustration.
The Mandelbrot set is defined as the set of values c for which the iterations of the
quadratic map

zn+1 = z2n + c, (5.2)

remain bounded, where z0 = 0. In other words, a chosen c belongs to the set if the
series z1 = c, z2 = z21 + c = c2 + c, … does not go to infinity for n → ∞. As c is
a complex number, i.e., c ∈ C, it can be represented as

c = a + i · b, (5.3)

with a, b ∈ R and i := √−1. Hence one can display c graphically as a point in the
(complex) plane with the coordinates c = (a, b), explaining the two-dimensional
nature of fractals. Variants of the Mandelbrot set are easily conceived of, by altering
the nature of the map. For instance

ẑn+1 = ẑ4n + c, (5.4)

yields the fractal set seen in the middle and right-hand panels of Fig. 5.4. Generically

z̃n+1 = f (z̃n) + g(c), (5.5)
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Fig. 5.4 The evolution of fractals. (Left) the first glimpse of theMandelbrot set defined in Eq. (5.2),
reproduced from Gleick (1987), (p. 225). (Middle) a fractal variant defined by Eq. (5.4). (Right)
zooming into the middle fractal, revealing its self-similar nature. The colors indicate how quickly
c diverges (the lighter the slower the divergence) while black shows the converging points defining
the set. Note that these are original images produced by myself in the mid-1990s, explaining the
pixelation seen somewhat skewing the self-similar patterns

with two defining functions f and g. These iterative equations are also known as
difference equations, a hallmark of discrete mathematics, discussed in Sect. 5.3.

Another simple equation describing a chaotic system is know as the logistic map

xn+1 = r xn(1 − xn), (5.6)

where the value of the term following the nth one is again determined by the values
of the nth term itself, the initial value x0, and a constant r . It has the same structure as
Eq. (5.2) defining the Mandelbrot set. The logistic map was introduced in a seminal
paper by the biologist Robert May (May 1976). It is another archetypal example
of how complex, chaotic behavior can arise from very simple non-linear dynamical
equations. The equation describes the evolution of populations due to reproduction
and starvation and is famous for its bifurcation diagram (Feigenbaum 1978), showing
how the system descends into chaos.

BeforeMandelbrot and others7 first saw the intricate shape of the fractal set named
after him in the late-1970s, no one could have imagined that such a simple equation,
zn+1 = z2n + c, had the power to encode such a wealth of structure. In essence, the
simple rule of the iterative map contains an infinitude of complexity. Anywhere on
the boundary of the Mandelbrot set, one can zoom in, theoretically indefinitely, and
keep on rediscovering new delicate structures and patterns of stunning complexity.
This is another prime example of Pc

2: A seductively simple procedure results in one
of the most complex objects in mathematics.

7There exists a dispute about the discovery of the Mandelbrot set (Horgan (2009)).
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5.2.3 The New Science of Networks

While the second paradigmof complex systems uncovers that simple rules drive com-
plex behavior, Paradigm Pc

1 states that complex systems should be broken down into
individual agents and their interactions. As a result, networks are an ideal abstraction
for theses systems. The agents are represented by featureless nodes and the inter-
actions are given by the links connecting the nodes. This thinking gave rise to a
new interaction-base worldview and the crucial realization that networks are able to
mirror the organizational properties of real-world complex systems. A new science
of networks was ignited (Dorogovtsev and Mendes 2003, p. 1):

In the late 1990s the study of the evolution and structure of networks became a new field in
physics.

The formal mathematical structures describing networks are graphs. The nearly
three hundred year history of graph theory is briefly discussed in Sect. 5.3.2, where
the notion of a random graph takes center stage around 1960. This fruitful marriage
of probability theory and graph theory resulted in much successful scholarly work.
So what is there to add in terms of a new science of networks? Indeed (quoted in
Newman et al. 2006, p. 4):

If graph theory is such a powerful and general language and if so much beautiful and elegant
work has already been done, what room is there for a new science of networks?

The authors then offer the following answers (quoted in Newman et al. 2006, p. 4):

We argue that the science of networks that has been taking shape over the last few years is
distinguished from preceding work on networks in three important ways: (1) by focusing on
the properties of real-world networks, it is concerned with empirical as well as theoretical
questions; (2) it frequently takes the view that networks are not static, but evolve in time
according to various dynamical rules; and (3) it aims, ultimately at least, to understand
networks not just as topological objects, but also as the framework upon which distributed
dynamical systems are built.

The first glimpse of this new science of networks came from sociology in the late
1960s. Amilestone being thework ofMarkGranovetter on the spread of information
in social networks (Granovetter 1973). He realized that more novel information flows
to individuals through weak rather than strong social ties, coining the term “the
strength of weak ties.” Since our close friends move in similar circles to us, the
information they have access to overlaps significantly with what we already know.
Acquaintances, in contrast, know people we do not know and hence have access
to novel information sources. Another topic of interest was the interconnectivity
of individuals in social networks. Stated simply, how many other people does each
individual in a network know? StanleyMilgram devised an ingenious, albeit simple,
experiment in 1969. The unexpected results propelled a novel concept into the public
consciousness: the notion of the small world phenomenon, colloquialized as “six
degrees of separation” (Milgram 1967; Travers and Milgram 1969) In a nutshell
(Newman et al. 2006, p. 16):



5.2 Volume II: Algorithmic Tools and Complex Systems 155

Milgram’s experiments started by selecting a target individual and a group of starting indi-
viduals. A packagewasmailed to each of the starters containing a small booklet or “passport”
in which participants were asked to record some information about themselves. Then the
participants were to try and get their passport to the specified target person by passing it on
to someone they knew on a first-name basis who they believed either would know the target,
or might know somebody who did. These acquaintances were then asked to do the same,
repeating the process until, with luck, the passport reached the designated target. At each
step participants were also asked to send a postcard to Travers and Milgram, allowing the
researchers to reconstruct the path taken by the passport, should it get lost before it reached
the target.

The researchers recruited 296 starting individuals from Omaha, Nebraska and
Boston, and targeted a stockbroker living in a small town outside Boston. 64 out
of the 296 chains reached the target, with the median number of acquaintances from
source to target being 5,2. In other words, a median of six steps along the chain
were required. A surprisingly short distance and an unexpected result considering
the potential size of the analyzed network. As a modern example, researchers set up
an experiment where over 60,000 e-mail users tried to reach one out of 18 target per-
sons in 13 countries by forwarding messages to acquaintances. They also found that
the average chain length was roughly six (Dodds et al. 2003). In an other experiment,
the microblogging service Twitter was analyzed in 2009. Then it was comprised of
41,7 million user profiles and 1,47 billion social relations and had an average path
length found to be 4, 12 (Kwak et al. 2010).

In 1998, Duncan Watts and Steven Strogatz introduced the small-world network
model to replicate this small-world property found in more and more real-world net-
works (Watts and Strogatz 1998). They identified two independent structural features
according to which graphs could be classified. The clustering coefficient is a mea-
sure of the degree to which nodes in a graph tend to cluster together, derived from
the number of triangles present in the network. The second classification measure is
the average shortest path length, the key parameter of small-world networks. Apply-
ing these quantities to random graphs, constructed according to the prototypical
Erdős-Rényi model,8 reveal a small average path length (usually varying as the log-
arithm of the number of nodes) along with a small clustering coefficient. In contrast,
small-world networks are characterized by a high clustering coefficient and a small
average path length. The algorithm introduced in the Watts-Strogatz model consid-
ers regular ring lattices, or graphs with n nodes each connected to k neighbors, and
imposes a probability for the rewiring of links (excluding self-loops). These models
also turned out to be receptive to a variety of techniques from statistical physics,
attracting “a good deal of attention in the physics community and elsewhere” (New-
man et al. 2006, p. 286).

Finally, after the random graph and small-world network models had been intro-
duced, an additional type of real-world network was discovered by Albert-László
Barabási and Réka Albert. This seminal finding ultimately ushered in the new field
of complex networks, indeed ignited “a revolution in network science” (Dorogovt-
sev and Mendes 2003, p. 1). In summary, the hallmark of this new network class

8See Eq. (5.11) on Page 168.
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Fig. 5.5 Examples of common network topologies. (Left) a regular two-dimensional lattice. (Mid-
dle) a random network with an average degree of one. (Right) a scale-free network with an average
degree of one showing two hubs. Reproduced with kind permission from Geipel (2010)

is that its degree distribution follows a power law.9 As power-law distributions are
discussed in detail in Sect. 6.4, it suffices to mention here that such distributions are
characterized as follows: while there are a few nodes, called hubs, which have very
high connectivity, most nodes, however, have medium to low degree. In Barabási
and Albert (1999) the authors proposed that the power-law degree distribution they
observed in the WWW is a generic property of many real-world networks. In addi-
tion, they offered a specific model of a growing network that generates power-law
degree distributions similar to those seen in the WWW and other networks. This
growth mechanism is know as preferential attachment: with a certain probability
new nodes are added to the network and these preferentially form links with existing
nodes of high degree. The influence of Barabási and Albert on this new budding
network science is reflected in the number of citations of their publications. Alone
Barabási and Albert (1999) and Albert and Barabási (2002) jointly garnered over
18,000 citations.10

Note that although scale-free networks are also small-world networks, the opposite
is not always true. However, many real-world complex networks show both scale-
free and small-world characteristics. In Fig. 5.5 examples of networks with various
levels of structure are shown. The feature of complex networks in general to capture
and encode the organizational architecture of complex systems is what ushered in
the new science of complexity, explained in Chap.6.

5.2.4 The Success

It is remarkable that a multitude of simple interactions can result in overall complex
behavior that exhibits properties like emergence, adaptivity, resilience, and sustain-

9See Eq. (5.17) on Page 168.
1010,641 plus 7,646, respectively, retrieved in February 2015 from the Web of Knowledge, an
academic citation indexing service provided by Thomson Reuters.
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ability. Moreover, the fact that order and structure can arise from local interactions
between parts of an initially disordered system is astonishing. Indeed, the universe
has always been governed by this structure formation mechanism, self-organizing
itself into ever more complex manifestations. From an initial singularity with no
structure the universe appears to, at least in our vicinity, be spontaneously evolving
towards ever more order. Albeit with no external agency and despite the second law
of thermodynamics forcing the entropy—the level of disorder—of the universe to
increases over time.11 Mysterious as these processes may appear, the study of com-
plex systems gives us insights into themechanisms governing complexity.Moreover,
should there exist an unseen fundamental force in the universe, driving it to ever more
complexity, then the emergence of first life and later consciousness is perhaps less
wondrous.

In essence, complexity does not stem from the number of participating agents in
the system but from the number of interactions among them. For instance, there are
about 20,000–25,000 genes in a human (International Human Genome Sequencing
Consortium 2004). In contrast, bread wheat has nearly 100,000 genes (Brenchley
et al. 2012). Thus the complexity of humans is evidently not a result of the size
of our genome. It is crucial how the genes express themselves, meaning how the
information encoded in a gene is used in the synthesis of functional gene products,
such as proteins. The gene regulatory network is a collection of molecular regulators
that interact with each other to govern the gene expression levels (Brazhnik et al.
2002).

This novel interaction-based outlook also highlights the departure from a top-
down to a bottom-up approach to understanding complexity. A top-down philosophy
is associated with clear centralized control or organization. In contrast, bottom-up
approaches are akin to decentralized decision-making. The control or organization
is spread out over a network. For instance, it once was thought that the brain would,
like a computer, have a CPU—a central processing unit responsible for top-down
decision-making (Whitworth 2008). Today, we know that the information processing
in our brains is massively parallel (Alexander and Crutcher 1990), decentralized into
a neural network, giving rise to highly complex, modular, and overlapping neural
activity (Berman et al. 2006).

Philosophically, the step towards bottom-up approaches can be understood as a
departure from reductionist problem-solvingmethods and an embracing of a systems-
based and holistic outlook. It marks the acceptance of the fact, that we should stop
looking for a master-mind behind the scenes, an elusive puppet-master orchestrating
the occurrence of events, following devilishly cunning plans.12 Mapping interactions
onto networks or simulating them in agent-based models allows the complex system

11This is possible because the second law of thermodynamics only applies to isolated systems.
Systems far from the thermodynamic equilibrium (non-equilibrium thermodynamics) are candidates
for self-organizing behavior. Overall, the entropy always increases in the universe. See Nicolis and
Prigogine (1977).
12This philosophical realignment as potential political and societal ramifications. For instance, with
respect to the surprising popularity and pervasiveness of conspiracy theories in the 21st Century,
see Sect. 12.2.
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Fig. 5.6 The properties of
complex systems and the
paradigms leading to an
agent-based simulation
describing them.
Reproduced from Glattfelder
et al. (2010)

they describe to be formally analyzed. In Fig. 5.6 an illustrated overview of an agent-
based simulation is given: In a computer program agents are interacting according
to simple local rules and give rise to global patterns and behaviors seen in real-world
complex systems.

By adopting a bottom-up philosophy, novel problems become tractable which
before resisted a top-down attack. For instance, modeling the flocking behavior of
birds. This swarming behavior has all the hallmarks of complexity (Bonabeau et al.
1999). It is an adaptive and self-organizing phenomenon. So how is it possible to
program a simulation of such intricate behavior? Again, adhering to the paradigm
of simple rules, a bottom-up approach turns out to offer an easy solution. In 1986
an artificial life program called Boids was developed,13 reproducing the emergent
swarming properties. The following three simple rules tell each agent how to interact
locally in the simulation:

1. Separation: steer to avoid a crowding of agents.
2. Alignment: steer towards the average heading of local agents.
3. Cohesion: steer to move toward the average position of local agents.

Many hitherto hard (or impossible) to tackle problems suddenly become acces-
sible and tractable with the application of the paradigms of complex systems. In
detail, the organizing principles and the evolution of dissipative, real-world complex
systems, which are inherently unpredictable, stochastic in nature, and plagued by
non-linear dynamics, can now be understood. This, by analyzing the architecture of
the underlying network topology or by computer simulations. Hence more patterns
and regularities in the natural world are uncovered. For instance, earthquake corre-
lations (Sornette and Sornette 1989), crowd dynamics (Helbing et al. 2000), traffic
dynamics (Treiber et al. 2000), pedestrian dynamics (Moussaïd et al. 2010), pop-
ulation dynamics (Turchin 2003), urban dynamics (Bettencourt et al. 2008), social
cooperation (Helbing and Yu 2009), and market dynamics (see Sect. 7.3). Recall
the mentioned selection of effective agent-based models (Axelrod 1997; Lux and
Marchesi 2000; Schweitzer 2003; Andersen and Sornette 2005; Miller et al. 2008;
Šalamon 2011; Helbing 2012). Chapter6 is exclusively devoted to the successful
treatment of complex systems and Chap.7 discusses finance and economics.

13See http://www.red3d.com/cwr/boids/.

http://www.red3d.com/cwr/boids/
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5.3 The Profound Unifying Powers of Mathematics

The two volumes of the Book of Nature appear to speak two different formal dialects.
While Volume I is written in an equation-based mathematical language, Volume
II utilizes an algorithmic formal representation, intelligible to computers. In this
section it will be uncovered how a mathematical idiom also underpins the algorith-
mic abstraction. In essence, the entirety of mathematics incorporates both formal
strands and hence unifies all human knowledge generation in one consolidated for-
mal representation. The journey leading to this realization begins in pre-Socratic
Greece and touches on the Protestant Reformation, the Jesuits, Newton, Galileo
Galilei, the bridges of Königsberg, and digital information (bits). Before embarking
on this voyage, the edifice of mathematics requires a closer inspection.

There is one general demarcation line one can find in mathematics, splitting the
subject matter into continuous and discrete renderings. Most non-mathematicians
only come into contact with the continuous implementation of mathematics,14 for
instance, by being exposed to calculus, geometry, algebra, or topology. While
the branch of discrete mathematics deals with objects that can assume only dis-
tinct, separated values, continuous mathematics considers only objects that can vary
smoothly.15

Philosophically, the schism between continuity and discreteness originated in
ancient Greece with Parmenides, who asserts that the ever-changing nature of reality
is an illusion obscuring its true essence: an immutable and eternal continuum. Still
in modern times this intellectual battle between viewing the nature of reality as
fundamentally continuous or discreet is been fought. Charles Pierce proposed the
term synechism to describe the continuous nature of space, time and law (Peirce
1892). A related mystery is the question if reality is infinite or not. Immanuel Kant,
for instance, came to the startling conclusion that the world is “neither finite nor
infinite” (Bell 2014). In contrast, the triumph of “atomism,” i.e., the atomic theory
developed in physics and chemistry, only applies to matter and forces, conjuring up
the following image: the discrete entities making up the contents of the universe
act in the arena of continuous space-time. This view goes to the heart of Leibniz’
philosophical system, called monadism, in which space and time are continua, but
real objects are discreet, comprised of simple units he called monads (Furth 1967).

There are, however, also modern efforts to discretize space and time as well,
in effect bringing the quantum revolution to an even deeper level. This proposi-
tion goes to the very heart of one of theoretical physics’ most pressing problems:
the incompatibility of quantum field theory (Sects. 3.2.2.1 and 3.1.4), describing all
particles and their (non-gravitational) interactions, and general relativity decoding
gravity (Sects. 4.1 and 10.1.2). Quantum theory, by its very name, deals with discrete
entities while general relativity describes a continuous phenomenon. For decades,

14Next to basic arithmetic, which is, of course, part of discrete mathematics.
15Technically, this means that between any two numbers there must lie an infinite set of numbers,
as is the case for real numbers.
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string/M-theory was hailed as the savior, however to no avail (Sect. 4.3.2). These
issues are discussed in Sect. 10.2.

Despite the clear top-level separation of mathematics into these two proposed
themes, there also exist overarching concepts linking the continuous and the dis-
crete. Indeed, many ideas in mathematics can be expressed in either language and
often there are discrete companions to continuous notions to be found16 and vice
versa. Specifically, the discrete counterpart of a differential equation17 is called a
recurrence relation, or difference equation. Examples of such equations were given
in Sect. 5.2.1, discussing chaos theory.18 Then, what is known as time-scale calculus
is a unification of the theory of difference equations with that of differential equa-
tions. In detail, dynamic equations on time scales are a way of unifying and extending
continuous and discrete analysis (Bohner and Peterson 2003). One powerful math-
ematical theory, spanning both worlds, is group theory. It was encountered in its
continuous expression in Chap.3, specifically the continuous symmetries described
by Lie groups (Sect. 3.1.2), arguably the most fruitful concept in theoretical physics
(Chaps. 3 and 4). In its discrete version, group theory underlies modern-day cryptog-
raphy, utilizing discrete logarithms, giving rise to themodern decentralized economy
fueled by blockchain technology (Sect. 7.4.3). But perhaps themost interestingmath-
ematical chimera is the fractal. It is defined by the discrete difference equation (5.2)
but its intricate border (seen in Fig. 5.4) is continuous and hence infinite in detail,
allowing one to indefinitely zoom into it and witness its mesmerizing self-similar
nature.

5.3.1 The Continuous—A History

The process of finding the derivative, i.e., the mechanism of differentiation, not only
lies at the heart of contemporary mathematics but also marks the birth of modern
physics. It builds on a hallmark abstract notion that first appeared in pre-Socratic
Greece and can be seen in the calculations performed by Democritus (Boyer 1968),
the proponent of physical atomism (see Sect. 3.1), in the 5th Century B.C.E. Since
then, this novel idea entered and left the collective human consciousness at various
times in history. The concept in question is the abstract idea of infinitesimals. As
an example, a continuous line is thought to be composed of infinitely many distinct
but infinitely small parts. In general, the concept of infinitesimals is closely related
to the notion of the continuum, a unified entity with no discernible parts which is
infinitely divisible. In this sense, a global perspective yields the continuum, while an
idealized local point of viewuncovers its ethereal constituents, the infinitesimals (Bell
2014). The idea of infinitesimals is a deceptively benign proposition, but nonetheless
problematic and even dangerous.

16For instance, discrete versions of calculus, geometry, algebra, and topology have been defined,
although they are less commonly used.
17Like Newton’s or Maxwell’s equations, i.e., Eqs. (2.1) and (2.4), respectively.
18Recall Eqs. (5.2) and (5.6).
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Ancient Greece

One account has it that the Pythagoreans expelled one of their ownphilosophers,Hip-
pasus, from their order and possibly even killed him, as he had discovered “incom-
mensurable magnitudes” (Boyer 1968). Hippasus understood that it was impossible
to compare, for instance, the diagonal of a square with its side, no matter how
small a unit of measure is chosen. In essence, this is a consequence of the exis-
tence of irrational numbers. These are real numbers that cannot be expressed as
a ratio of integers. In other words, irrational numbers cannot be represented with
terminating or repeating decimals. Looking at a square of unit length, its diam-
eter is given, ironically, by the Pythagorean theorem a2 + b2 = c2 which yields
c = √

2 = 1.4142 . . . This is a number with infinitely many digits. Other famous
irrational numbers, magically appearing everywhere in mathematics and physics,
are π = 3.1415 . . . and exp(1) = 2.7182 . . . Currently, the record computation of
π has revealed 1.21 × 1013 digits (Yee and Kondo 2013). Irrational numbers posed
a great threat to the fundamental tenet of Pythagoreanism, which asserted that the
essence of all things is related to whole numbers, igniting the conflict with Hippasus.

This early budding of the notion of the infinitesimal would soon be stifled by
associated paradoxes uncovered by the philosopher Zeno. The notorious Zeno’s para-
doxes show how infinitesimals lead to logical contradictions. One conundrum argues
that before a moving object can travel a certain distance, it must first travel half this
distance. But before it can even cover this, the object must travel the first quarter of
the distance, and so on. This results in an infinite number of subdivisions and the
beginning of the motion is impossible because there is no finite instance at which it
can start. “The arguments of Zeno seem to have had a profound influence on the devel-
opment of Greek mathematics […]” (Boyer 1968, p. 76). “Thereafter infinitesimals
are shunned by ancient mathematicians” (Alexander 2014, p. 303), with the excep-
tion of Archimedes. Still today there are discussions on whether Zeno’s paradoxes
have been resolved—touching issues regarding the nature of change and infinity
(Salmon 2001). It would take another two thousand years, before the dormant idea
of infinitesimals would reemerge. If only to be faced with more antagonism. This
time, the threat emanated from the Catholic Church, which saw its hegemony in
Western Europe threatened by the power-struggles initiated by the Reformation. In
the wake of these events, Galileo would be sentenced to house arrest in 1633 by the
Inquisition for the last nine years of his life.

Middle Ages: The Protestant Reformation

In 1517, the Catholic priest Martin Luther launched the Reformation by nailing a
treatise comprised of 95 theses to a church door, instigating a fundamental con-
flict between Catholics and Protestants. As a reformation movement, Protestantism
under Luther sought “to purify Christianity and return it to its pristine biblical
foundation” (Tarnas 1991, p. 234). The Catholic Church was perceived to have expe-
rienced irreparable theological decline: “the long-developing political secularism of
the Church hierarchy undermining its spiritual integrity while embroiling it in diplo-
matic and military struggles; the prevalence of both deep piety and poverty among
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the Church faithful, in contrast to an often irreligious but socially and economically
privileged clergy” (Tarnas 1991, p. 234). Moreover, Pope Leo X’s authorization of
financing the Church by selling spiritual indulgences—the practice of paying money
to have one’s sins forgiven—was seen as a perversion of the Christian essence.
Luther’s revolution aimed at bringing back the Christian faith to its roots, where
only Christ and the Bible are relevant. In this sense, Protestantism was not only a
rebellion against the existing power-structure of the Catholic Church, it was also
a conservative fundamentalist movement. The effect of this combination lead to a
paradoxical outcome: while the Reformation’s “essential character was so intensely
and unambiguously religious, its ultimate effects onWestern culturewere profoundly
secularizing” (Tarnas 1991, p. 240). Indeed, the Protestant’s work ethic can be seen
to lay the foundations for modern capitalism (Weber 1920 and Sect. 7.4.2). Whereas
traditionally the pursuit of material prosperity was perceived as a threat to religious
life, now, the two are seen as mutually beneficial.

Against the backdrop of the increasing popularity and spread of Protestantism,
a counter-reformation in the Catholic Church was launched. It was spearheaded
by the Jesuits, a Roman Catholic order established in 1540, dedicated to restoring
Church authority. Their emphasis lay on education and they soon became “the most
celebrated teachers on the Continent” (Tarnas 1991, p. 246). In this environment the
Jesuits would confront Galileo and also the idea of infinitesimals would reemerge.

With respect to Galileo, it is quite perceivable that the Church could have reacted
in a very different manner. “As Galileo himself pointed out, the Church had long
been accustomed to sanctioning allegorical interpretations of the Bible whenever the
latter appeared to conflict with the scientific evidence” (Tarnas 1991, p. 259). Indeed,
even some Jesuit astronomers in the Vatican recognized Galileo’s genius and he
himselfwas a personal friend of the pope.However, the Protestant threat compounded
the perceived risks emanating from any novel and potentially heretical worldview.
And so the heliocentric model of the solar system—the Copernican revolution19

ignited by the Renaissance mathematician, astronomer, and Catholic cleric Nicolaus
Copernicus, fostered by Tycho Brahe and Kepler, ultimately finding its full potential
expressed through Galileo—was banned by Church officials. In this conflict of
religion versus science, Galileo was forced to recant in 1633 before being put under
house arrest. Not so luckywas themystical Neoplatonist philosopher and astronomer
Giordano Bruno. He espoused the idea that the universe is infinite and that the stars
are like our own sun, with orbiting planets, in effect extending the Copernican model
to the whole universe (Singer 1950). This idea suggested a radical new cosmology.
Bruno was burned at the stake in 1600. However, the reason for his execution
was not his support of the Copernican worldview, but because he was indeed a
heretic, holding beliefs which diverged heavily from the established dogma. Next to
his liberal view “that all religions and philosophies should coexist in tolerance and
mutual understanding” (Tarnas 1991, p. 253), he was a member of the movement
know as Hermetism, a cult following scriptures thought to have originated in Egypt

19See also Sect. 9.1.3.
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at the time of Moses. These heretic beliefs of Bruno on vital theological matters
sealed his fate and resulted in a torturous death (Gribbin 2003).

With the Catholic Church’s efficient, dedicated, and callous modus operandi,
why did Luther not get banished as a heretic? First, Pope Leo X long delayed any
response to what he perceived as “merely another monk’s quarrel” (Tarnas 1991, p.
235). When Luther finally did get stigmatized as a heretic, the political climate in
Europe had shifted in a way facilitating the splitting of the cultural union maintained
by the Catholic Church as a result of this theological insurgence. A second factor
was the “printing revolution” initiated by Johannes Gutenberg’s invention of the
printing press after 1450. Perhaps marking one of the first viral phenomena, this new
technology allowed for the unprecedented dissemination of information. The rise in
literacy and the facilitated access to knowledge allowed a new mass of people to
participate in discussions which would have been beyond their means not too long
a go. Utilizing this new technology, Luther translated the tow Biblical Testaments
from Hebrew and ancient Greek into German in 1522 and 1534. This work proved
to be highly influential and would help pave the way to the emergence of other new
religious denominations, next to Protestantism, as nowmany people could offer their
personal interpretation, further fracturing the unity of Catholicism.

Middle Ages: The Re-emergence of Infinitesimals

Approximately 1,800 years after Archimedes’ work on the areas and volumes
enclosed by geometrical figures using infinitesimals, there was finally a revival of
interest in this idea among European mathematicians in the late 16th Century. A
Latin translation of the works of Archimedes in 1544 made his techniques widely
available to scholars for the first time. Then, in 1616, the Jesuits first clashed with
Galileo for his use of infinitesimals. Indeed, even a Jesuit mathematician was prohib-
ited by his superiors from publishing work deemed to close to this dangerous idea.
In the eyes of the Jesuits, if the notion of a continuum made up of infinitely many
infinitesimally small units were to prevail “the eternal and unchallengeable edifice
of Euclidean geometry would be replaced by a veritable tower of Babel, a place of
strife and discord built on teetering foundations, likely to topple at any moment”
(Alexander 2014, p. 120). Between the years 1625 and 1658, a cat-and-mouse game
would follow, where the Jesuits would condemn the growing interest in infinitesi-
mals, only to be faced with notable publications by mathematicians on the subject.
Consult (Alexander 2014) for the details.

Finally, in 1665, the tides turned, as a young Newton experimented with infinites-
imals and developed techniques that would become known as calculus. Ten years
later, Leibniz independently developed his own version of calculus and publishes
the first scholarly paper on the subject in 1684. When Newton published his revo-
lutionary Philosophiæ Naturalis Principia Mathematica in 1687 (Newton 1687), a
political controversy ensued overwhichmathematician, and thereforewhich country,
deserved credit. ForNewton and Leibniz the idea of infinitesimalswasmore than just
a mathematical curiosity. Crucially, it was related to the reality of physical processes.
In Newton’s worldview the conception the continuumwas generated by motion, and
Leibniz famously exclaimed, natura non facit saltus—“naturemakes no jump” (Bell
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2014). Although infinitesimals proved themselves to be spectacularly useful tools,
their logical status remained doubtful under mathematical scrutiny. Notable scholars
viewed them as unnecessary and erroneous. Such as the likes of George Berkeley,
Georg Cantor, and Bertrand Russell (see, for instance Bell 2014). In the latter half
of the 19th Century the debatable concept of the infinitesimal was replaced by the
well-defined notion of the limit

lim
x→a

f (x) = L . (5.7)

The Modern Age

The introduction of themathematically sound definition of a limit now allowed calcu-
lus to be rigorously reformulated in clear mathematical terms, still used today. It is an
interesting observation, that the idea of infinitesimals has experienced a renaissance
in the last decades, establishing the concept on a logically solid basis. One attempt
fuses infinitesimal and infinite numbers, creating what is called nonstandard analy-
sis. A second endeavor employs category theory to meld what is known as smooth
infinitesimal analysis. These novel developments shed new light on the nature of the
continuum. More details on the history of infinitesimals and the related mathematics
are found in Bell (2014), Alexander (2014).

In the following, some technical aspects of differentiation are briefly introduced.

{"
|||5.3.1-derivatives >>>

For a smooth function f : R → R the derivative of f at the point t0 is defined as

ḟ (t0) := d

dt
f (t0) = lim

t→0

f (t0 + t) − f (t0)

t
. (5.8)

In other words, t is taken to infinitesimally approach zero. Because zero is never
reached, the fraction is well-defined. For multivalued functions, e.g., vector fields
F : Rn → Rm , partial derivatives exist for all components

∂ j Fi (x1, . . . , xn) := ∂

∂x j
Fi (x1, . . . , xn); i = 1, . . . , m; j = 1, . . . , n. (5.9)

These expressions can be assembled in a matrix yielding the general notion of the
derivative, called the Jacobian matrix

JF :=
⎡
⎢⎣

∂1F1 · · · ∂n F1
...

. . .
...

∂1Fm · · · ∂n Fm

⎤
⎥⎦ . (5.10)
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Table 5.1 Various themes of the notion of the derivative seen to permeate many physical theories
as a common thread. It can be understood as a unified mathematical underpinning, a simple but
powerful abstract framework encoding the physical world. The acronyms GR and GT refer to
general relativity and gauge theory, respectively. GSM is the standard model symmetry group, seen
in (4.72)

Domains Symbols Equations

Classical mechanics ∂t , ∂
2
t , ∂qi , ∂q̇ i (2.1), (3.1), (3.3)

Field theory ∂μ, ∂ψ i (3.6)

Maxwell equations ∂t ,∇·,∇× (2.4)

Covariant Maxwell equations ∂μ,� (4.16), (4.18)

Quantum operators i∂t ,∇/ i (3.51)

Schrödinger equation i∂t (3.24)

Dirac equation i /∂ (3.41), (3.42)

Coordinate transformation (GR) Δ
μ′
ν = ∂x ′μ

∂xν (4.3)

Curvature (GR) [∇X ,∇Y ] − ∇[X,Y ] (4.47)

Covariant derivative (GR) ∇μ = ∂μ − �_
μ_ (4.8)

Covariant derivative (GT) Dμ = ∂μ − Ak
μXk (4.11), (4.27)

GSM-invariant derivative Dμ = ∂μ + i ĝGα
μλα =

+ igW i
μτi + ig′ BμY

(4.73)

<<< 5.3.1-derivatives|||
" }

In the end, infinitesimals paved the way to the introduction of the derivative, an
essential tool in the first volume of theBook ofNature. Next to the specific expression
for the derivatives of functions (e.g., ḟ , ∂i Fj , and JF ) the main mathematical actors
appearing in physical theories are related to partial derivatives. For instance, the
partial derivatives can be combined to form a vector, the nabla operator ∇, defined
in (2.2). Or the d’Alembertian operator � introduced in (4.17). Table 5.1 shows
a summary of the various theories in which the notion of the derivative is vital,
as it enters the mathematical equations which describe the workings of multiple
fundamental processes in the universe. It is truly amazing, how one specific abstract
idea can be singled out and seen to play such an enormously successful role in
unlocking the secrets of the universe and furnishing a unifying theme for Volume I
of the Book of Nature.

In a nutshell:

The derivative, a cornerstone of continuous mathematics, lies at the heart
of the analytical machinery that is employed to represent fundamental aspects
of the physical world, as described in the formal encoding scheme outlined in
Fig. 5.1 and detailed in Table 5.1.
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5.3.2 Discrete Mathematics: From Algorithms to Graphs
and Complexity

There exists one abstract concept, found in discrete mathematics, which is bestowed
with great explanatory power. It is a formal representation that can capture a whole
new domain of reality in that it underpins the algorithmic understanding of complex
systems. Metaphorically, the discrete cousin of the continuous derivative is a graph.
As a result, the tapestry of mathematics, weaved out of the continuous and discreet
strands, has the capacity to unify the two disjoint volumes of the Book of Nature.
In other words, human knowledge generation is truly and profoundly driven by
mathematics.

Discrete mathematics is as old as humankind. The idea behind counting is to
establish a one-to-one correspondence (called a bijection) between a set of discrete
objects and natural numbers. Arithmetics, the basic mathematics taught to children,
is categorized under the umbrella of discrete mathematics. Indeed, the foundations
of mathematics rests on notions springing from discrete mathematics: logic and set
theory. Higher discrete mathematical concepts include combinatorics, probability
theory, and graph theory. More information on discrete mathematics and its appli-
cations can, for instance, be found in Biggs (2003), Rosen (2011), Joshi (1989).

Although continuous mathematics generally enjoys more popularity, discrete
mathematics has witnessed a renaissance driven by computer science. The dual-
ity of digital information, which is expressed as strings of binary digits—called bits
which exist in the dual states represented by 0 or 1—lies at the heart of discreteness.
In this sense, the development of computers, and information processing in general,
build on insights uncovered in the arena of discrete mathematics. A landmark devel-
opment in the field of logic was the introduction of Boolean algebra in 1854, in which
the variables can only take on two values: true and false (Boole 1854). Then, in 1937,
Claude Shannon showed in his master’s thesis how this binary system can be used
to design digital circuits (Shannon 1940). In effect, Shannon implemented Boolean
algebra for the first time using electronic components. Later, he famously laid the
theoretical foundations regarding the quantification, storing, and communication of
data, in effect inventing the field of information theory (Shannon 1948). The concepts
Shannon developed are at the heart of today’s digital information theory. Shannon
and the notion of information are discussed further in Sect. 13.1.2. In summary, the
hallmark of modern computers is their digital nature: they operate on information
which adopts discrete values. This property is mirrored by the discrete character of
the formal representations used to describe these entities, see, for instance Biggs
(2003), Steger (2001a, b). Indeed, the merger of discrete mathematics with computer
science has given rise to the new field of theoretical computer science (Hromkovič
2010). In contrast to the technical and applied areas of computer science, theoret-
ical computer science focuses on computability and algorithms. Examples are the
methodology concerned with the design of algorithms or the theory regarding the
existence of algorithmic solutions.
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Paradigm Pc
1 (Sect. 5.2.1) emerges as the crucial guiding principle for the formal

representation of complexity. A complex system can formally either directly be
mapped onto a complex network or described as an evolving network of interacting
agents, following algorithmic instructions. Both incarnations find their abstraction
in the notion of a graph.

Graph Theory

The discrete counterpart to the derivative, a versatile and universal tool in continuous
mathematics, is the notion of a graph. In 1735 Leonard Euler was working on a paper
on the seven bridges of Königsberg. The publication of this work (Euler 1941) in
effect established the field of graph theory (Biggs et al. 1986; Bollobás 1998). The
problem Euler was trying to tackle, was to find a walk through the city that would
cross each of the seven bridges only once. Although he could prove that the problem
had no solution, the formal tool Euler employed was revolutionary. As detailed,
graphs today play an essential role in mathematics and computer science.

In modern terms, the defining features of a graph G = G(V, E) are the set of
vertices V , or nodes, which are connected by edges, or links, in a set E , where the
edge ei j ∈ E connects the nodes vi , v j ∈ V . The adjacency matrix of a graph A =
A(G) maps the graph’s topology onto the matrix Ai j , allowing further mathematical
operations to be performed on G, as now the powerful tools of linear algebra can
be utilized. Finally, the number ki of edges per vertex i is know as the degree. The
degree distribution P(k) succinctly captures the network architecture.

This simple formal structure was utilized by Euler as a representation of the
problem at hand: he ingeniously encoded the Königsberg bridges as the links and the
connected landmasses as the nodes in a small network. Indeed, Euler anticipated the
idea of topology: the actual layout of this network, when it is illustrated, is irrelevant
and the essence of the relationships is encoded in the specifics of the abstract idea of
the graph itself.

Euler’s contribution to graph theory represents only a minuscule fraction of his
mathematical productivity and “his output far surpassed in both quantity and quality
that of scores of mathematicians working many lifetimes. It is estimated that he
published an average of 800 pages of new mathematics per year over a career that
spanned six decades” (Dunham 1994, p. 51). Indeed, even his deteriorating eyesight,
leading to blindness, “was in no way a barrier to his productivity, and to this day his
triumph in the face of adversity remains an enduring legacy” (Dunham 1994, p. 55).

At the end of the 1950s graph theory was extended by the introduction of proba-
bilistic methods. This new branch, called random graph theory, was a fruitful source
of many graph-theoretic results and was pioneered by Paul Erdős 20 and his collab-
orator, Alfréd Rényi (Erdős and Rényi 1959, 1960). A hallmark of these graphs is
that their degree distribution P(k) has the form of a Poisson probability distribution.
In other words, the number nodes with high connectivity decreases rapidly.

20Recall the peculiar life he chose to live recounted on Page 57 at the end of Sect. 2.2.
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{"
|||5.3.2-graph-theory >>>

A random graph comprised of n nodes and l links follows a binomial degree
distribution

P(ki = k) =
(

n

k

)
pk(1 − p)n−k, (5.11)

where ki is the degree of node i and the link probability is given by p (Erdős andRényi
1960). The first terms gives the number of equivalent choices of such a network. The
remaining term describes the probability of a graph with k links and n nodes existing.
The average degree 〈k〉 is now defined as

z := 〈k〉 = l

n
= p(n − 1). (5.12)

The average degree and the degree distribution can be approximated by

P(k) ≈ zke−z

k! , (5.13)

z ≈ pn. (5.14)

Note that (5.13) describes a Poisson distribution. In the limit of large n the approxi-
mations become exact. This can be seen by noting that

e−z = lim
n→∞

(
1 + −z

n

)
, (5.15)

1 = lim
n→∞

(
n!

nk(n − k)!
)

. (5.16)

The scale-free networks, introduced in Sect. 5.2.3 and establishing the new science
of networks, are defined by their degree distribution following a scaling law (see
Sect. 6.4.3.3). This can simply be expressed mathematically as

P(k) ∼ k−α, (5.17)

where the exponent α lies typically between two and three. In detail

P(k) = k−αe−k/κ

Liα(e−1/κ )
. (5.18)

The exponential term in the numerator, governed by the parameter κ , results in an
exponential cutoff, the term in the denominator ensures the proper normalization,
and Lin(x) is the nth polylogarithm of x (Newman et al. 2001; Albert and Barabási
2002). Note that for the limit κ → ∞
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P(k) = k−α

ζ(α)
, (5.19)

where the Riemann ζ -function now acts as the normalization constant.

<<< 5.3.2-graph-theory|||
" }

Whereas the (continuous) analytical machinery used for over three centuries has
the power to unlock the secrets of fundamental systems, (discrete) graphs directly
tackle complexity. In the pictorial language of Fig. 5.1, complex systems are located
on the left side. Graph theory represents their abstract counterpart. In other words,
graphs are elevated to the exalted ranks of formal representations able to capture
and encode a vast plethora of aspects of the physical world, similar to the abundant
usefulness of the derivative.

In closing:

Complex systems are represented by networks which are formalized as
graphs, a notion from of discrete mathematics that lies at the heart of the algo-
rithmic approachwhich is employed to represent complex aspects of the physical
world, as described in the formal encoding scheme seen in Fig. 5.1.

5.3.3 Unity

To summarize, both mathematical variants—the continuous and the discrete— have
one particular property which gives them a special status in their volume of the Book
of Nature. In other words, each branch has one feature that makes it a powerful tool in
the abstract world of formal representations (i.e., the right-hand side of Fig. 5.1). One
is the (continuous) operation of differentiation and the other is the (discrete) notion
of a graph. While the former unlocks knowledge about the fundamental workings of
nature, the latter gives insights into the organizational principles of complex systems.

By introducing the continuous-discrete dichotomy it is possible to give an under-
pinning to the formal representations seen on the right-hand side in Fig. 5.2. The
analytical formal representation is inexorably tied to the continuous mathematical
structure while the algorithmic formal representation is intimately related to the dis-
crete mathematical structure. This is illustrated in Fig. 5.7. In this sense, the abstract
human thought system called mathematics is not only a very powerful probe into
reality, it also unifies the two separate formal representations describing the two
different reality domains.

In closing, Fig. 5.8 depicts a grand overview of all the discussed concepts. It
contrasts the fundamental-complex, analytical-algorithmic, and continuous-discreet
dichotomies encountered in the two volumes of the Book of Nature.
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Fig. 5.7 The mathematical
structures underlying the two
modes of formal
representation, unifying the
two separate knowledge
generation systems within a
single formal thought
system. As a result, Fig. 5.2
is given more detail

Formal Representation

Analytical Algorithmic

Continuous Discrete

Mathematical Structure

To summarize:

The cognitive act of translating specific fundamental and complex aspects
of the observable universe into formal representations—utilizing analytical
(equation-based) and algorithmic (interaction-based) tools—is the basis for gen-
erating vast knowledge about the workings of reality. Specifically, the funda-
mental and complex reality domains of the physical world are encoded into
analytical and algorithmic formal representations, respectively. Underpinning
these are the continuous and a discrete structures of mathematics.

Digging deeper, continuous mathematics, associated with the analytical for-
mal theme, provides the machinery of derivation, which plays a fundamental
role in the physical sciences. In a similar vein, discrete mathematics, the basis
of the algorithmic formal theme, offers graphs as a universal abstract tool able
to capture complexity. In this sense, mathematics, understood as the totality
of its continuous and discrete branches, is the unifying abstract framework on
which the process of translation builds upon. This overarching formal frame-
work is hosted in the human mind and mirrors the structure and functioning of
the physical world, transforming translation into knowledge generation.

This process of human knowledge generation finds its metaphor in the dis-
covery of the two volumes of the Book of Nature, written in the language of
mathematics. A graphical overview is presented in Fig. 5.8. The tremendous
success of this endeavor can be seen in the dramatic acceleration of technolog-
ical advancements in recent times, bearing witness to the increasing ability of
the human mind to manipulate the physical reality it is embedded in.
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Fig. 5.8 A comprehensive
map of human knowledge
generation. The observable
universe is explained in the
Book of Nature, specifically
its two volumes. The
physical world, comprised of
reality domains, finds its
formal representation in the
abstract world, hosted in the
human mind, and unified by
the two mathematical
structures. See the boxed text
for details
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5.4 The Book of Nature Reopened

For over 300 years the Book of Nature has revealed insights into the workings of the
world. Chapter by chapter, novel understanding was disclosed, from quantum theory
to cosmology. The humanmindwas capable of translating amultitude of quantifiable
aspects of reality into formal, abstract representations. Then, by entering this abstract
realm, the mind was able to derive new insights, which could be decoded back into
the physical world (see Fig. 5.1). This is a truly remarkable feat and the foundation
from which the technological advancements of the human species springs.

But this should only be the beginning. It is truly remarkable that what was con-
sidered to be the Book of Nature—the analytical understanding of fundamental
processes—turns out to only be the first volume in a greater series. In the last decades,
humans have witnesses yet another unearthing of an additional volume of the Book
of Nature. And just like Volume I, this newly found addition to the Book of Nature
Series offers new and deep insights into a domain of reality previously clouded by
ignorance: the organization and evolution of complex systems. In other words, the
properties of real-world complexity surrounding us become intelligible.

Figure5.8 shows a conceptualized illustration of this truly remarkable achieve-
ment. The knowledge generated in this way is the engine driving humanities aston-
ishing technological advancements, (see also the first section of Chap.8). In essence,
this knowledge generation boils down to acts of translation. As illustrated in Fig. 5.1,
a reality domain of the physical world is encoded as a formal representation inhab-
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Fig. 5.9 A schematic overview of the possible acts of translation encapsulated in the matrix T :
each element represents the encoding of fundamental or complex aspects of reality into formal
representations relating to analytical or algorithmic facets of the abstract world (compare with
Figs. 5.1 and 5.2). Interestingly, in the pursuit of knowledge by the human mind, mostly only two
of the four possibilities have been extensively utilized: TAn,Fu and TAl,Co corresponding to Volume
I and II in the Book of Nature Series. Adapted from (Glattfelder 2013)

iting the abstract world. Constrained and guided by the rules pertaining to the rich
structure of the abstract world, new information can be harnessed, which can then
be decoded back into to physical world, yielding novel insights.

The template for this act of translation is given by Tfr,rd, where the label fr
denotes the formal representation and rd the reality domain, respectively. Through-
out this book it has been argued that both the physical and abstract world should
each be split into two categories. The physical is categorizing by the fundamental-
complex dichotomy and the abstract by the analytical-algorithmic dichotomy. The
two volumes of the Book of Nature can now be understood as follows:

• Volume I corresponds to the analytical encoding of fundamental processes, TAn,Fu.
• Volume II corresponds to the algorithmic encoding of complex processes, TAl,Co.
Now it becomes apparent that this attempt at categorizing human knowledge gener-
ation into the proposed dichotomies adds an additional mystery:

Why has the successful knowledge generation process, giving the human mind access to the
intimate workings of the universe, primarily been based on the translational mechanisms
TAn,Fu and TAl,Co? What about the two other translation possibilities TAl,Fu and TAn,Co?

In Fig. 5.9 all four possible translationalmechanisms arising from the dichotomies
are shown. Understood as a matrix, primarily the diagonal elements of T are respon-
sible for lifting humanities’ veil of ignorance. What do we know about the other
two translational possibilities? Do they represent failed attempts at knowledge gen-
eration? If so, what is special about the two successful acts of translation? Or will,
in the end, the human mind unearth further volumes in the Book of Nature Series,
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guided by the two dormant translational possibilities? This will be the focus of the
next section.

From a philosophical perspective, this intricate and intimate interaction of the
human mind with the physical world raises inevitable and profound questions. For
instance, successful knowledge generation via the describes translational mecha-
nisms assumes the existence of three entities: the physical world that accommodates
the mental world of the human mind, which discovers or creates the abstract world
of formal thought systems, which in turn unlocks secrets of the physical world (a
conundrum encountered in Fig. 2.2 of Sect. 2.2.1). In detail:

1. There exists an abstract realm of objects transcending physical reality (ontology).
2. The humanmind possesses a quality that allows it to access this world and acquire

information (epistemology).
3. The structures in the abstract world map the structures in the physical (structural

realism, see Sects. 2.2.1, 6.2.2 and 10.4.1).

5.4.1 Beyond Volumes I and II

As observed, the two translational possibilities TAl,Fu and TAn,Co have not been promi-
nently utilized as knowledge generation mechanisms. This could mean two things.
First, complex systems are indeed immune to being treated with an equation-based
formalism, and, conversely, the same is true for fundamental systems being described
algorithmically. Or, these alternative possibilities have only been sparsely explored
to date, still leaving behind mostly uncharted terrain. In the following, some attempts
at filling in the blanks are described.

The Complex-Analytical Demarcation

Pattern formation in nature is clearly the result of self-organization in space and
time. Alan Turning proposed an analytical mechanism to describe biological pattern
formation (Turing 1952). He utilized what is known as reaction-diffusion equa-
tions. These are partial differential equations used to describe systems consisting of
many interacting components, like chemical reactions. Turning’s model success-
fully21 replicates a plethora of patterns, from sea shells to fish and other vertebrae
skin (Meinhardt 2009; Kondo and Miura 2010). In effect, he proposed an analytical
approach to complexity.

Running agent-based models can sometimes be computationally costly. However,
there exist analytical shortcuts that can be taken. Instead of simulating the complex
system, it can be studied by solving a set of differential equations describing the
time evolution of the individual agent’s degrees of freedom. Technically, this can be
achievedbyutilizingLangevin stochastic equations. Each such equation describes the
time evolution of the position of a single agent (Ebeling and Schweitzer 2001). From

21See, for instance, the interactive demonstrations found at http://demonstrations.wolfram.com/
TuringPatternInAReactionDiffusionSystem/.

http://demonstrations.wolfram.com/TuringPatternInAReactionDiffusionSystem/
http://demonstrations.wolfram.com/TuringPatternInAReactionDiffusionSystem/
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the reaction-diffusion equation, Langevin equations can be derived. See Sect. 7.1.1.1
for the history of the Langevin equations, including Einstein’s early work and the
Black-Scholes formula for option pricing. Utilizing self-similar stochastic processes
for the modeling of random systems evolving in time has been relevant for their
understanding (Embrechts and Maejima 2002). See again Sect. 7.1.1.1.

Langevin equations can be solved analytically or numerically. They describe the
individual agent’s behavior at the micro level. Moving up to a macroscopic descrip-
tion of the system, what is known as the Fokker-Planck partial differential equation
describes the collective evolution of the probability density function of a system
of agents as a function of time. The two formalism can be mapped into each other
(Gardiner 1985). However, as an example, computing 10,000 agents constrained by
Langevin equations approximates the macro dynamics of the systemmore efficiently
than an effort directly attempting to solve the equivalent Fokker-Planck differential
equation.

Some scholars have argued against the dictum that complex systems are, in gen-
eral, not susceptible to mathematical analysis and should hence be investigated by
the means of simulation analysis (Sornette 2008). Didier Sornette, a physicist,
econophysicist, and complexity scientist, offers the insight that the formal analytical
treatment of triggering processes between earthquakes can be successfully applied
to various complex systems. Examples range from the dynamics of sales of book
blockbusters to viewer activity on the YouTube video-sharing website to financial
bubbles and crashes (Sornette 2008). Furthermore, he argues that the right level of
magnification (level of granularity) in the description of a complex system can reveal
order and organization. As a result, pockets of predictability at some coarse-grained
level can be detected. This partial predictability approach is potentially relevant for
meteorological, climate, and financial systems. However, a big challenge remains in
identifying the complex systems that are susceptible to this approach and finding the
right level of coarse-graining.

Another modern example of tackling complexity with analytical tools is mathe-
matical biology (to which Turning’s pattern formation belongs). Influential work in
this field grapples with the mathematization of the theory of evolution, as detailed in
Martin Nowak’s book “Evolutionary Dynamics: Exploring the Equations of Life”
(Nowak 2006). Nowak, a biochemist and mathematician by training, is also a Roman
Catholic. His view on the tension between theology and science, especially the con-
flicts between the theory of evolution and Christianity (Powell 2007):

Science and religion are two essential components in the search for truth. Denying either is
a barren approach.

The Fundamental-Algorithmic Demarcation

Recall fromSect. 5.1.3 the troubles relating to solving gravitational n-body problems.
In essence, here it does not suffice to know the analytical encoding of the challenge
at hand. The system of differential equations describing the motion of n ≥ 3 grav-
itationally interacting bodies cannot be solved analytically. Only for a few simple,
albeit important, problems Newton’s equation can be solved. Although the exact
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theoretical solution for the general case can be approximated (via Taylor series or
numerical integration) the dynamics are generally best understood utilizing n-body
simulations (Valtonen and Karttunen 2006).

The largest such simulation, called theMillenniumRun,22 investigated howmatter
evolved in the universe over time by reproducing cosmological structure formation.
The simulation was comprised of ten billion particles, each representing approx-
imately a billion solar masses of dark matter (Springel et al. 2005). In summary,
the dynamics of a fundamental (cosmological) system, comprised of a multitude of
gravitating bodies, is not understood analytically via differential equations. Rather,
computer simulations, mimicking the forces of interaction in the system, offer the-
oretical predictions.

Overall, the translational mechanism TAl,Fu is a niche, in the sense that it is only
sparsely explored and offers speculative concepts. For instance, the ideas espoused
by Wolfram in Sect. 5.2.2. He is essentially proposing that cellular automata are
the universal tool to decode and understand the universe in all its facets. In effect,
“A NewKind of Science” (Wolfram 2002) would represent the knowledge generated
byTAl,Fu (aswell asTAl,Co).AlthoughWolframacknowledges the tremendous success
of the mathematical approach to physics, he stresses that many central issues remain
unresolved in fundamental physics, where cellular automata could possibly shed new
light (Wolfram 2002, Chapter 9). He epitomizes these hopes in the following quote
(Wolfram 2002, p. 465):

And could it even be that underneath all the complex phenomena we see in physics there
lies some simple program which, if run long enough, would reproduce our universe in every
detail?

Contemporary support for this idea comes from Nobel laureate Gerard ’t Hooft,
where he proposes an interpretation of quantummechanics utilizing cellular automata
(’t Hooft 2016). Finally, some theoretical physicists propose to describe space-time
as a network in some fundamental theories of quantum gravity. For instance, spin
networks in loop quantum gravity (see Sect. 10.2.3). Another idea tries to understand
emergent complexity as arising from fundamental quantum field theories (Täuber
2008).

Blurring the Lines

Computers have also helped blur the lines between the analytical and algorithmic
formal representations. In 1977, the four-color theoremwas the firstmajormathemat-
ical theorem to be verified using a computer program (Appel and Haken 1977). “The
four-color theorem states that any map in a plane can be colored using four-colors in
such a way that regions sharing a common boundary (other than a single point) do
not share the same color.”23 Computer-aided proofs of a mathematical theorem are
usually very large proofs-by-exhaustion, where the statement to be proved is split into
many cases and each case then checked individually. “The proof of the four colour

22See https://wwwmpa.mpa-garching.mpg.de/galform/virgo/millennium/.
23From http://mathworld.wolfram.com/Four-ColorTheorem.html.

https://wwwmpa.mpa-garching.mpg.de/galform/virgo/millennium/
http://mathworld.wolfram.com/Four-ColorTheorem.html
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theorem gave rise to a debate about the question to what extent computer-assisted
proofs count as proofs in the true sense of the word” (Horsten 2012).

Conclusion

Two flukes of reality allow the universe to be comprehended by the humanmind. One
is that the structures of theworkings of the universe aremirroredby the abstract formal
thought systems accessible to the mind. The other is the emergence of complexity
from simplicity. The two related aspects of knowledge generation—the dichotomies
of the fundamental-analytical and the complex-algorithmic—are captured in Volume
I and II of the Book of Nature Series. Both have a mathematical underbelly, being
represented by the two sides of a metaphorical coin: the continuous and the discrete.
In the next chapter, the contents of Volume II will be disclosed. Just as Chaps. 3 and 4
gave an extract of Volume I, Chaps. 6 and 7 will contain the tale of the understanding
of complexity.
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