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Abstract. We present heuristics that help to identify suitable
consumer-oriented parts of enterprise systems which could be re-
engineered as microservices. Our approach assesses the key structural
and behavioural properties common to both enterprise and microser-
vice systems, as needed to guide a microservices discovery process and
coherently assess restructuring recommendations. Building upon existing
business object and system structural definitions, we present heuristics
for two fundamental areas of microservice discovery, namely function
splitting based on object subtypes (i.e., the lowest granularity of soft-
ware based on structural properties) and functional splitting based on
common execution fragments across software (i.e., the lowest granularity
of software based on behavioural properties). A prototype analysis tool
was developed based on the defined heuristics and experiments show that
it can identify microservice designs which support multiple microservice
characteristics, such as high cohesion, low coupling, high scalability, high
availability, and processing efficiency while preserving coherent features
of enterprise systems. In particular, we illustrate the usefulness of this
new approach by conducting a case study based on customer manage-
ment systems: SugarCRM and ChurchCRM.

Keywords: Microservice discovery · System reengineering
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1 Introduction

Microservices have emerged as the latest style of service-based software allowing
systems to be distributed through the cloud as fine-grained components, typi-
cally with individual operations, in contrast to services under a Service-Oriented
Architecture (SOA) which include all logically related operations [1]. As such,
microservices allow specific parts of systems and the business processes they
support, down to individual tasks, to be scaled up and replicated through the
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cloud, and be flexibly composed in Web, mobile computing, and Internet-of-
Things (IoT) applications. These benefits originally led Netflix, and now Twit-
ter, eBay, Amazon and other Internet players, to develop novel architectures for
software solutions as microservices. Nonetheless, microservices have so far not
been adopted for the dominant form of software in businesses, namely enterprise
systems, limiting such systems’ evolution and their exploitation of the full ben-
efits of cloud-enabled platforms such as Google Cloud, Amazon AWS and IoT
[2].

Enterprise systems, such as enterprise resource planning (ERP), customer
relationship management (CRM) and supply chain management are large and
complex, and contain complex business processes encoded in application logic
managing business objects (BOs), in typically many-to-many relationships [3].
Restructuring enterprise systems as microservices is technically cumbersome,
requiring tedious search and identification of suitable parts of the system to
restructure, program code rewrites, and integration of the newly developed
microservices with the ‘backend’ enterprise systems. This is a costly and error-
prone task for developers, because enterprise systems have millions of lines of
code and thousands of BOs they manage, entailing a multitude of functional
dependencies, in and across many software packages and modules. In addition,
microservices are the most fine-grained and loosely-coupled form of software
components upon which to restructure large-scale enterprise systems. This leads
to major uncertainties about the best way to split enterprise systems functions as
microservices, to achieve high scalability and availability and low system laten-
cies through the cloud, while attaining high cohesion and low coupling between
software components.

Automated software re-engineering techniques have been proposed to
improve the efficiency of transforming legacy applications, addressing specifically
cohesion and coupling of software packages and components using static analy-
sis techniques that focus on source code and dynamic analysis techniques that
focus on software execution recorded in system logs. Even though these analyses
proposed to improve software search and metrics, studies show that the suc-
cess rate of software re-modularisation techniques, especially for large systems,
remains low [4]. The key stumbling blocks are the limited insights available from
syntactic structures of software code for profiling software dependencies and not
identifying the semantics available through the business object relationships [5].

Enterprise systems can provide enriched semantic insights, available through
the BOs that they manage which influence the software structure and the pro-
cesses they support. For instance, an order-to-cash process in SAP ERP is sup-
ported through functions of software components: multiple sales orders, deliveries
shared across different customers, shared containers in transportation carriers,
and multiple invoices and payments. To support this process, multiple functions
are invoked asynchronously, reflecting BO relationship types and cardinalities,
and are seen through cross-service interactions, correlations, and data payloads
[6]. Such insights provided by BO relationships are promising for improving the
feasibility of automated discovery applications. As examples, Pérez-Castillo et
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al. [7] used transitive closures of strong BO dependencies derived from databases
to recommend software functions hierarchies, while Lu et al. [8] demonstrated
process discovery using SAP ERP logs based on BOs.

This paper presents discovery techniques that help to identify suitable
consumer-oriented parts of enterprise systems which could be re-engineered as
microservices with desired characteristics such as high cohesion, low coupling,
high scalability, high availability and high processing efficiency. It does so by
providing an abstraction of the systems architecture, using key structural and
behavioural properties common to both enterprise and microservices systems,
considered essential to guide microservices discovery processes and coherently
assess their potential restructuring. The structural properties address the func-
tional composition of software, namely functions and their BO Create-Read-
Update-Delete (CRUD) operations, while behavioural properties focus on system
executions, at the level of operation invocations, reflecting single-entry-single-
exit sequences characteristic of these systems. This, in principle, allows enterprise
systems to be analysed at different units of structural and behavioural granular-
ity, and the resulting restructure recommendations to be conveniently assessed
for preservation of structural and behavioural properties. This paper addresses
two fundamental areas of microservice discovery, namely function-splitting based
on object subtypes (i.e., the lowest granularity of software based on structural
properties) and functional splitting based on common execution fragments across
software (i.e., the lowest granularity of software based on behavioural proper-
ties). This, we argue, provides a solid basis for future development of further
microservices discovery heuristics.

The remainder of the paper is structured as follows. Section 2 presents struc-
tural and behavioural properties of software systems, while Section 3 exploits
these properties to propose heuristics for discovering microservises in enterprise
systems. Section 4 discusses an implementation and validation of the proposed
heuristics. Related work is summarized in Section 5. The paper closes with a
conclusion.

2 Structural and Behavioural Properties of Enterprise
and Microservice Systems

This section describes the essential properties of a target system architecture that
comprise an enterprise system (ES) and a microservice (MS) system, which is
depicted in Fig. 1. This architecture will be used in our MS discovery approach
(detailed in Sect. 3). The architecture reflects a unified software structure for
both an ES and MS system, since a proper system migration from an ES to MS
system is an incremental process in which the most prominent components are
extracted and remodularized as MSs first [1]. Such remodularized MSs run in a
cloud setting and are integrated with the ‘backend’ enterprise system as depicted
in the Fig. 1.

The software structure of an ES (e.g., an ERP system) consists of a set of
self-contained modules (e.g., software components) drawn from different subsys-
tems (e.g., production management), deployed on a specific execution platform.
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Fig. 1. Architecture of enterprise and microservices systems.

Modules consist of a set of functions (e.g., software classes) and each function
consists of a number of operations (e.g., methods) aimed at manipulating BOs
through CRUD operations which typically have database access logic or data
processing logic applied to data stored in program variables and constants. The
data stored in a centralized database associated with a deployed ES relates to
BOs which process data resulting from business process executions supported
through functions (such as transactions).

MSs are remodularized and potentially extended parts or functions of ESs,
supporting consumer applications running in cloud applications. Since MSs are
functionally isolated and loosely-coupled parts connected to each other, much
like the components of a distributed system, they tend to concern individual BOs,
locally managed through a database. The managed data of MSs is synchronized
at discrete intervals with similar MS instances and with the backend ES. One
or more MSs can run in an execution environment known as a cloud container,
configured for specific execution characteristics, such as scalability or availability
applying to all the MSs of the container.

Despite structural differences, the behaviour of an ES and an MS system
is based on the invocation of operations, in well-defined processing sequences
reflecting the relationships of BOs they manipulate. For example, the creation of
a ‘purchase order’ will result in the invocation of functions involving the creation
of ‘line items’ reflecting a strict containment of objects. Similarly, processing
sequences between ‘Shipper’ and ‘Shipping order’ reflect weak containment while
processing sequences between ‘leads’ and ‘campaigns’ reflect an association. In
addition, normalization of a BO can result in additional process sequences. For
example, the creation of a ‘shipment’ BO will result in an invocation of a function
related to different shipments subtypes such as ‘ground home delivery shipment’
and ‘intra UAESO shipment’ based on the operational parameters provided at
run time. These different execution sequences of operations reflect a set of single-
entry-single-exit (SESE) regions [9] in an ES’s executions.
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Although an MS system executes in a manner similar to an ES, there are spe-
cific characteristics applicable only to an MS. Generally MSs run as distributed
systems which are deployed through different containers that help the MS system
to achieve high scalability and availability while executing services in an asyn-
chronous manner and managing security through configurations of API gateways
[1]. Scalability can be defined as allocation and de-allocation of the resources to
containers on demand according to the configuration properties. Such configura-
tion properties include load balancing and resource allocation policies optimizing
the resources within a container allowing it to provide high scalability at lower
cost. Furthermore, the configuration properties define circuit breaker threshold
values for each MS which resides in a container, which assures that a request is
redirected to another MS if it did not get a response from the initially accessed
MS within the threshold time period resulting in high availability. Since there
are multiple MSs in a single container, it can process multiple client requests in
an asynchronous manner while aligning with the system requirements of the ES.
All the MSs communicate through adapters which synchronize with the database
system which resides in the legacy ES and this helps to achieve consistency
among all the microservices which are distributed among multiple containers.
Finally, each MS is developed in order to provide a specific functionality to the
end user or the system, which makes them highly cohesive and loosely coupled
services. This understanding leads us to the following formal characterization of
the environment.

Let I and O be a universe of input types and output types, respectively.
Let OP, T and B be, respectively, a universe of operations, database tables, and
business objects. Finally, let β be a binary relation on B such that β+ is irreflex-
ive1. Relation β defines a subtype relation on business objects, i.e., for every
(b1, b2) ∈ β+ we say that b2 is a subtype of b1. As proposed in this paper, tech-
niques for the discovery of microservices rely on abstractions of ESs, as defined
below.

The data related BOs in ESs are disseminated through several database
tables.

Definition 2.1 (Business Object)
A business object b is characterized by a collection of database tables, i.e., b ⊆ T.

�

The BOs in ESs have complex relationships with the operations which perform
CRUD processes on them. Such operations are encapsulated in different functions
of ESs and MSs.

Definition 2.2 (Operation)
An operation op is a triple (I,O, T ), where I ∈ I

∗ is a sequence of inputs, O ∈ O
∗

is a sequence of outputs, and T ⊆ T is a set of database tables.2 �
1 Given a binary relation α, by α+ we denote the transitive closure of α.
2 Given a set A, by A∗ we denote the set of all finite sequences that can be generated

by concatenating elements of A.
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An ES can be seen as a finite automaton with operations as labels.

Definition 2.3 (Enterprise system).
An enterprise system is a 5-tuple (Q,Λ, δ, q0, A), where:

◦ Q is a finite nonempty set of states,
◦ Λ is a set of operations, such that Q and Λ are disjoint,
◦ δ : Q × (Λ ∪ {τ}) → P(Q) is the transition function, where τ a is a special
silent operation such that τ �∈ Q ∪ Λ,
◦ q0 ∈ Q is the start state, and
◦ A ⊆ Q is the set of accept states.3 �

Let C and M be a universe of containers and microservices, respectively. Let
S be an enterprise system. By SESE (S), we denote the set of all (generalized)
SESE fragments of S, cf. [9]; clearly, one can interpret an ES as a workflow graph
with vertices defined by its states and a flow relation defined by its transition
function. Each SESE fragment of an ES induces a function, or a call graph, i.e.,
a subgraph of ES. We abstract a function as a triple (I,O,OP), where I and O
are sequences of inputs and outputs, respectively, and OP is a set of operations.
For our purposes, we define a MSs system as follows.

Definition 2.4 (Microservices System). A microservices system of an enter-
prise system S = (Q,Λ, δ, q0, A) is a 5-tuple (S,C,M, σ, μ), where:

◦ C ⊆ C is a set of containers,
◦ M ⊆ M is a set of microservices,
◦ σ : C → P(M) \ ∅ is a deployment function that maps each container c ∈ C
onto a non-empty set of microservices σ(c) that are deployed on c, and
◦ μ : M → P(SESE (S )) \ ∅ is a microservice definition function that maps each
microservice m ∈ M onto a non-empty set of SESE fragments, a.k.a functions,
μ(m) of S, such that:

– No two microservices are defined using the same function, i.e.,
∀m1∈M ∀m2∈M : (m1 �= m2) ⇒ ((μ(m1) ∩ μ(m2)) = ∅), and

– Every two functions used to define the microservices in M are either disjoint,
i.e., do not share an edge, or are in a subgraph relation. �

Given an enterprise system S, (S, {c}, {m}, {(c, {m})}, {(m, {S})}), where c ∈ C

and m ∈ M, is its elementary microservices system, or the elementary enterprise
and microservices architecture induced by S.

3 Automated Microservice Discovery

As described in Sect. 2, the behaviour of an ES and an MS system is based on
the invocation of functions which consist of well-defined sequences of operations
governed by BO relationships. Such sequences illustrate a particular execution
pattern based on the structure and behaviour of an organization. Therefore,
we argue that a proper analysis of these sequences of operations will help to
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Fig. 2. Patterns of system executions and BO relationships.

derive prominent microserviceable components. This assumption leads us to two
heuristics which assist in MS discovery.

As an example, assume that an ES has three hypothetical processing
sequences, as depicted in Fig. 2, in which each node of the sequences represents a
system state after performing a CRUD operation. These states are linked to the
BOs on which different CRUD operations were performed. Figure 2(a) and (b)
capture the same execution order dependencies between states ‘A’, ‘B’, ‘C’, ‘D’,
‘E’, ‘F’, and ‘G’. Furthermore, the overlap between the execution patterns is
high, i.e., more than 80%, which emphasizes that CRUD operations were per-
formed on the same BOs. For instance, the campaign management module in
SugarCRM describes different types of publicity campaigns, such as newsletter,
email, and non-email. The execution paths and the BOs they execute upon are
similar. However, the BO attributes they use in the execution processes are often
different. This execution behaviour is explicit because of the structural splitting
of objects at the BO level, as described by Halpin and Morgan [10]. To address
this phenomenon, we define Heuristic 1.

Heuristic 1 (Subtype). Given an enterprise system S, a subtype relation exists
between a parent call graph x = (I,O,OP) ∈ SESE (S ) and a child call graph
x′ = (I ′, O′,OP ′) ∈ SESE (S ), iff I ′ ⊆ I, OP ′ ⊆ OP, and B′ ⊆ B, where B′

and B are the BOs manipulated by OP ′ and OP , respectively. To ensure that
the call graphs execute on the same BOs, we require that 80% of the states of
the parent appear in the child.

In addition, some execution sequences can occur often when executing a soft-
ware system. As an example, the execution pattern ‘A’, ‘B’, ‘D’, ‘F’, ‘G’ occurs
in Fig. 2(a), (b), and (c). This phenomenon depends on the functional relation-
ships that occur during execution time. For example, ‘B’ precedes ‘D’ in every
execution because, for instance, the data in ‘B’ is required for the execution
of ‘D’. In the functional structure level this can be described as a ‘has a rela-
tionship’ property, in which a class object of ‘D’ is referenced inside ‘B’. Such

3 Given a set A, by P(A), we denote the powerset of A.
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functional structure emphasizes that the same behaviour should be preserved in
all the system executions. To address this issue, we define Heuristic 2.

Heuristic 2 (Common Subgraph). Given an enterprise system S, a common
subgraph of two call graphs x, x′ ∈ SESE (S ) is a call graph x′′ ∈ SESE (S ), such
that x′′ ⊆ x and x′′ ⊆ x′.

A common subgraph which captures frequent executions can be used as a basis
for defining a microservice. This heuristic can be generalized to subgraphs com-
mon to multiple call graphs. Intuitively, choosing smaller common subgraphs
produces smaller microservices which helps to achieve higher scalability. On the
other hand, choosing larger subgraphs produces larger microservices which helps
reduce communication overheads and improve system efficiency.

Heuristics 1 and 2 can guide the discovery of microservices that potentially
support multiple microservice characteristics, such as high cohesion, low cou-
pling, high scalability, availability, and processing efficiency, while preserving
coherent features of enterprise systems. In what follows, this claim gets verified.

3.1 Discovery Process

Our microservice discovery and recommendation process based upon the above
heuristics consists of two components, i.e., a Business Object Analyser (BOA)
and a System Dynamic Analyser (SDA), as depicted in Fig. 3.

Since MSs are focused around accessing and transferring states of BOs, or
partitions of BOs, in the system [11], it is important to identify the BOs in a
given ES. Therefore, the BOA is comprised of a System Operation Extraction
Model (SOEM) and a Business Object Derivation Model (BODM). The SOEM
evaluates all the SQL queries to identify the relationships between database
tables, while the BODM derives the BOs based on the identified relationships
and data similarities, as described by Nooijen et al. [12].

System
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Fig. 3. An overview of our microservice discovery and recommendation process.
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The BOs identified by the BOA are provided as input to the SDA along
with call graphs of the ES. The graph clustering and analysis model in the
SDA identifies the Frequent Execution Patterns (FEP) in the provided set of
SESE (S ). These FEPs get evaluated against the aforementioned heuristics and
classified into different categories, as described in Sect. 3.2. The categorized pat-
terns are evaluated by BO relationship analysis and a SESE derivation model.
The SESE derivation model identifies the BOs which are related to each node in
the extracted graph pattern and the SESE regions related to each BO. Finally,
the Microservice Recommendation Interface (MRI), provides different configu-
ration models for MSs by evaluating the results of the system dynamic analysis
model. Due to space limits, this paper only addresses the SDA and the MRI,
which analyse the system execution patterns and recommend MS configuration
models.

3.2 Microservice Discovery Algorithms

Given a set of call graphs of a legacy system, like the ones shown in Fig. 2, the
SDA and MRI derive sets of MS recommendations based on Heuristics 1 and 2
using Algorithms 1 and 2. Algorithm 1 derives a set of subgraphs in the given
set of call graphs of an ES, while Algorithm2 analyses the subgraphs to identify
functions which operate on single BOs to provide MS migration recommenda-
tions.

Algorithm 1 comprises four steps. The first step involves function
GRAPHSUMMARY , which computes the set of adjacency matrices MT of the
call graphs SESE (S ) (line 1). Each adjacency matrix is generated in two steps.
First, the function constructs the set of all distinct states of the graphs. For
example, for the three call graphs in Fig. 2, this set comprises states ‘A’, ‘B’,
‘C’, ‘D’, ‘E’, ‘F’, ‘G’, and ‘H’. Then, for each call graph, the function creates
a matrix mt ∈ MT of size N × N , where N is the number of distinct states
(for the graphs in Fig. 2, the number of distinct states is eight). In a matrix
mt ∈ MT , a transition between two states q and q′ of the corresponding call
graph is represented by ‘1’ and the absence of a transition is represented by ‘0’.

The second step of Algorithm 1 constructs two matrices, the Augmented
Adjacency Matrix (AAM) mta and Augmented Graph Matrix (AGM) mtg,
which are of size N ×N (lines 3–10). At the beginning, all the values of mta are
initialized to ‘0’ and all the values of mtg are initialized to the empty set. Then,
the algorithm iterates over adjacency matrices mtk ∈ MT to compute statistics
on transitions. The indices of the graphs that contain a transition are recorded
in matrix mtg and the number of graphs that contain the transition gets stored
in matrix mta. The AAM and AGM generated for the call graphs in Fig. 2 are
shown in Fig. 4. In Fig. 4(a), the value in the AAM row ‘A’, column ‘B’ is ‘3’
because all the three call graphs depicted in Fig. 2 have a transition (an edge)
from node ‘A’ to node ‘B’. Similarly, in Fig. 4(b), the value in the AGM row ‘A’,
column ‘B’ encodes the graphs that contain the corresponding transition. Since
the transition is in all the three call graphs, the value has been set to ‘1’, ‘2’, ‘3’.
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Algorithm 1. Calculate AAM and AGM
Require: An enterprise system S.
1: MT = {mt1 , . . . ,mtn} := GRAPHSUMMARY (SESE(S)) //Generate the summary matrix
2: /∗ Iterate through each mtk in MT ∗/
3: for each k ∈ [1 .. n] do
4: for each i ∈ [0 .. N − 1], where N is the number of distinct states in SESE(S) do
5: for each j ∈ [0 .. N − 1] do
6: mta[i][j] := mta[i][j] + mtk[i][j]
7: mtg[i][j] := mtg[i][j] ∪ {k}
8: end for
9: end for
10: end for
11: Sub = 〈sub0, . . . , subm〉 := IDENTIFYSUBGRAPHS(mta,mtg) //Get common subgraphs
12: for each i ∈ [0 ..m] do
13: parents := {mt ∈ MT | subi is a subgraph of mt}
14: /∗ Record the similarity value for subgraph subi in the Sim list ∗/
15: Simi := similarity(subi, parents)
16: end for
17: return (Sub, Sim)

In the third step of Algorithm1 the generated matrices mta and mtg are
passed as input to the IDENTIFYSUBGRAPHS function which computes the
adjacency matrices of the common subgraphs Sub of the call graphs (line 11).

A B C D E F G H A B C D E F G H
A 0 3 0 0 0 0 0 0 A ∅ 1,2,3 ∅ ∅ ∅ ∅ ∅ ∅
B 0 0 2 3 0 0 0 0 B ∅ ∅ 1,2 1,2,3 ∅ ∅ ∅ ∅
C 0 0 0 0 2 2 0 0 C ∅ ∅ ∅ 0 1,2 1,2 ∅ ∅
D 0 0 0 0 0 3 0 0 D ∅ ∅ ∅ ∅ ∅ 1,2,3 ∅ ∅
E 0 0 0 0 0 0 2 0 E ∅ ∅ ∅ ∅ ∅ ∅ 1,2 ∅
F 0 0 0 0 0 0 3 0 F ∅ ∅ ∅ ∅ ∅ ∅ 1,2,3 ∅
G 0 0 0 0 0 0 0 1 G ∅ ∅ ∅ ∅ ∅ ∅ ∅ 1
H 0 0 0 0 0 0 0 0 H ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

(a) AAM (b) AGM

Fig. 4. Intermediate matrices used by Algorithm 1 computed for the call graphs in
Fig. 2.

In the fourth step, the algorithm iterates over subgraphs in Sub and measures
the similarity Simi between subgraph subi and all its parent graphs (lines 12–
16). The similarity is identified as the ratio of the number of nodes in subi to the
number of distinct nodes in all the parent graphs. Finally, the algorithm returns
the identified common subgraphs and calculated similarity values (line 17). If a
similarity value is greater than 0.8 for a particular subgraph, we identify that
the subgraph and its parent call graphs satisfy Heuristic 1.

The subgraphs which are common to all the call graphs in SESE (S ) satisfy
Heuristic 2. However, further processing is required to identify functions that
act upon single BOs. To accomplish this check, we present Algorithm 2.

Algorithm 2 consists of three steps. The first step involves identifying the
states of the input subgraphs with no more than two incident transitions, a.k.a
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Algorithm 2. Compute functions for given BOs
Require: A set of BOs B and list of graphs Sub = 〈sub0, . . . , subm〉
1: for each i ∈ [0 ..m] do
2: Q := ∅
3: for each node q in subi do
4: if q is incident to less than three edges then
5: Q := Q ∪ {q}
6: end if
7: end for
8: QSi := Q //QS is a list of sets of nodes
9: end for
10: Y := GENERATEGRAPHS(QS ,Sub)
11: Z := Y
12: for each y ∈ Y do
13: /∗ Evaluate graph y to confirm that every operation in y is connected to the same b ∈ B and

if not remove it from Z ∗/
14: if y operates on more than one BO in B then
15: Z := Z \ {y}
16: end if
17: end for
18: return Z //Each function in Z operates over a single BO

single-entry-single-exit states (lines 1–9). It is expected that the input subgraphs
are generated by Algorithm 1. The loop of lines 1–9 iterates over all the sub-
graphs, while the loop of lines 3–7 runs over all the nodes of a current subgraph
to extract and record the “SESE” states (line 5). The constructed sets of “SESE”
states get stored in list QS on line 8.

In the second step of the algorithm function GENERATEGRAPHS con-
structs connected graphs composed of the nodes in QS that are subgraphs of
the graphs in Sub, and records the result in set Y (line 10).

In the third step, the algorithm evaluates each graph y ∈ Y to verify whether
all the operations captured in y are carried out on the same BO (lines 11–17).
If the operations relate to more than one BO, the graph gets removed from set
Z, which initially is assigned to contain all the graphs in Y . The BO mapping
is achieved by evaluating each database table t associated with operations of
graph y and mapping t to the BOs that are characterized by t. If an operation,
or several operations, of y relates to database tables that characterize more than
one BO, then y gets removed from Z. At the end of the third step of Algorithm2,
set Z is composed of all the functions that operate on a single BO, and this set
is returned on line 18. Finally, the functions in set Z get recommended to the
user as possible MSs.

4 Implementation and Validation

A proper MS should provide high execution efficiency with a desirable level
of scalability and availability. Furthermore the packages and components in it
should be highly cohesive and loosely coupled [1,16]. In order to validate our MS
discovery and recommendation process provides MSs with the desirable charac-
teristics, we developed a prototype4 based on the algorithm presented in Sect. 3.2
4 https://github.com/AnuruddhaDeAlwis/Subtype.git.

https://github.com/AnuruddhaDeAlwis/Subtype.git
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and experimented on SugarCRM5 and ChurchCRM6 which is detailed in our
technical report [17].

This section only presents the details of the experiments that we conducted
using the prototype on SugarCRM, which is a customer relationship management
system that has a complex system structure with more than 8,000 source files,
600 attributes divided between 101 tables. We specifically focused on the cam-
paign management module of SugarCRM to generate the execution sequences for
our microservice discovery process. In order to cover all the user cases related to
the campaign management module, 10 different executions7 related to the cam-
paign management, such as target creation, campaign creation, and template
creation, were performed and their log data was generated using the SugarCRM
system’s log functionality. The logs were then analyzed using the process mining
tool Disco8 and 10 different call graphs were generated, all together containing
around 200 unique execution nodes. The generated call graphs and the database
tables were provided as the input to the prototype.

Discovered MSs: Based on the call graphs and database tables, the prototype
identified three subtypes of campaigns, namely newsletter, email, and non-email,
which results in functional splitting of the ES based on object subtypes (satisfy-
ing Heuristic 1). In addition, the prototype identified common sequences related
to all the executions resulting in functional splitting of the ES based on execution
fragments (satisfying Heuristic 2).

Validation Process: The validation process was conducted by implementing
the recommended MSs in Google Cloud. Each MS was hosted in Google Cloud
using a cluster of size 2 which has two virtual CPUs and a total memory of
7.5 GB. The hosted MSs were exposed through the Google Cloud kubernetes
API, allowing third party computers to access them via API calls. In order to
validate the sub-typing recommendations, we implemented three MSs simulating
newsletter, email, and non-email campaigns, and another system to simulate the
legacy campaign module which covered all the campaign sub-types. In addition,
we implemented a MS with common segments, i.e., fragments with similar states,
communicating with other MSs simulating the common subgraphs recommen-
dations given by the framework. Each MS was tested against a load of 150,000
requests and 300,000 requests generated by 10 machines simultaneously, simu-
lating the customer requests, while recording their total execution time, average
memory consumption and average disk consumption. The results are shown in
Tables 1 and 2.

Based on the results reported in Tables 1 and 2, we calculated the scala-
bility, availability, and execution efficiency of different combinations and the
results obtained are summarized in Tables 3 and 4. The scalability was calcu-
lated according to the resources usage over time as described by Tsai et al. [13].
5 https://www.sugarcrm.com/.
6 http://churchcrm.io/.
7 http://support.sugarcrm.com/Documentation/Sugar Versions/8.0/Pro/

Application Guide/.
8 https://fluxicon.com/disco/.

https://www.sugarcrm.com/
http://churchcrm.io/
http://support.sugarcrm.com/Documentation/Sugar_Versions/8.0/Pro/Application_Guide/
http://support.sugarcrm.com/Documentation/Sugar_Versions/8.0/Pro/Application_Guide/
https://fluxicon.com/disco/
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In order to determine the availability, first we calculated the time taken to pro-
cess 100 requests if a particular MS is not available. Then, we used the difference
between the total up-time and total down-time as described by Bauer et al. [14].
Efficiency gain was calculated by dividing the time taken by the legacy system
to process all requests by the time taken by each MS. Furthermore we calculated
the structural cohesion and coupling of the packages in legacy system and the
new MS systems as described by Candela et al. [4].

Table 1. Legacy system vs subtype MSs execution results.

Campaign type No. of requests Ex. time (ms) Avg mem (GB) Avg disk (GB)

Legacy 150,000 324,000 3.00375 2.09550

Legacy 300,000 741,600 3.04025 2.10050

Newsletter 150,000 201,600 2.95475 2.09150

Newsletter 300,000 396,000 3.00575 2.09975

Email 150,000 198,000 2.89075 2.09225

Email 300,000 446,400 2.97075 2.10125

Non-email 150,000 226,800 2.84550 2.09300

Non-email 300,000 432,000 2.92875 2.10125

Table 2. Legacy system vs common subgraphs MSs execution results.

System type No. of requests Ex. time (ms) Avg mem (GB) Avg disk (GB)

Legacy 150,000 399,600 3.0335 2.0915

Legacy 300,000 781,200 3.1665 2.1020

Common Seg. 150,000 194,400 2.9110 2.0926

Common Seg. 300,000 396,000 2.9905 2.1015

Table 3. Scalability, availability, and efficiency gains using subtyping.

Campaign type Scalability

[Mem]

Scalability

[Disk]

Availability

[150,000]

Availability

[300,000]

Efficiency

[150,000]

Efficiency

[300,000]

Legacy 2.652 2.626 99.856 99.918 1.000 1.000

Newsletter 1.963 1.937 99.910 99.956 1.607 1.873

Email 2.612 2.552 99.912 99.950 1.636 1.661

Non-email 1.867 1.821 99.899 99.952 1.429 1.717
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Table 4. Scalability, availability, and efficiency gains using common subgraphs.

Campaign type Scalability

[Mem]

Scalability

[Disk]

Availability

[150,000]

Availability

[300,000]

Efficiency

[150,000]

Efficiency

[300,000]

Legacy 1.9947 1.9205 99.9334 99.9667 1.0000 1.0000

Common MS 2.1314 2.0839 99.9334 99.9667 2.0556 1.9727

Table 5. Comparison of lack of cohesion and structural coupling.

System type Lack of cohesion Structural coupling

Legacy with campaign packages 104.00 17.00

MS with campaign packages 92.00 15.89

Legacy with commonality packages 55.83 18.00

MS with commonality packages 50.67 18.50

Experimental Results: According to Tsai et al. [13], the lower the number the
better the scalability. Thus, the newsletter and non-email MSs have better scala-
bility than the legacy system when considering both memory and disk usage over
time (refer to Table 3). In the email MS there is a scalability gain, even thought
it is not as significant as that of the gain in the newsletter and non-email MSs.
When considering availability we clearly observe that there is higher availability
in subtype MSs than in the legacy system. As the number of requests increased
from 150,000 to 300,000, subtype MSs were able to handle the request overload
while providing better availability than the legacy system. Most importantly,
when examining the request processing efficiency, each subtyping MS managed
to process the request at at-least 1.5 times the speed of the legacy system.

Table 4 reports that there is not much of a gain in scalability and availability
in the MS discovered and developed based on Heuristic 2 when compared with
the legacy system. In contrast, when comparing the efficiency gain, it is evident
that the common MS managed to process requests at at-least twice the acceler-
ated speed of the legacy system. Furthermore, when comparing the coupling and
cohesion values detailed in Table 5, it is evident that both campaign and com-
mon MSs attained a higher level of cohesion than the legacy system. In addition,
the campaign MS managed to achieve slightly better coupling when compared
with the legacy system even though there is a small increase in coupling in the
common MS. Similar results were obtained for the experiments conducted on
ChurchCRM’s service management module [17].

Provided Solutions: The obtained results have affirmed that MSs extracted
based on the recommendation of our prototype can provide the same services
to the users while preserving overall system behaviour and achieving higher
scalability, availability, efficiency, high cohesion, and low coupling.
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5 Related Work

Microservices have emerged as the latest style of service-based software allowing
systems to be distributed through the cloud as fine-grained components, typi-
cally with individual operations, in contrast to services under SOA which include
all logically related operations [1]. Even though microservices can support the
evolution of ERP systems by providing exploitation in cloud-enabled platforms
such as the IoT [2], the research conducted in this particular area is limited.
To the best of our knowledge there is no research related to the automation of
MS discovery in legacy systems, apart from the manual migrations achieved by
Balalaie et al. [15]. Balalaie et al. have described the complexity associated with
the system reengineering process while pointing out the importance of consider-
ing BOs and their relationships in the migration system process. Martin Fowler
emphasizes the importance of adapting BO relationships in microservices [16]
aligning with the Domain Driven Design principles.

However, the existing software re-engineering techniques do not consider the
complex relationship of BOs with their behaviours in the re-engineering pro-
cess. Furthermore, studies show that the success rate of existing software re-
modularisation techniques, especially for large systems, remains low [4]. A key
stumbling block is the limited insights available from syntactic structures of soft-
ware code for profiling software dependencies and evaluating their measurements
for coupling and cohesion metrics [5]. As such, to derive successful re-engineering
techniques, a methodology should consider the enriched semantic insights avail-
able through the BOs and functions in an ES.

In such a process, the first challenge would be identifying the BOs which
are distributed among several database tables in an ES system, and identifying
the relationships between them. Nooijen et al. [12] and Lu et al. [8] proposed
methodologies and heuristics to identify BOs based on the database schema and
information in database tables. However, according to Lu et al., the derived
BOs might not be perfect and they have to be reclustered with the help of
human expertise. A proper identification of BO relationships should consider
the behavioural aspects of the systems as described by Hull [11]. However, there
is still a gap in the area of correlating such behaviour with the underline BOs.
As such, it is important to establish novel methodologies which incorporate
both system behaviours and the business objects in the software re-engineering
process.

6 Conclusion

This paper presented two heuristics used for functional splitting of ESs based on
object subtypes and common execution fragments, while providing ground rules
for MS discovery. A prototype was developed based on the proposed heuristics
and validation was conducted by implementing the MSs recommended by the
prototype for SugarCRM and ChurchCRM. The study has demonstrated that
analysis of functions and BO CRUD operations while evaluating BO relation-
ships helps to identify efficient solutions to migrate legacy systems into MSs
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with high cohesion and low coupling while achieving better scalability, availabil-
ity, and execution efficiency. However, further analysis of BO relationships, such
as inclusive and exclusive containment should be considered to further optimize
the MS discovery process, and this will be carried out as future work.
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