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Abstract. The importance and adoption of Blockchain to support
secure and trusted collaborations between businesses continues to grow.
In today’s practice, most Blockchain smart contracts (which capture the
business processing logic) are written primarily by software developers.
To enable widespread adoption of Blockchain, business analysts and sub-
ject matter experts will need to have direct access to the smart contract
logic, including the abilities to understand, modify, and create substantial
portions of that logic. This paper describes a fully functioning framework
and system for specifying and executing smart contracts in which the core
logic is specified by a controlled English, business-level rules language.
The framework includes a browser-based smart editor for rules; a parser
generator that enables substantial variation in the rules syntax; code gen-
eration that maps to a RETE based rules engine; and execution of the
rules in either on-chain (using Hyperledger Fabric) or off-chain modes.
The paper describes the rules framework and possible extensions, and
identifies key aspects of Blockchain that impact the implementation.

1 Introduction

The shared ledger and Blockchain paradigms hold the promise of transforming
the ways that businesses collaborate by enabling a single source of truth, and
increased transparency through shared agreement about how business workflows
will be conducted. In particular, “smart contracts”, i.e., the programs that guide
the execution of transactions on Blockchain, are visible to and agreed upon by the
participants in a Blockchain-enabled collaboration. As such, Blockchain for busi-
ness collaboration opens new research challenges and industrial opportunities in
service-oriented computing, in particular in the areas of new styles of business
process management, distributed computing, and secure services. Today’s smart
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contracts are primarily created by software developers, using standard program-
ming languages such as Golang, C++ or Java, and/or using domain-specific
languages and frameworks such as Ethereum’s Solidity [1] and Hyperledger’s
Composer [2]. However, because of the anticipated volume of business collabo-
rations on Blockchain in coming years, and thus the volume of smart contracts
to be created, it is paramount that business-level users be empowered to under-
stand, create and modify smart contracts, or at least large portions of them.
This paper describes a Business Collaboration Rules Language (BCRL) frame-
work and implemented system, that enables business-level users to specify and
maintain intricate business logic in Blockchain-enabled solutions. In particular,
the framework enables the use of the same rules language that can be executed
both as smart contracts on the Hyperledger Fabric [3], and in an off-chain rules
engine, thereby enabling a more seamless experience for managing overall busi-
ness collaboration solutions. This paper describes the rules framework, including
illustrations of the current rules language, overview of the system architecture
and extensibility, and discussion of the implications on the system related to
implementation on top of the Hyperledger Fabric.

The importance of empowering business-level users in connection with smart
contracts is highlighted in [4]. Recent articles have focused primarily on the
business process level of smart contracts, e.g., by providing an implementation
of BPMN on top of Ethereum [5,6] or describing how the business artifact app-
roach can leverage the data-centric nature of Blockchain [7]. This paper comple-
ments that work by providing a framework for specifying intricate business logic
through the use of business rules expressed in a controlled English. The integra-
tion of the BCRL framework with workflow-based smart contract frameworks is
left as future work.

This paper illustrates the framework with a particular version of the rules
language, called Business Collaboration Rules Language version 1.0 (“BCRL
1.0” or “BCRL” for short). This language is inspired largely from the BERL
language of IBM’s Operational Decision Manager (ODM) product [8]; this was
a tactical design decision based in part on enabling more rapid creation of the
first implementation. But the framework itself can support substantial exten-
sions and variations to that language. For example, it could be adapted to fol-
low the styles of other ODM languages, SBVR [9], the Oracle [10] and FlexRule
[11] business rule languages, etc. One enabler for this is the use of the Business
Domain Specific Language (BDSL) parser-generator, which is used to generate
both the language parser and a browser-based smart editor; BDSL is an internal
component [12] of the ODM product. BDSL includes multiple features specific
to the creation of domain-specific languages (DSLs) that are based on controlled
natural language, in particular around handling phrasing that would be ambigu-
ous for a traditional LALR parser. A second enabler is the use of a lightweight,
prototype, JavaScript-based rules engine called “nanoRETE”, which supports
the RETE algorithm for rules execution.

The rules engine framework has been implemented on the Hyperledger Fab-
ric in two ways. One modality relies on the fact that Hyperledger Fabric v1.1
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provides native support for JavaScript-based smart contracts. In this modality
the nanoRETE rules engine and some integration modules are loaded directly
into Fabric. The other modality takes advantage of the Hyperledger Composer
[2] and runs on Hyperledger Fabric v1.0.

As shown by the examples in this paper, the BCRL framework enables
business-level users to express and “own” large portions of the business logic
underlying smart contracts. The language itself follows the spirit of other
business-level rules languages and can be modified to fit popular syntactic styles,
thereby enabling more rapid adoption. The primary contributions of the paper
are the development of a framework that enables seamless use of such rules lan-
guage both on- and off-chain, and the description of how the framework was
brought into a fully implemented prototype system.

Section 2 provides an overview of the framework, illustrates BCRL 1.0, and
discusses possible extensions. Section 3 overviews the system architecture and
describes key components. Section 4 describes the main challenges that arise
when embedding a rules framework onto Hyperledger Fabric and how the BCRL
framework addresses them. Section 5 describes related languages and research,
and Sect. 6 offers brief conclusions.

2 Framework Overview and Illustrations

This section provides an overview of the rules framework, then illustrates it
with an example taken from the domain of billing for Technical Service Support
(TSS), and concludes with a discussion of some additional rule constructs that
can be incorporated into the framework. More details about the architecture,
language, and implementation are provided in subsequent sections.

As mentioned in the Introduction, the framework is focused on enabling
business-level users to specify and execute possibly intricate rules logic in a
Blockchain-enabled solution. The framework enables the use of the same rules
engine in two different ways – one on-chain and the other off-chain – to pro-
vide a more seamless experience for business-level users who are working on a
comprehensive Blockchain-enabled solution.

Figure 1 shows the high-level architecture of the rules framework. As shown
in the upper left, the framework includes a template-based editor for specifying
the domain model for a given solution. (In some contexts, the domain model
might be defined elsewhere, in which case it can be imported as JSON into the
solution.) The Smart Editor for Rules is shown in the upper right of the figure.

The primary function of the Code Generation component is to perform code
generation of executable rules based on the business-level rules and domain
model, and then to deploy them in rules engines both on-chain and off-chain. The
on-chain rules are triggered by transaction invocations, and typically result in
updates to the ledger and to the Worldstate (which in our architecture is main-
tained in CouchDB), and may yield notifications about the transaction outcome.
For off-chain rules, rules can be loaded into the off-chain Rules Engine Container
for execution. This engine acts primarily as a Policy Decision Point, but can also
read and update an off-chain database (currently, Cloudant).
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Fig. 1. High-level architecture of rules framework

2.1 Illustration of Rules in Billing Use Case

We now present a case study of the rules framework in action. The example
was chosen in part to illustrate several different elements of the rules language
currently supported by the framework. This is based on a real-world use case
involving the generation of bills for a specific kind of Technical Support Services
(TSS). In this example, IBM is providing maintenance for a client, called here
ServerFarm, that operates numerous computer servers in data-centers spread
across numerous countries. The payment for services may vary by country, and
also by the level of service (in this case, either “Next Business Day” or “within
4 Hours”). The monthly bill for a given country and level of service is based on
the number of machines being maintained. That number is in turn determined
by examining the number of machines being maintained each week, and then
taking the maximum weekly quantity for the month.

Figure 2 shows the two main process flows used to manage the Billing pro-
cessing; these can be thought of as lifecycle models for the two primary entity
types arising in the application, namely Weekly Usage Records and Monthly
Billing Items. These lifecycle flows might be managed by a BPMN-based engine
or other processing engine. We use here an informal, direct representation for
these flows that includes constructs germane to Blockchain enabled solutions.
This includes responding to events of a given type (black diamond), tasks per-
formed off-chain (dashed line rounded box), and tasks performed on-chain (solid
line rounded box). In our example some off-chain tasks are performed manually,
and others performed automatically based on rule execution.

The key data sets are shown in Fig. 3. These are depicted more-or-less as
tables, but in fact are collections of JSON documents that are stored in noSQL
databases. The Install Base table, which resides off-chain in a Cloudant database,
holds data corresponding to contractual agreements between ServerFarm and its
customers. Figure 4 shows a representative document, showing a hypothetical
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Fig. 2. Two high-level process flows that guide the billing example

Fig. 3. Data schema used in billing example

customer in China, and one of their machines that ServerFarm is maintaining
offering category (called “asset sla” in that table) of “NBD”, between the spec-
ified contract start and end dates.

We now describe the three data sets maintained on the Hyperledger Fab-
ric. Following Hyperledger terminology the objects in these data sets are called
“assets”; they are identified by a unique key and have values that are JSON
documents that may change over time. Rate Table assets hold the monthly
charges paid by ServerHost to IBM for maintaining one server in a given country
and offering category. Weekly Usage Record assets hold weekly counts of servers
being supported. Monthly Billing Item assets hold the monthly charge for the
maintenance service for each country and offering category.

We now return to the processing flow for Weekly Usage Records shown in
Fig. 2. A scheduler is used to invoke the computation of these records on a weekly
basis. A first computation is performed by rules running off-chain in response
to a compute weekly usage event – an example of the payload of this kind of
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event is shown in Fig. 5. This typically produces a record holding a weekly usage
count for a given country and offering category. That data is used as input for a
transaction request of type insert weekly usage sent to the Hyperledger Fabric,
and results in the weekly usage data being loaded onto the Blockchain. Figure 6
shows a representative Hyperledger asset that would be written into the ledger
as the outcome of that sequence of events.

Figure 9 illustrates the smart editor for rules and three of the rules used in
response to a compute weekly usage event. The rules are in a controlled English,
and the editor provides color coding for different syntactic elements.

Fig. 4. Representative JSON document from Install Base, which identifies one of the
machines that ServerHost is maintaining for one of its customers. (Customer name is
hypothetical.)

Fig. 5. Representative event, of type compute weekly usage, which would trigger an
off-chain computation followed by an on-chain computation.

Rule 1.1 illustrates the overall structure of rules, which includes a “when”
clause that refers to the type of event being processed, an “if” clause that includes
conditions, and a “then” clause that holds one or more actions. In Rule 1.1 the
“if” clause is testing whether the offering category field of the incoming event is
outside of the permitted values “NBD” or “4HR”.

Rule 1.2 provides a simple illustration of syntax checking by the smart editor.
Here the keyword ‘is’ is missing from the “if” clause; this is indicated at the
bottom of the screen, and also in a pop-up box if the user mouses over the
erroneous text.

Rule 1.3 illustrates several features supported in BCRL 1.0. This includes
a fourth building block for the rules, called “definitions”, that allows to define
sets of records (shown in this figure) and to select individual records (see Fig. 8).
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Fig. 6. Representative value of Hyperledger asset (key-value pair) written onto
the ledger as result of off-chain compute weekly usage event followed by on-chain
insert weekly usage transaction

In Rule 1.3 a set designated with variable name “the usage records” is built
from the Install Base database. A representative document from Install Base
is shown in Fig. 4. The rule builds “the usage records” using a combination of
‘and’ (“all of the following are true”) and ‘or’ (“at least one of the following are
true”) constructs. This rule also illustrates an action of creating a new record
and writing it into a database. The built-in function “sum” is used to take a
sum of values from the quantity field of the records in ‘the usage records’.

Fig. 7. Rule for inserting a weekly usage record into blockchain

The outputs of firings of Rule 1.3 will be used as the payload for
insert weekly usage transactions on the Hyperledger Fabric. Such transactions
may result in the firing of Rule 2.4 shown in Fig. 7, (The first digit in the rule
numbering scheme correspond to the different types of events/transactions that
can lead to rule firing.) This rule shows another capability of BCRL, specifically
the ability to perform a “not exists”, or said differently, to check that there are
no records satisfying a certain property. In this case we check that there is no
Weekly Usage Record asset already on-chain that corresponds to the same coun-
try, offering category, and week. (Updates to an existing Weekly Usage Record
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Fig. 8. Rule used to compute monthly charge on blockchain

asset can be made using an update weekly usage transaction request.) As noted
above, Fig. 6 shows a representative Hyperledger asset that will be written onto
the ledger after Rules 1.3 and 2.4 have fired.

We pause to comment on the “when” clause in BCRL rules. This is used
primarily to provide a clustering and modularity for the overall set of rules. In
essence, if an event of a given type is pushed into the rules engine, then all rules
with “when”clause referring to that type are eligible for firing, including as the
result of rule chaining.

Finally, we describe Rule 5.1 in Fig. 8, which computes Monthly Billing Item
assets. The rule focuses on all weeks which start within the month. This rule
illustrates the construct for selecting a single element from the Rate Table, using
the “find one from” construct and also checking that the resulting record is
“defined”, which in this case includes a check that only one record was found.
The “then” clause illustrates the use of built-in arithmetic functions and the
aggregate operator “max”. Note also that the definition of one field value of
‘the monthly billing item’, specifically the “monthly charge” value, can refer to
previously defined field values of ‘the monthly billing item’. A representative
asset produced by this rule is shown in Fig. 10.

2.2 Discussion

As illustrated in the examples above, BCRL 1.0 provides business-level users
with the ability to express a broad variety of data manipulations, mainly in the
area of accessing and manipulating documents (off-chain) and assets (on-chain),
and also lists of such objects. Although not highlighted in the above examples, it
is important to note that the code generation maps the rules into the nanoRETE
engine, which can support rich chaining of the rules.
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Fig. 9. Illustration of smart rules editor

While BCRL can be used as-is to provide decision support for a variety of
applications, there are multiple simplifications and extensions that would be
beneficial; we mention some of these here.

BCRL 1.0 is quite verbose. This was an appropriate first step because it
provides a completely explicit way for expressing the constructs, a feature that
will be useful in contexts where more abbreviated variants may be confusing for
some users.

An important streamlining currently underway is to enable the parser and
code generation to take advantage of the meta-data about the data sets and the
event signatures. For example, in Rule 1.3 (Fig. 9) this would allow for replacing
the phrase “the week start date of ‘this event’” by “the week start date”, since
the only relevant object with that attribute is ‘this event’.

In terms of extensions, we see considerable value in enabling a construct
of form “then for each <variable> in <defined list>”. Inside that would be a
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full “definitions-if-then” block, which is to be executed for each element of the
defined list.

Another extension would be to permit richer modularity in the specification
of rule sets. For example, we could imitate a paradigm found in ODM, which
is to allow the specification of several sets of rules that are connected into a
flowchart.

3 Implementation of Rules Framework

This section describes the primary components of the BCRL framework, includ-
ing the smart editor, the parsing, the code-generation, and the deployment both
on-chain and off-chain. Some technical considerations specific to operating on
Hyperledger Fabric are deferred until the next section.

The rules framework architecture separates execution code of business rules
from the other application components, such as rule scheduling, access control
and business data storage. This separation helps reduce the costs of application
maintenance by allowing the business users to modify the rules as necessary
without the need for other code changes. It also allows for maximum re-use of
components across on-chain and off-chain rules specification, deployment and
execution.

Fig. 10. Part of representative asset written onto the ledger as a result of a com-
pute monthly charge transaction. (The rate and monthly charge are proprietary so
omitted.)
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Fig. 11. Components that support the rules language

An overview of the rule system generation architecture is shown in Fig. 11.
The four main components (forming a vertical column in the center of the figure)
act as a pipeline that maps BCRL rules into executable code.

The browser-based smart editor (top-most component) and the parser (just
below that) were created using the BDSL plugin [12] from IBM’s ODM product
[8]. BDSL can support grammars that capture highly flexible domain-specific
languages based on controlled English (or other natural languages). The smart
editor was illustrated in Fig. 9 above. The Smart Editor also incorporates infor-
mation about the domain model and types of events.

The parser produces an Abstract Syntax Tree (AST) based on BCRL. This
AST, along with the domain model information, serves as the input for the
code generator. This is the key component in this architecture, which generates
runnable JavaScript rule objects from the AST. In order to make the gener-
ated rule objects that can be run on both on-chain and off-chain environments,
a utility interface is abstracted to isolate the difference between on-chain and
off-chain. The main difference is related to database operations. The database
operations for on-chain are using Fabric APIs, such as getState, putState, get-
QueryResult, to access the Hyperledger Fabric Worldstate, which in our case is
maintained by a CouchDB instance. (See also Sect. 4.) In contrast, the database
operations for off-chain are using Cloudant APIs, such as insert and find, to
access the Cloudant database. Therefore, we use a variable named handler to
represent the utility interface in generated JavaScript rule objects. Both on-chain
and off-chain provide their own utility implementation in runtime.

The code generation process includes the following steps: (1) Traverse the
input AST to construct the rule set using the internal rule structure. (2) Generate
JavaScript rule objects from the rule sets using templates. (3) Store the generated
JavaScript rule objects into a file named rules.js for deployment into the rules
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engine. (4) Store the generated JavaScript rule objects into the Cloudant if
required.

For the rule engine itself we use nanoRETE, a lightweight prototype
JavaScript engine that supports the RETE algorithm. (This can run natively
on Hyperledger Fabric v1.1, and can also run on Hyperledger Fabric v1.0 with
Composer and some integration modules.) The rule engine runs in a data-driven
approach. The context of an event changes, which may result in one or more
rules being concurrently eligible and scheduled for execution. The rule execution
may include querying business data, making computations and finally arriving
at some conclusions, possibly including notifications and/or database updates.

The bottom component is in charge of generating deployable packages. The
deployable packages include not only the generated rule file, but also supported
components, such as the rule engine and utility for database operations. Accord-
ing to on-chain and off-chain requirements, the deployment packaging will choose
the right components for packaging. The output packages can be deployed to on-
chain or off-chain environments.

The framework also provides a family of straightforward APIs to interact
with the deployed on-chain and off-chain rule engines. This includes APIs to
deploy rules and also to invoke rules processing. In the on-chain runtime, the
APIs communicate with Fabric Client SDK by gRPC and invoke smart contracts
on Hyperledger Fabric Blockchain. In the off-chain runtime, the APIs invoke the
business rules code directly by gRPC.

4 Implications of Execution on Hyperledger

In this section, we describe three aspects of the Hyperledger Fabric that must
be considered, when embedding a rule engine into smart contracts. We first
provide a high-level overview of the Fabric architecture and of the transaction
processing flow within which the Smart contract is executed. We then highlight
the implications and challenges of these to the design of the BCRL framework.

4.1 Fabric Architecture Overview and Transaction Processing Flow

Hyperledger Fabric provides the combination of the immutable shared ledger,
high performance of transaction processing, and security and privacy features
of private Blockchain. It is architected as a highly distributed system network
consisting of several specialized types of components. Note that this architec-
ture differs from standard Blockchain networks such as Ethereum, where all the
functionality is integrated into the peer. The center element is the ledger con-
sisting of a chain of blocks, which store the history of transactions along with
the identity of the transactions’ submitters and endorsers.

The submission of a transaction into the Fabric follows a precise sequence
of steps. Initially, a client node submits a “transaction proposal” containing
the arguments and name of the function to invoke in the smart contract, to
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the endorsing peers (i.e., peers which aside from the ledger, host the smart con-
tract). Upon reception, a peer invokes the smart contract in context of the peer’s
“Worldstate”. The Worldstate (similarly as the “state trie” in Ethereum) pro-
vides fast and efficient access to the data recorded in the ledger. Next, the client
node collects the response along with an endorsement (i.e., the digital signature
of the result) from each of the endorsing peers. Note that no modifications of
the ledger or Worldstate were made at this point. The client node then validates
that the responses are matching and that the collected endorsements adhere to
the endorsement (i.e., consensus) policy of the Blockchain network, and submits
them to the “ordering service”. The ordering service is a centralized component,
which receives endorsed transaction proposals, orders them into blocks, and sub-
mits the blocks to all peers of the Blockchain network. Upon reception of a block,
the peer validates the transactions of the block based on the endorsement policy,
commits the block into its ledger and projects the content of the block’s trans-
actions onto its Worldstate. Only at this point, the transaction and the state
modifications it introduces are added to the ledger.

In the context of the transaction processing flow, a smart contract of our
Rule-based framework is hosted on the endorsement peers of the network and
executed in response to the transaction proposals submitted by the client nodes.
The distributed nature of the network and the sequence of the transaction pro-
cessing steps has implications on the implementation of the of the smart contract
functions and the availability of the data during the smart contract execution.
In the following, we outline the key points.

4.2 Eliminating Non-determinism from Smart Contracts

The consensus in the Fabric network is centered on the comparison of the results
of execution of the smart contract on multiple peers. Only if the results of the
execution match among the required peers, the resultant transaction will be
added to the ledger. Thus, to produce a matching outcome, the execution of the
smart contact must lead to a deterministic result (i.e., given a set of arguments
and a state of the ledger) the smart contract hosted on any of the network peers,
must produce the same result.

In Hyperledger Fabric, the smart contract programming infrastructure of
golang and JavaScript languages does not prevent the execution of any func-
tions including those, which may produce a non-deterministic output (e.g., new
Date(), process.hrtime(), Math.random(), etc.). Therefore, unaware or mis-
taken use of these functions may lead to a faulty behavior of the smart contract.
It is thus the responsibility of the software engineer to ensure that the use of
these functions is avoided.

Our Rule-based Framework for Smart contracts prevents producing non-
deterministic results similarly as the Solidity language of Ethereum; by elim-
inating the non-deterministic functions from the set of features available in the
grammar. Furthermore, the execution instructions produced by the Codegen are
based only on deterministic functions.
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This implementation leads to minor restrictions on the smart contract capa-
bility. When an output of a non-deterministic function is needed to be included
as part of a transaction; the function is executed once, prior to execution of the
smart contract. The non-deterministic function execution can be implemented
either in the middleware components prior to submitting a transaction proposal
to the peers or in the client node invoking the middleware. In either case, the
output of the non-deterministic function becomes an argument of the execu-
tion of the smart contract, and the same value is submitted to all peers of the
network.

4.3 Blockchain Phantom Reads

The invocation of a smart contract triggers a “simulation” of transaction execu-
tion. During the processing, invocations of the functions modifying the state of
the ledger are recorded into the WriteSet of the resultant transaction and do not
impact the state of the ledger and the Worldstate. In effect, during execution of
a single transaction, after the modification of an asset (i.e., key and value pair),
the subsequent request for the value of the asset will return the unmodified asset
value (i.e., phantom read).

The Rule-based framework is designed for smart contracts consisting of long
sequences of rules repeatedly modifying and accessing the same assets, incre-
mentally working towards the final result of the transaction. Thus, due to the
phantom read behavior, using the native functions returning unmodified values
would lead to faulty results. To support the needed functionality we are now
encapsulating the Fabric API such that the Worldstate is integrated with an
additional caching mechanism. This will allow for accessing the latest modifica-
tions necessary for incremental result building. At the same time, this mechanism
allows obtaining the currently valid, unmodified values stored in the Worldstate
with additional functions available in smart contract processing when needed.

4.4 Worldstate Indexes

In many smart contract contexts the queries against the Worldstate are focused
on requesting data based on a key of an asset. However, it is typical of many
rules to include associative queries against the Worldstate, that retrieve assets
based on properties and ranges of different attributes. The performance of these
queries is bound to the number of assets stored in the Worldstate and declines
with increasing size of the ledger.

To improve the speed of the asset retrieval, Fabric provides the ability to
define custom indexes along with the smart contract. However, it depends on the
skill of the smart contract designer, whether and which indexes will be defined as
well as how well these will support the execution of the smart contract queries.

The Rule-based grammar provides the opportunity for automated static code
analysis of the smart contract, necessary to automatically determine the indexes
needed for efficient execution of the associative queries in the rules. This is
because the Rule-based grammar leads to a clear expression of the sequences
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of data access operations as well as it explicitly includes the names of the keys
(either the unique keys of the assets or the paths within the assets when the
assets contain JSON) used to search for the data.

The index generating algorithm would have two main steps:

1. Identification of candidate keys - in this step the data access operations are
analyzed to determine which keys are good candidates for indexes.

2. Generation of indexes - in this step the candidate keys transformed into def-
initions of the database indexes.

The generation of the indexes can be executed as part of the Codegen and will
allow for transparent optimization of the overall performance of the rule-based
smart contract.

5 Related Work

In the early days, all smart contracts were programmed using full-purpose pro-
gramming languages such as Golang, C++ or Javascript.

Solidity [1] is more specifically targeted for the creation of smart contracts
on Ethereum. It is essentially a Turing-complete language based on C++ and
JavaScript-like syntax. Therefore, the language targets professional developers
rather than business users. In particular, expressing rules-style logic in Solidity
involves the use of ‘if’ and ‘else’ statements along with a set of braces containing
the rule specific code. Moreover, the chaining of rules has to be coded explic-
itly. In contrast, the BCRL framework supports a business level DSL based on
controlled English, and the rules chaining is supported implicitly with a general-
purpose RETE engine.

Some of the recent and emerging DSLs and environments for smart contracts
are intended for the software developer community. This includes the Hyper-
ledger Composer [2], which includes abstractions for “assets”(business-relevant
entities that whose representations are manipulated onchain), “participants” and
“transactions” (which manipulate the assets). As noted in [7], it would be natu-
ral to extend the Composer notion of assets with lifecycle models, in the sense of
Business Artifacts and Case Management. The Obsidean language [13] focuses
on abstractions for linear types and state-machine-based object lifecycles, in part
to reduce errors in smart contracts and to facilitate verification.

The R3 Corda initiative is developing an approach designed to support the
creation of smart contracts for Financial Services [14].

Citation [5] focuses on empowering business-level users to create and under-
stand smart contracts, by showing how the BPMN standard can be implemented
on top of Ethereum. This has led to the open-source Caterpillar system [6].

There is a long tradition of extending traditional business process manage-
ment systems with rules engines, to provide more flexibility to the business-level
users who maintain the processing logic. In a recent development the IBM ODM
rules engine has been integrated with Hyperledger, enabling on-chain smart con-
tracts to use REST APIs to invoke an ODM engine for decision support [15].
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While the ODM engines are not running directly within the smart contract, they
are resident on the peer nodes that are executing the smart contracts, and can
thus be tightly integrated with the immutability, privacy and consensus-based
features of the Hyperledger Fabric.

The BCRL language presented here is inspired from the BERL rules lan-
guage, one of several supported by the ODM product. Another Controlled-
English rules language is found within the Semantics of Business Vocabulary
and Rules (SBVR) model [9], an Object Management Group (OMG) standard
that provides the vocabulary and syntax for documenting the semantics of busi-
ness vocabularies, business facts, and business rules. As noted in the introduc-
tion, BCRL could be adapted to follow the style of SBVR and/or commercially
available business rule languages [8,10,11]. The semantics of SBVR is a version
of higher-order logic that can be machine-processed and automatically analyzed
[16]. The expressive powers of BCRL and SBVR are not comparable. SBVR
supports deontic logic operators for expressing business rules in the style of obli-
gations and permissions; these are not supported by BCRL. On the other hand,
SBVR does not have an operational semantics (e.g. to express updates to the
business facts) so it is not directly executable on Blockchain as allowed by BCRL.
We believe that the BCRL framework could be extended to support most or all
SBVR’s expressive power.

6 Conclusions

This paper presents the BCRL framework that enables business-level users
to specify and deploy business rules as smart contracts on the Hyperledger
Blockchain fabric. The framework considers the use of Blockchain in the larger
context of business collaborations, and enables use of the same rules language
to be executed on-chain in smart contracts, and executed off-chain in business
processes that are hosted by individual collaboration stakeholders. As such, the
paper provides a key building block for empowering business-level users to pro-
gram and manage intricate business logic for business collaborations, that are
supported in a secure, distributed, service-oriented manner. Section 4 discussed
key aspects of Blockchain that our rules implementation needs to address.

The BCRL framework as presented here is focused largely on decision support
and associated updates to persistent data (both on-chain and off-chain). It will
be valuable to explore approaches for integrating BCRL with BPMN-oriented
and business artifact-oriented smart contract frameworks, to provide them with
rich decision support.

Verification of smart contracts has become a major desired feature in
Blockchain platforms like Ethereum [17,18] due to the high impact of vulner-
abilities in smart contracts (e.g. $50 million USD caused by the DAO hack
[19]). Specifying smart contracts in a rule language like BCRL not only enables
smart contract programming by business users but also introduces new oppor-
tunities for formal verification. This is because unlike common smart contract
languages which are Turing-complete in general (so verification is undecidable),
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the expressive power of BCRL is close to first-order logic (FOL), making for-
mal verification more feasible. In fact, the research on automatic verification of
data-centric business processes (see [20] for a survey) has followed this trend
and shown decidability results on various expressive specification models based
on FOL. Implementation of a verifier for data-centric business processes was
recently shown successful [21]. These results indicate that BCRL can be a good
starting point for future research on smart contract verification.

Acknolwedgements. The authors are grateful to Stephane Mery, Philippe Bonnard
and Jean Michel Bernelas from the ODM product group at IBM for their inspiration
around rules languages and Blockchain, and also for assistance with the nanoRETE
rules engine and the BDSL parser-generator. The authors are grateful to Jerome Simeon
for his numerous insights, especially in connection with the spectrum of design and engi-
neering issues that arise in Domain-Specific Languages. The authors are also grateful
to the team at IBM working on Blockchain for Technical Support Services, includ-
ing Saurabh Sinha, Nerla JeanLouis, and Shu Tao, for providing an environment and
grounded use cases for the exploration of business rules for smart contracts.

References

1. Ethereum: Solidity (2018). https://solidity.readthedocs.io/en/v0.4.21/. Accessed
17 Mar 2018

2. IBM: Hyperledger Composer Home Page. https://www.hyperledger.org/projects/
composer. Accessed 17 Mar 2018

3. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for per-
missioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference, p.
30. ACM (2018)

4. Mendling, J., et al.: Blockchains for business process management-challenges and
opportunities. ACM Trans. Manag. Inf. Syst. (TMIS) 9(1), 4 (2018)

5. Weber, I., Xu, X., Riveret, R., Governatori, G., Ponomarev, A., Mendling, J.:
Untrusted business process monitoring and execution using blockchain. In: La
Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 329–347.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4 19
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