
Using Machine Learning to Provide
Differentiated Services in SDN-like
Publish/Subscribe Systems for IoT

Yulong Shi1,2(B), Yang Zhang1, Hans-Arno Jacobsen2, Bo Han1, Mengxi Wei1,
Runyuan Li1, and Junliang Chen1

1 State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, Beijing 100876, China
{shiyulong2015,yangzhang,hanbo92,wmx,lirunyuan,chjl}@bupt.edu.cn

2 Middleware Systems Research Group, University of Toronto,
Toronto M5S 1A1, Canada

jacobsen@eecg.toronto.edu

Abstract. At present, most publish/subscribe systems assume that all
participants have the same Quality of Service (QoS) requirements. How-
ever, in many real-world IoT service scenarios, different users may have
different delay requirements. How to provide differentiated services has
become an urgent problem. The rise of Software Defined Networking
(SDN) provides endless possibilities for meeting customized services due
to greater programmability. In this paper, we first propose two new
methods to predict the queuing delay of switches. One is an improve-
ment of the traditional Random Early Detection (RED) algorithm; the
other is a machine learning method using the eXtreme Gradient Boosting
(XGBoost) model. Then we describe an SDN-like publish/subscribe sys-
tem architecture and priority queues supported by OpenFlow switches
to realize differentiated services. In order to guarantee QoS, we present
a two-layer queue management mechanism based on user requirements.
In the end, we compare our delay prediction methods with the RED
method and verify the effectiveness of the two-layer queue management
mechanism. Experimental results show that our solution is effective.

Keywords: Publish/Subscribe · Software Defined Networking
Quality of Service · Queue management · Machine learning

1 Introduction

Internet of Things (IoT) is the third wave of the world’s information indus-
try revolution following computers and the Internet. Especially in recent years,
with the widespread popularity of smart phones and the development of sens-
ing technology, such as Radio Frequency Identification (RFID), barcodes, and
Quick Response (QR) codes, IoT devices and services have increased explosively.
Different devices, end users and application scenarios have different Quality of
c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 532–540, 2018.
https://doi.org/10.1007/978-3-030-03596-9_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_39&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_39


Providing Differentiated Services in SDN-like Pub/Sub 533

Service (QoS) requirements. However, how to meet these requirements is a huge
challenge. It is a good way to solve these problems by providing QoS-ware dif-
ferentiated services.

Middleware systems play an important role between the network layer and
application layer of IoT. The publish/subscribe (pub/sub) system is an event-
driven middleware system which provides distributed, asynchronous, loosely
coupled communication between message producers (publishers) and consumers
(subscribers). Publishers publish events, subscribers receive events which they
express their interests in. The full decoupling provided by a pub/sub paradigm
in time, space and synchronization between publishers and subscribers makes it
particularly suitable for large-scale distributed IoT service deployments.

Software Defined Networking (SDN) is an emerging networking paradigm in
which the control plane is separated from the forwarding plane. In this way,
SDN simplifies the design, management of networks and also makes the network
have more programmability. SDN-like is a new pub/sub model [5] that further
extends pub/sub decoupling. We can make full use of the programmability of
SDN-like to provide differentiated services for customized user requirements.

Most pub/sub systems consider that all subscribers have the same QoS
requirements [3]. However, in real-world scenarios, different users may have dif-
ferent delay requirements. Many delay-sensitive IoT applications need real-time
response to anomalies which should be dealt with high priority to prevent any
danger. Wang et al. [4] tried to use the Random Early Detection (RED) algo-
rithm to predict the queuing delay of switches. However, it is inaccurate because
we cannot get the enqueued and dequeued data at the same time, there is often
a significant difference compared to the real delay. In this paper, we propose an
improved RED algorithm and a machine learning method to predict the delay. In
order to guarantee QoS, we present a two-layer queue management mechanism.
The evaluations demonstrate the effectiveness of our solution.

The major contributions of this paper are as follows:

– To the best of our knowledge, we are the first to predict the queuing delay of
switches using the eXtreme Gradient Boosting (XGBoost) model of machine
learning. We also propose the Incremental Difference Method (IDM), an
improvement of the RED algorithm, and compare the performance of them.

– We describe an SDN-like pub/sub system architecture and how to use priority
queues to provide differentiated services for subscribers.

– We present a two-layer queue management mechanism based on user require-
ments from two different perspectives: (1) The local queue bandwidth adjust-
ment algorithm for a single switch in the SDN controller; (2) The global QoS
control strategy for all switches on the path from a publisher to a subscriber
in the administrator of the system.

The remainder of the paper is organized as follows. Section 2 describes
the preliminaries. Section 3 proposes an SDN-like pub/sub system architecture.
Section 4 introduces the queuing delay prediction method. Section 5 presents the
two-layer queue management mechanism. Section 6 provides the experimental
results. Section 7 concludes this paper with an outlook on future research.



534 Y. Shi et al.

2 Preliminaries

XGBoost Model. XGBoost model is an effective machine learning method pro-
posed by Tianqi Chen in 2016 [2], which can solve regression prediction problems.
In [2], the objective function is proposed as shown in Eq. (1). We use the classic
Root Mean Square Error (RMSE) loss function as the evaluation function, as
shown in Eq. (2).

Obj(t) =
n∑

i=1

l(yi, ŷi(t−1) + ft(xi)) +
K∑

k=1

Ω(fk) + const (1)

RMSE =

√
1
n

∑n
i=1(ŷi − yi)2 (2)

Here, l(yi, ŷi(t−1) + ft(xi) is the loss function, Ω(fk) is the regularization
term. RMSE is the square root of the mean of the squares of the errors between
the prediction ŷi and the target yi.

RED Algorithm. The basic principle is that it monitors the average queue
length to reflect the queue congestion. The RED formula is shown in Eq. (3).

avgQ = (1 − w) ∗ avgQ + w ∗ qLen (3)
qLen = enQ − deQ (4)

Delay = avgQ/Width (5)

Where avgQ is the average queue length, qLen is the real-time queue length, w
is the weight, enQ and deQ are the total number of bytes enqueued and dequeued,
respectively. Delay is the queuing delay. Width is the queue bandwidth.

Incremental Difference Method. Equation (4) can be improved as follows:

qLen = ΔenQ − ΔdeQ + qLen (6)

Where ΔenQ and ΔdeQ are the increment of enQ and deQ, respectively. This
method does not need to guarantee the simultaneity of getting the enqueued and
dequeued data, avoiding the influence of measurement time difference on data.

3 SDN-like Pub/Sub System Architecture

SDN-like Pub/Sub System Architecture. The SDN-like pub/sub system
architecture is shown in Fig. 1, which includes one administrator and several
clusters. The administrator is responsible for the global network management
and interacts with the controller of each cluster. A cluster contains a controller,
several switches, publishers and subscribers. Border switches are used to inter-
connect clusters. Users communicate with the system by Web Service Notifica-
tion (WSN). The system contains three layers: global management layer, control



Providing Differentiated Services in SDN-like Pub/Sub 535

Administrator

Controller

Cluster

Publisher

Border Switches

Cluster

Control Layer

Data Layer

Subscriber

Global Management

A
dvertisem

ent

Subscription

Event

OpenFlow Message

WSN

SDN Switch

Fig. 1. SDN-like pub/sub system architecture

layer and data layer. Our SDN-like pub/sub system is mainly implemented in
the control layer, namely, SDN controllers.

Two-Layer Queue Management Mechanism. The two-layer queue man-
agement mechanism is shown in Fig. 2. It is implemented in the control layer
and the application layer. Specifically, the local queue bandwidth adjustment is
implemented in the control layer; the global QoS control is implemented in the
application layer. The priority queue is mainly implemented in SDN switches.

Topic Encoding. In our topic-based pub/sub system, topics are represented
as a Lightweight Directory Access Protocol (LDAP) topic tree. The topic, event
type and queue priority are encoded into binary strings of the 128 bits IPv6
multicast address in the header of packets. They are used to match flow tables
directly when forwarding.

Priority Queue. Different priority queues have different bandwidths. The band-
width size determines the forwarding capability of queues. In this way differen-
tiation services are provided. OpenFlow switches can support up to 8 priority
queues per port. These queues are numbered from 0 to 7, and the larger the
queue number is, the higher the priority is. Messages are divided into three lev-
els according to their emergency degrees: low, medium, high. The low priority
messages enter queue 5, the medium enter queue 6, and the high enter queue 7,
as shown in Fig. 2.

4 Queuing Delay Prediction Using XGBoost

Data Preprocessing. We collect a large amount of real data, such as band-
width, package size by capturing data packets and logging once per monitoring



536 Y. Shi et al.

SDN Controller 

User

Queue Management

Local Queue 
Bandwidth Adjustment 

Queuing 
Delay 

Acquisition XGBoost

RED

IDM

Topology
Maintenance

Traffic 
Management

SDN Switch

Flow Table 
Match

C
lassifier

Scheduler A
gent

Queue 7

Queue 6

Queue 5

Packet In

Port i

Packet Out

OpenFlow Southbound API OF-config

Table Miss

Administrator

Queue Management

Global QoS Control 

Application
Layer

Control
Layer

Forwarding
Layer

Northbound API

Pub/Sub
Middleware

Routing
Computation

Flow Table
Maintenance

SubscriberPublisher

Scheduler Server

T
w

o- layer 
Q

ueue M
anagem

ent

RESTful RESTful

Priority Q
ueue

Fig. 2. Two-layer queue management mechanism

period (200 ms). Then we get the queue data after preprocessing by cleaning
dummy data, filling missing values and calculation.

Feature Selection. Packets distribution means the distribution of packet trans-
mission time intervals. The packets distribution shows periodicity, so we use the
Autoregressive Integrated Moving Average (ARIMA) model [1] to obtain the
cycle. We also perform a covariance test on the cycle between two adjacent
packets. The correlation coefficient is 0.87293211. This higher value shows that
there is little difference in their waveform distribution, and this method is rea-
sonable. so we use packets distribution as a feature. In raw data, there are many
features represented by string that the XGBoost model cannot receive, so we
encode them into integer.

Table 1. Training results

XGBoost parameter RMSE

min child weight=10; subsample=0.7; 5.42028e+07

colsample bytree=0.7; scale pos weight=0.8;

max depth=4; eta=0.1; early stopping rounds=30;

min child weight=10; subsample=0.7; 5.59389e+07

colsample bytree=0.7; scale pos weight=0.8;

max depth=6; eta=0.1; early stopping rounds=40;

min child weight=10; subsample=1; 7.49699e+07

colsample bytree=1; scale pos weight=1;

max depth=10; eta=0.1; early stopping rounds=50;

Model Training and
Parameter Adjustment.
We use the XGBoost
model for training. The
tree model is easily over-
fitting, so we divide train-
ing set by 20% as vali-
dation set and set it as
watchlist to obtain the
optimal number of iter-
ations. We also use the



Providing Differentiated Services in SDN-like Pub/Sub 537

score of the verification set no longer declining for 10 generations consecutively as
a criterion for early stop. The training results are shown in Table 1. The smaller
the RMSE is, the closer the prediction is to the real value, so we choose the first
row in Table 1.

5 Two-Layer Queue Management Mechanism Based on
User Requirements

We achieve the two-layer queue management mechanism from two perspectives.
One is the local bandwidth adjustment for a single switch, SDN controllers adjust
the bandwidth according to the queue priority and the queuing delay. The other
is the global control for all switches on the path. The administrator configures
the delay constraint of each switch as the local bandwidth adjustment reference.

Local Queue Bandwidth Adjustment Algorithm. The bandwidth of each
queue needs to be readjusted according to the delay and the queue priority. The
constraints for queues are as follows:

wq ∗ tq = AvgQq, q = 5, 6, 7 (7)
tq ≤ Tq, q = 5, 6, 7 (8)
∑7

q=5 wq = Port (9)
wq > 0, q = 5, 6, 7 (10)

Minimize(c5 ∗ t5 + c6 ∗ t6 + c7 ∗ t7) (11)

Where wq is the bandwidth of queue q, tq is the queuing delay, AvgQq is the
average queue length, Tq is the delay constraint, Port is the total bandwidth of
each switch port. Equation (11) is the adjustment goal, namely, minimizing the
weighted delay of queues. cq is queue weight (coefficient).

Algorithm 1. Local Queue Bandwidth Adjustment Algorithm
Input: wq , tq , cq, Tq, q = 5, 6, 7 //tq is predicted by the XGBoost model, IDM or RED algorithm.
Output: Bq , Dq

1: Initialize Bq = wq , Dq = 0, Port = 100
2: AvgQq = wq ∗ tq

3: Sum =
∑7

q=5(AvgQq ∗ cq)
1
2

4: if tq ≤ Tq then //Lines 4∼6, use Eqs. (9)∼(11) to reason

5: Bq = Port ∗ (AvgQq ∗ cq)
1
2 /Sum //calculate the new bandwidth Bq

6: Dq = Sum ∗ (AvgQq/cq)
1
2 /Port //calculate the new delay Dq

7: else
8: notify the administrator to adjust Tq

9: end if

In Algorithm 1, Bq is sent to the switch, and Dq is fed back to the adminis-
trator. The complexity of Algorithm 1 is O(1).



538 Y. Shi et al.

Global QoS Control Strategy. We use Uj to represent the delay requirements
proposed by subscriber j. There is a lower delay limit ti for hop (switch) i. We
use fi to represent the queuing delay fed back by the controller where switch i
resides. For the whole path, the constraints are as follows:

∑n
i=1 Ti ≤ Uj , j = 1, 2, ...,m (12)

Ti ≥ ti, 1 ≤ i ≤ n (13)
Minimize(Uj − ∑n

i=1 Ti) (14)

T ′
i =

fiUj∑n
i=1 fi

Ti (15)

Where n is the number of hops, m is the number of subscribers of a topic.
T ′
i is the new delay constraint, Ti is the last one. We use the best adaptation

principle to adjust the bandwidth, as shown in Eq. (14). If it has a solution, the
administrator will take Ti as the Tq of node i, and send it to the controller. If no
solution, the administrator will notify the subscriber by controller to resubmit a
new one. The administrator recalculates T ′

i of each switch according to Eq. (15).
The global QoS control strategy is shown in Algorithm2. The complexity of

Algorithm 2 is O(n).

Algorithm 2. Dynamic Threshold Calculation Algorithm
Input: CurrentDelay, LastDelayConstraint, UserDelay, Path, Priority, ConstraintTable
Output: Res //the new delay constraint
1: Initialize Res = 0, temp = 0
2: for Switch in Path do //calculate the sum of the last delay constraint on the path
3: Con = ConstraintTable.get(Switch).get(Priority)
4: temp = temp + Con
5: end for
6: Res = CurrentDelay ∗ UserDelay ∗ temp/LastDelayConstraint

This strategy makes full use of the administrator’s characteristics which can
control the global network. In this way, the delay of the entire path can satisfy
the user needs, realizing the SDN-like topic-based differentiated services.

6 Performance Evaluation

Experiment Setup. We use three SDN-enabled physical switches and several
PCs to setup the experiment topology as shown in Fig. 3. Each OpenDayLight
controller, switches and some hosts form a cluster such as G1. The switch model
is Pica8-p3290, the bandwidth of each switch port is 100 Mb/s.



Providing Differentiated Services in SDN-like Pub/Sub 539

Control Path
Data Path

P1

S1 S2 S3

SW1 SW2 SW3

C1 C2 C3

Controller: C1, C2, C3
Switch: SW1, SW2, SW3
Publisher: P1
Subscriber: S1, S2, S3
Group: G1, G2, G3

Administrator

G1 G2 G3

Group

Fig. 3. Experiment topology

Queuing Delay Prediction Methods
Comparison. In this experiment, we set
the bandwidths of queue 5, 6 and 7 are
10 Mb/s, 30 Mb/s and 60 Mb/s, respec-
tively. For each queue we run three queu-
ing delay prediction methods. The packet
size is 1 KB. The experimental results
about queue 5 are shown in Fig. 4. We
can conclude that the two new methods
are both better than the RED method,
and XGBoost is better than IDM, so we
choose the XGBoost method for the follow-
ing experiments.

Local Queue Bandwidth Adjustment Algorithm Verification. For each
combination of three priority queues, we compare the delay and packet loss rate
under different frequencies of sending packets. The experimental results about
one queue congestion are shown in Fig. 5. The bandwidth of queue 7 is 60 Mb/s
before adjustment. When the frequency is between 5000 and 10000, queue 7
starts congestion, the delay remains at 125 milliseconds. After the adjustment,
the queue starts becoming congested when the frequency is between 10000 and
20000, the delay remains at 83 milliseconds, the packet loss rate drops signif-
icantly and the bandwidth of this queue is 88 Mb/s. The data show that this
algorithm is effective.

 0

 2

 4

 6

 8

 10

 12

1000 3000 5000 10000 20000

D
el

ay
 (s

)

Number of Packets Sent Per Second

Real
RED
IDM
XGBoost

Fig. 4. Prediction methods comparison

 0

 20

 40

 60

 80

 100

 120

 140

1000 3000 5000 10000 20000
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

D
el

ay
 (m

s)

Pa
ck

et
 L

os
s 

R
at

e

Number of Packets Sent Per Second

Q7_Delay_No
Q7_Delay_Adjust
Q7_Loss_No
Q7_Loss_Adjust

Fig. 5. Local queue bandwidth adjustment

7 Conclusion

We propose an effective machine learning method using the XGBoost model to
predict the queuing delay of switches. Experiments show that it is better than
IDM and the traditional RED method. We also present an SDN-like pub/sub



540 Y. Shi et al.

system architecture and a two-layer queue management mechanism based on user
requirements to provide differentiated IoT services. Experimental results show
that our solution is effective. However, we only use three OpenFlow physical
switches to do the experiments due to their high costs, therefore it is difficult to
involve routing problems. In the future, we will try to solve these problems. On
the other hand, we can combine the local queue bandwidth adjustment algorithm
and routing algorithms to improve the QoS of pub/sub systems.

Acknowledgement. This research is supported by the National Key Research and
Development Program of China (No. 2018YFB1003800), the State Scholarship Fund
of China Scholarship Council (No. 201706470069), China Postdoctoral Science Foun-
dation (No. 2017M620617). The authors would like to thank Geoffrey Elliott at the
University of Toronto and the anonymous reviewers for reviewing this manuscript.

References

1. Bartholomew, D.: Time series analysis forecasting and control. J. Oper. Res. Soc.
22(2), 199–201 (1971)

2. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 785–794. ACM (2016)

3. Tariq, M.A., Koldehofe, B., Koch, G.G., Khan, I., Rothermel, K.: Meeting
subscriber-defined QoS constraints in publish/subscribe systems. Concurr. Com-
put.: Pract. Exp. 23(17), 2140–2153 (2011)

4. Wang, Y., Zhang, Y., Chen, J.: Pursuing differentiated services in a SDN-based IoT-
oriented pub/sub system. In: 2017 IEEE International Conference on Web Services
(ICWS), pp. 906–909. IEEE (2017)

5. Zhang, K., Jacobsen, H.A.: SDN-like: the next generation of pub/sub. arXiv preprint
arXiv:1308.0056 (2013)

http://arxiv.org/abs/1308.0056

	Using Machine Learning to Provide Differentiated Services in SDN-like Publish/Subscribe Systems for IoT
	1 Introduction
	2 Preliminaries
	3 SDN-like Pub/Sub System Architecture
	4 Queuing Delay Prediction Using XGBoost
	5 Two-Layer Queue Management Mechanism Based on User Requirements
	6 Performance Evaluation
	7 Conclusion
	References




