
A Weighted Meta-graph Based Approach
for Mobile Application Recommendation
on Heterogeneous Information Networks

Fenfang Xie, Liang Chen(B), Yongjian Ye, Yang Liu, Zibin Zheng,
and Xiaola Lin

School of Data and Computer Science,
National Engineering Research Center of Digital Life, Sun Yat-sen University,

Guangzhou 510006, China
{xieff5,yeyj7,liuy296}@mail2.sysu.edu.cn,

{chenliang6,zhzibin,linxl}@mail.sysu.edu.cn

Abstract. Explosive growth in the number of mobile applications
(apps) makes it difficult for users to find relevant apps. Therefore, it
is an urgent task to recommend desired apps for users. Traditional
approaches focus on exploiting the context information, user’s interest,
privacy, security and other features for app recommendation. Most of
them do not consider heterogeneous information network (HIN) in the
scenario of mobile app recommendation. HIN contains rich structure and
semantic information, and it can satisfy various requirements of users
and generate better recommendation results. In this paper, we propose
a Weighted Meta-Graph based approach for app Recommendation,
called WMGRec, on HIN. Specifically, we firstly introduce the concept of
weighted meta-graph, which not only distinguishes different rating scores
to depict the subtle semantics but also utilizes meta-graph to capture
complex semantics. And then, we apply weighted meta-graph to measure
the semantic similarity between users and apps. Furthermore, we lever-
age non-negative matrix factorization on user-app similarity matrix to
obtain user latent features and app latent features. Finally, the concate-
nated user and app latent features are fed into the factorization machine
& deep neural network model to learn the higher-order interactions and
get the final prediction score. Extensive experiments conducted on two
real-world datasets validate the effectiveness of the proposed approach
compared to state-of-the-art recommendation algorithms.

Keywords: Mobile app recommendation · Meta-graph
Heterogeneous information network · Factorization
Deep neural network

1 Introduction

Mobile devices (e.g., smart phones, tablet computers) have been becoming
increasingly popular in recent years. They are gradually becoming a part of our
c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 404–420, 2018.
https://doi.org/10.1007/978-3-030-03596-9_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_29&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_29

WMGRec for Mobile App Recommendation on HIN 405

daily life for study, entertainment, social intercourse, browsing news and busi-
nesses. Mobile devices promote the explosive growth of mobile apps. It becomes
considerably difficult and time-consuming for users to find a relevant mobile app
from a huge number of mobile apps. Therefore, it is essential to help users to
locate their desired apps. Mobile app recommendation is a good choice to solve
this problem and enhance user experience.

Previous studies concentrate on considering the context information, user’s
interest, privacy, security and other features for mobile app recommendation
[2,5,8,18,21]. They usually employ collaborative filtering (CF) (e.g., item-based
CF, user-based CF and matrix factorization) methods to recommend apps to
users. Most of them do not consider the rich structure and semantic information
on HIN. HIN has been widely exploited to data mining tasks, such as similar-
ity measure, clustering, classification, link prediction and recommendation [10].
There exist multiple object types (e.g., users, mobile apps, reviews, and rat-
ing scores) and rich relations among object types (e.g., use and used by relation
between users and apps, write and written by relation between users and reviews)
in the scenario of app recommendation, which naturally constitutes an HIN.
Exploiting the rich structure and semantic information can reveal subtle rela-
tions among objects. Therefore, it will satisfy different kinds of requirements of
users and improve recommendation performance. As an important characteristic
of HIN, meta-path is usually applied to model the multiple semantic information.
HIN accomplishes traditional CF methods by building various meta-paths. For
example, if we want to recommend apps to users, we can build a simple meta-path
“User-App-User” or “User-APP-APP” and learn from this meta-path to make
generalizations. These two kinds of meta-paths achieve the user-based CF and
item-based CF methods, respectively. From HIN’s schema, we can define more
complicated meta-paths like “User-Review-Topic-Review-App”. This meta-path
defines a similarity to measure whether a user tends to like an app if his/her
reviews are similar to those written by other users for the same app. In addition,
users only use and rate a limited number of apps in the real-world. Therefore, the
user-app rating matrix is considerably sparse. As a result, the recommendation
results obtained by matrix factorization may be inaccurate. The rich structure
and semantic information on HIN can alleviate this sparsity problem.

Inspired by the significance of HIN, we prefer to apply HIN to solve our app
recommendation problem. When utilizing meta-path based similarities to app
recommendation, there exist the following two major challenges: (1) Traditional
HIN and meta-path do not consider the attribute values (the rating scores in
app recommendation) on links. Ignoring the rating scores between users and apps
may result in bad similarity discovery and cannot reveal the subtle difference.
Figure 1 shows an example, given a meta-path “User-APP-User”, if both U1 and
U2 provide a rating score as 5 to Facebook, then U1 and U2 are quite similar
due to the same preference. If U1 gives a 5 score to Facebook and U2 gives a
1 score to Facebook, then U1 and U2 may not be so similar due to the totally
different taste. But the conventional meta-path regards these two cases as the
same. Therefore, it will result in inaccurate similarity and cannot recognize the

406 F. Xie et al.

Fig. 1. Example of HIN built by mobile app dataset

subtle difference. However, in the scenario of app recommendation, this difference
is very important because it can help to more accurately capture interactions
between users and apps. It is essential to extend the conventional meta-path for
considering attribute values on links. (2) Meta-path may not be very suitable to
describe the rich structure and capture complicated semantics. Figure 1 presents
a concrete example of this kind of case. Given a meta-path “User - Review -
Topic - Review - User”, which can be used to capture users’ similarity since
both of them write reviews and mention the same topic. However, if we intend
to capture the semantic relation that U1 and U2 provide rating scores to the
same app (e.g., Facebook), and at the same time, they mention the same topic
(e.g., crashing), the meta-path fails. As a result, it is essential to find a more
suitable way to capture such complex semantics. Meta-graph [3,6,19] is a good
way to represent the above mentioned semantic relation. Meta-graph computes
similarity between homogeneous type of entities over HINs, which can capture
more complex semantics that meta-path cannot.

To alleviate the above challenges, this paper proposes a weighted meta-graph
based approach for mobile apps recommendation on HIN. Specifically, we first
describe the concept of weighted meta-graph rather than meta-path to capture
the complicated semantics. Moreover, weighted meta-graph is used to measure
the semantic similarity between users and apps through distinguishing different
rating scores. And then, we use all latent features of all meta-graphs. For each
meta-graph, we first compute the user-app similarity matrix under the guidance
of the weighted meta-graph, and then exploit non-negative matrix factorization
to obtain user latent features and app latent features. Finally, by concatenat-
ing different user latent feature and app latent feature vectors computed from
different weighted meta-graphs, we use the factorization machine & deep neural
network (DeepFM) model to learn the low- and high-order interactions between
users and apps, and to further learn the rating matrix. Experimental results on
two real-world datasets demonstrate the proposed approach outperforms other
state-of-the-art recommendation approaches.

WMGRec for Mobile App Recommendation on HIN 407

In summary, the major contributions of this paper are three folds:

– To the best of our knowledge, we are the first to introduce the concept of
weighted meta-graph. The weighted meta-graph considers rating scores on
links and capture more complex semantic similarity between users and apps.

– We propose a weighted meta-graph based approach, which not only effectively
integrates rich structure and semantic information contained in app recom-
mendation, but also captures the higher order interactions between users and
apps. Furthermore, WMGRec can satisfy different kinds of requirement of
users and improve recommendation performance.

– Empirical studies on two real-world datasets verify the effectiveness of
WMGRec. WMGRec achieves better performance than other recommenda-
tion algorithms with the help of weighted meta-graph, non-negative matrix
factorization and DeepFM.

The rest of this paper is organized as follows. Section 2 presents the proposed
approach in detail. Section 3 analyzes and discusses the experimental results
and impact of parameters. Section 4 introduces some related works. Section 5
concludes the paper and gives some future directions.

2 Weighted Meta-graph Based Mobile App
Recommendation

In this section, the details of our proposed approach are described. For simplicity,
the same definitions of HIN and the corresponding network schema in [14] are
adopted in this paper. An illustration of the HIN network schema and meta-
graphs are shown in Fig. 2(a) and (b), respectively.

2.1 Basic Concepts

Given an HIN G = (V, E) and its network schema TG = (L,Q), where V is the
node set, E is the link set, L is the node type set, Q is the link type set. We
propose a novel concept, named weighted meta-graph, to capture complex rela-
tionship between two HIN objects.

Definition 1 Weighted Meta-graph. A meta-graph D is a directed acyclic graph
with a single source node Ns (i.e., with in-degree 0) and a single target node
Nt (i.e., with out-degree 0). Formally, D = (N ,M,Ns,Nt), where N ⊆ V is a
set of nodes and M ⊆ E is a set of links. For any node x ∈ N , x ∈ L; for any
link (x, y) ∈ M, (x, y) ∈ Q. If any link (x, y) has an attribute value c on it,
where c ∈ (0, C), C ∈ R

+, the meta-graph is called a weighted meta-graph; if any
link (x, y) has no attribute value on it, the meta-graph is called an unweighted
meta-graph.

Figure 2(b) illustrates a meta-graph D3, which depicts that two users provide
rating scores to the same app, and have mentioned the same topic at the same

408 F. Xie et al.

Fig. 2. Example of HIN network schema and meta-graphs used for mobile app dataset.
T: topics extracted from reviews; R: reviews; U: users; A: apps.

time. However, a meta-path fails to capture such complex relationship. A meta-
graph is convenient to express this kind of relationship. A meta-path (e.g., D1

or D2 in Fig. 2(b)) is a special case of a meta-graph. Therefore, we call it meta-
graph uniformly in the following. In addition, an unweighted meta-graph cannot
capture the subtle deference of users’ preference due to lack of considering rating
scores on links.

Definition 2 Atomic Meta-graph. If all attribute values in a weighted meta-graph
take a specific value, the meta-graph is called an atomic meta-graph. A weighted
meta-graph is a group of atomic meta-graphs which contains all atomic meta-
graphs that satisfy the constraint C.

The attribute value c in our datasets is an integer which is in the range
of [1, 5]. A toy example is shown in Fig. 3, “U 1A 1U” and “U4A 4U” are two
different atomic meta-graphs. The weighted meta-graph U iA j U|i = j is a group
of five atomic meta-graphs (e.g., U 2A 2U, U 3A 3U and U5A 5U).

Definition 3 Commuting Matrix. A commuting matrix M for a meta-graph D =
(L1L2...Ll) is defined as M = WL1L2 ◦ WL2L3 ◦ ... ◦ WLl−1Ll

, where WLiLj
is

the adjacency matrix between type Li and type Lj . ◦ can be two operations
(Hadamard product “�” and multiplication “·”).

To better comprehend the computation of commuting matrix, we take the
meta-graphs in Fig. 2(b) for example. For meta-graph D1, the commuting matrix
MD1 is computed as MD1 = WUA · WAU . For meta-graph D3, the computation
of the commuting matrix MD3 should be divided into four steps:

– Compute t1: t1 = WRA · WAR,
– Compute t2: t2 = WRT · WTR,
– Compute t3: t3 = t1 � t2,
– Compute MD3 : MD3 = WUR · t3 · WRU .

WMGRec for Mobile App Recommendation on HIN 409

2.2 Meta-graph Based Similarity

There are plenty of similarity measurements [16] to compute the similarity
between two objects. Herein, we exploit the most widely used similarity mea-
surement in HIN. Given a meta-graph D, PathSim [14] between two objects i
and j from the same type can be calculated as:

Si,j =
2Mi,j

Mi,i + Mj,j
(1)

where M is the commuting matrix for the meta-graph D, Mi,i and Mj,j are the
visibility for i and j in the network, namely, the number of meta-graphs between
themselves.

Fig. 3. A toy example for pathsim based similarity measurement on meta-graph

A toy example for PathSim based similarity measurement on unweighted
meta-graph (the upper part) and weighted meta-graph (the lower part) is pre-
sented in Fig. 3. After the process of path count (the number of path instances
between two objects), atomic meta-graph combination and normalization, the
traditional unweighted meta-graph considers that u1, u2, u3 are all similar with
each other. The weighted meta-graph draws a conclusion that only u1 and u2 are
similar due to their same taste in apps. Obviously, the result found by weighted
meta-graph is more accurate than that of unweighted meta-graph.

After obtaining the meta-graph based similarity of users, we can find the
similar users of a target user under a given meta-graph. And then, the similarity
between the target user and the app can be inferred according to his/her similar
users.

H
(l)
u,i,r =

∑

v

S(l)
u,v × Bu,i,r,

Bu,i,r = {1 Ru,i = r
0 otherwise,

(2)

410 F. Xie et al.

where S
(l)
u,v is the PathSim based similarity between user u and user v under the

meta-graph Dl. Bu,i,r is an indication function. If user u provides a rating score
r to app i, Bu,i,r is equal to 1; otherwise, it is equal to 0. H

(l)
u,i,r is the intensity

of user u rating app i with score r.
The similarity R̂(l)

u,i between user u and app i along a given meta-graph Dl

can be computed as follows:

R̂(l)
u,i =

N∑

r=1

r ×
H

(l)
u,i,r

∑N
k=1 H

(l)
u,i,k

(3)

2.3 Meta-graph Based Latent Features

By repeating the above similarity computation process to all meta-graphs, we
can obtain L different kinds of similarity matrices. We denote these similarity
matrices as R(1), . . . ,R(L). For each similarity matrix under a given meta-graph,
a non-negative matrix factorization [7] technique is applied to get the low-rank
matrix representation for users and apps. The idea of matrix factorization is that
a matrix is approximately equal to the multiplication of two low-rank matrices.
Mathematically,

R̂ ≈ U · A
s.t. U ≥0,A ≥ 0

(4)

By minimizing the following equation, the low-rank representation of users
and apps can be obtained:

min
U,A

1
2
‖I(R − R̂)‖2F +

λ1

2
‖U‖2F +

λ2

2
‖A‖2F (5)

where I is the indicator matrix. If the rating of user i on app j is observed, Iij

is 1; otherwise, Iij is 0. λ1 and λ2 are the hyper-parameters that control the
influence of the regularization term to avoid overfitting. ‖·‖F is the Frobenius
norm.

After factorizing all similarity matrices R(1), . . . ,R(L), we can obtain L types
of low-rank representation matrix pairs (U (1),A(1)), . . . , (U (L),A(L)). For each
pair of low-rank representation matrix U (l) and A(l), we concatenate the ith row
of U (l) (e.g., u

(l)
i) and the jth row of A(l) (e.g., a

(l)
j). Taking all meta-graphs into

consideration, we can finally get a sample or a feature vector xn like this:

xn = u
(1)
i , . . . , u

(l)
i , . . . , u

(L)
i︸ ︷︷ ︸

L×K

, a
(1)
j , . . . , a

(l)
j , . . . , a

(L)
j︸ ︷︷ ︸

L×K

(6)

where the value of i is from 1 to the number of users, the value of j is from 1 to
the number of apps. K is the number of latent factors. It could be different for
different matrices, but we keep it the same for simplicity.

WMGRec for Mobile App Recommendation on HIN 411

2.4 WMGRec Model

After the above calculation, we can get the concatenated feature vectors of sam-
ples. These features vectors are fed into DeepFM model to learn the low- and
high-order interactions between users and apps.

Fig. 4. The architecture of DeepFM

The architecture of DeepFM [4] is introduced in Fig. 4. The DeepFM model is
divided into two components: FM (factorization machine) component and DNN
(deep neural network) component. The two components share the same input
feature vectors. The FM component is an improved factorization machine [9].
As aforementioned, we have obtained the feature vectors. These feature vectors
are firstly fed into the embedding layer. The embedding techniques in neural
network have the advantage of reducing the dimensionality of feature vectors.
Secondly, the embedding vectors are put into the FM layer to learn the low-order
interactions between users and apps. FM is a good way to deal with sparsity data
and can be calculated in linear time. The output of FM component is formulated
as follows:

ŷ(X) = w0 +
f∑

i=1

wixi +
f−1∑

i=1

f∑

j=i+1

< Vi, Vj > xixj (7)

where, f is the length of the feature vector. w0 is the global bias, wi is the weight
of the ith variable. A row Vi within V ∈ R

f×d describes the ith variable with
d factors. X is the feature vector, which is concatenated by user latent features
and app latent features.

The DNN component is a traditional feed-forward neural network in which
data flows from the input layer to the output layer without looping back. DNN
can model complex non-linear relationships. For DNN component, embedding

412 F. Xie et al.

vectors are put into one or more hidden layer to learn the high-order interactions
between users and apps. The output of the embedding layer can be formulated
as:

z(0) = [e1, e2, ..., em] (8)

where ei is the embedding of the ith field and m is the number of fields. Then,
z(0) is fed into the DNN, and the forward process is:

z(q+1) = σ(W(q)z(q) + b(q)) (9)

where q is the layer depth and σ is an activation function. z(q),W(q), b(q) are the
output, model weight, and bias of the qth layer, respectively.

Through a series of hidden layers, the output of the final hidden layer is fed
into the output units. An activation function is used to acquire the output of
the DNN component.

yDNN = σ(W |Q|+1zQ + b|Q|+1) (10)

where |Q| is the number of hidden layers.
By combing the output of FM component and DNN component, all parame-

ters (e.g., including wi, Vi, and the network parameters W(q), b(q)) can be trained
jointly. The predicted rating score ŷ is calculated as follows:

ŷ = h(yFM + yDNN) (11)

where yFM is the output of FM component, and yDNN is the output of deep com-
ponent, and h is a linear regression. Note that we modify the original DeepFM
model (i.e., a classification task model) to fit our regression task (i.e., rating
prediction) by leveraging the linear regression in the output units.

3 Empirical Study

In this section, we first describe the two mobile app datasets. Then, we introduce
the evaluation metrics for performance comparison. Moreover, we compare our
WMGRec model with other state-of-the-art models. Finally, we study impact of
parameters on performance.

3.1 Dataset Description

We conduct experiments on two datasets. One dataset is crawled from a famous
app market Apple App Store. This dataset includes 12688 users and 10556 apps
with 335744 app ratings ranging from 1 to 5. The other dataset is crawled from
Google Play, provided by [8]. This dataset includes 14379 users and 25515 apps
with 330212 app ratings ranging from 1 to 5. The density (#Ratings

#Users×#Apps) of
Apple App Store and Google Play dataset are 0.2507% and 0.09%, respectively.
Both of the datasets also collect the reviews of users on apps. The detailed
statistics of two datasets are given in Table 1.

WMGRec for Mobile App Recommendation on HIN 413

Table 1. Statistics of the datasets

Dataset Relation of (A-B) Number of A Number of B Number of (A-B)

Apple App Store User-app 12688 10556 335744

User-review 12688 335744 335744

Review-app 335744 10556 335744

Review-topic 335744 4 973499

Google Play User-app 14379 25515 330212

User-review 14379 330212 330212

Review-app 330212 25515 330212

Review-topic 330212 4 288927

3.2 Evaluation Metrics

In the following experiments, we use Mean Absolute Error (MAE) and Root
Mean Squared Error (RMSE) to evaluate the errors between our predicted results
and the reality outcomes [15]. MAE is given by:

MAE =

∑
(i,j)∈Γtest

|r̂ij − rij |
|Γtest|

, (12)

and RMSE is denoted as:

RMSE =

√∑
(i,j)∈Γtest

(r̂ij − rij)2

|Γtest|
. (13)

where, Γtest represents the set of all user-app pairs (i, j) in the testing set, r̂ij

represents the predicted rating score of user i on app j, while rij is the observed
rating score of user i on app j in the testing set.

3.3 Performance Comparison

To validate the effectiveness of the proposed approach, we compare WMGRec
model with the following models.

– NMF [7]. This approach employs matrix factorization to user-app rating
matrix with a constraint that the factorized matrix is positive.

– FM [9]. This approach is the traditional factorization machine. It concatenates
user id and app id as sparsity features, and learns the interactions between
users and apps to complete the user-app rating matrix.

– SemRec [12]. This approach applies weighted meta-path based similarity, and
designs different kinds of strategies to predict the rating scores of users on
apps.

– FMG [19]. This approach utilizes unweighted meta-graph based similarity
and standard matrix factorization to obtain user and app latent features.
And then, it uses factorization machine to predict the rating scores of users
on apps.

414 F. Xie et al.

Fig. 5. Experimental results of all comparison methods

We employ the meta-graphs in Fig. 2(b) whose length are not longer than 4,
since the longer meta paths are not meaningful and they fail to produce good
similarity measure [14]. We repeat the experiments five times and use the average
RMSE and MAE of five rounds as the final result. The topics are extracted
from review texts by applying LDA (Latent Dirichlet Allocation) [1] model. The
number of hidden layers is 2. The dropout in WMGRec is 0.5 and learning rate
is set as 0.001. The latent factors and embedding size of all methods are fixed
as 10 for fair. The other parameters in those comparison methods are set with
the best performances.

Experiment results of all comparison methods are shown in Fig. 5. It can be
found that the denser training data brings better performance. The reason lies in
that with more observations in the training set, more information of the whole
matrix can be obtained. This leads to more accurate predicted rating scores
of users on apps. From Fig. 5, we can see that our proposed method beats the

WMGRec for Mobile App Recommendation on HIN 415

other state-of-the-art methods under all training data density (i.e., 60%, 70%,
80% and 90%) and evaluation metrics (i.e., RMSE and MAE). Specifically, the
performance of FM is better than that of NMF due to capturing interactions
between users and apps. HIN based approaches (e.g., SemRec, FMG, WMGRec)
are better than FM due to taking advantage of rich structure and abundant
semantics. The comparison between SemRec and FMG validates the effectiveness
of meta-graph. By comparing WMGRec with FMG, it indicates considering the
rating scores on links and applying DeepFM to learn high-order interactions are
indeed helpful to improve the recommendation accuracy. Concretely, compared
with FMG, the improvement of WMGRec on Apple App Store dataset is 1.15%
to 2.05% for RMSE and 4.25% to 4.99% for MAE. In addition, the improvement
of WMGRec on Google Play datset is 0.46% to 0.88% for RMSE and 0.62% to
1.31% for MAE. The enhancement of Google Play datset is smaller than that
of Apple App Store dataset, because the density of the former is considerably
sparse. Note that SemRec achieves the best MAE when the training data density
is 90%. That’s because it’s not always possible to get the best performance
of both evaluation metrics simultaneously, when optimizing the loss function.
Moreover, we mainly optimize the RMSE evaluation metric in this paper.

3.4 Study on Parameter Impacts

In this section, we discuss the impact of some major parameters on Apple App
Store dataset. In the following experiments, we fix 80% of the whole data as the
training set and the remaining 20% as the testing set.

learning rate
(a)

0.00001 0.0001 0.001 0.01 0.1 1.0

R
M

SE

1.45

1.5

1.55

1.6

learning rate
(b)

0.00001 0.0001 0.001 0.01 0.1 1.0

M
A

E

1.2

1.25

1.3

1.35

1.4

1.45

1.5

Fig. 6. Impact of learning rate

Impact of Learning Rate. Learning rate is an important factor in machine
learning and deep learning. How to adjust the learning rate is one of the key steps
to train a model. When solving the minimum problem with gradient descent, the
gradient can be neither too large nor too small. If the learning rate is too large,
it will hinder the convergence. That is, the loss shocks near the extreme point. If

416 F. Xie et al.

the learning rate is too small, it will lead to the inability to quickly find a good
downward direction. Namely, when the number of iterations increases, the loss
keeps unchanged. In this experiment, we set learning rate from 0.00001 to 1.0.
As shown in Fig. 6, the RMSE and MAE firstly present a downward trend, and
then an upward trend. The best performance achieves when the learning rate is
set as 0.001. The result indicates that a relatively larger learning rate is helpful
to improve the recommendation accuracy.

Fig. 7. Impact of dropout

Fig. 8. Impact of embedding size

Impact of Dropout. Dropout [13] refers to a probability that each neural
network unit may be discarded from the network in the process of DNN training.

WMGRec for Mobile App Recommendation on HIN 417

Dropout is a regularization technique for reducing overfitting in neural networks.
We set the dropout from 0.1 to 1.0 with a step value of 0.1. As shown in Fig. 7,
the RMSE and MAE increase after the first decline. Our model can reach the
best performance when the dropout is set as 0.4 for RMSE and 0.9 for MAE.
The observation demonstrates that adding reasonable randomness to the model
can enhance the effectiveness of the model.

Impact of Embedding Size. Embedding size d determines how many embed-
ding features are extracted from feature vectors. Namely, the dimensionality of
embedding vector. To study the impact of embedding size, we vary it from 2
to 50. It can be observed from Fig. 8, when increasing the embedding size from
2 to 50 the RMSE and MAE value decline firstly, and then grow up. The low-
est RMSE can be obtained when the embedding size is 14. For MAE, the best
performance can be acquired when the embedding size is 4. The result shows
that a relatively smaller embedding size is better to achieve a good model. It is
reasonable because larger embedding size means higher computational cost.

4 Related Work

To the best of our knowledge, this paper is the first work to exploit weighted
meta-graph and HIN for mobile app recommendation. The work of this paper is
mainly related to two aspects: mobile app recommendation and HIN for recom-
mendation. Several studies referred to these two areas will be introduced in the
following.

Mobile App Recommendation. Most existing investigations usually consider
the context information, user’s interest, privacy, security and other character-
istics for mobile app recommendation. Liang et al. [8] proposed a broad learn-
ing approach for context-aware app recommendation with tensor analysis. Yin
et al. [18] proposed a mobile sparse additive generative model to recommend
apps by considering both user interests and category-aware user privacy pref-
erences. Huang et al. [5] presented a skewness-based framework for mobile app
permission recommendation and risk evaluation. Zhu et al. [21] proposed a novel
location-based probabilistic factor analysis mechanism to help people get an
appropriate mobile app. Cao et al. [2] proposed a novel version-sensitive mobile
app recommendation framework by jointly exploring the version progression and
dual-heterogeneous data.

HIN for Recommendation. HIN is widely applied to movie recommendation,
research collaborator recommendation, product recommendation and social rec-
ommendation. Shi et al. [12] proposed a weighted HIN and weighted meta-path
based personalized recommendation method to predict the rating scores of users
on items. Shi et al. [11] proposed a matrix factorization based dual regularization
framework to integrate different types of information. Yang et al. [17] generated
high quality expert’s profiles and proposed an approach based on the multiple
heterogeneous network features. Zhao et al. [19] proposed a group lasso regular-
ized FM to automatically learn from the observed ratings to effectively select

418 F. Xie et al.

useful meta-graph based features. Zheng et al. [20] proposed a new dual simi-
larity regularization to impose the constraint on users and items with high and
low similarities simultaneously. However, to the best of our knowledge, most of
the existing studies do not explored weighted meta-graph and HIN in the sce-
nario of mobile app recommendation. Weighted meta-graph takes into account
the rating scores to capture the subtle semantics. HIN contains rich structure
and semantic information, which can satisfy different kinds of requirements of
users and generate better recommendation results.

5 Conclusion

This paper presents a weighted meta-graph based approach for mobile app rec-
ommendation. Firstly, we utilize weighted meta-graph, which considers the rat-
ing scores on links and captures more complex semantics, to measure the seman-
tic similarity between users and apps. Then, we employ non-negative matrix
factorization to obtain user latent features and app latent features. Finally, we
exploit DeepFM model to predict the rating score of users on apps by leveraging
the concatenated user and app latent features. Furthermore, we conduct a series
of comprehensive experiments on two real-world datasets. First of all, we com-
pare WMGRec model with other baseline approaches under different training
data density, which indicates that our WMGRec model generates better recom-
mendations and improves the recommendation accuracy. And then, we study
how parameters (i.e., learning rate, dropout and embedding size) impact the
recommendation results.

In the future, we attempt to collect more attribute information (e.g., permis-
sion and category) of apps and social relation information (e.g., friends relation
and trust relation) of users to enrich features and semantics in the network.

Acknowledgments. The paper was supported by the National Key Research and
Development Program (2017YFB0202200), the National Natural Science Foundation
of China (61702568, U1711267), the Program for Guangdong Introducing Innovative
and Enterpreneurial Teams (No.2017ZT07X355) and the Fundamental Research Funds
for the Central Universities under Grant (17lgpy117).

References

1. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn.
Res. 3(Jan), 993–1022 (2003)

2. Cao, D., et al.: Version-sensitive mobile app recommendation. Inf. Sci. 381, 161–
175 (2017)

3. Fang, Y., Lin, W., Zheng, V.W., Wu, M., Chang, K.C.C., Li, X.L.: Semantic prox-
imity search on graphs with metagraph-based learning. In: 2016 IEEE 32nd Inter-
national Conference on Data Engineering (ICDE), pp. 277–288. IEEE (2016)

WMGRec for Mobile App Recommendation on HIN 419

4. Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: DeepFM: a factorization-machine based
neural network for CTR prediction. In: International Joint Conference on Artificial
Intelligence (IJCAI), pp. 1725–1731 (2017)

5. Huang, K., Han, J., Chen, S., Feng, Z.: A skewness-based framework for mobile
app permission recommendation and risk evaluation. In: Sheng, Q.Z., Stroulia, E.,
Tata, S., Bhiri, S. (eds.) ICSOC 2016. LNCS, vol. 9936, pp. 252–266. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46295-0 16

6. Huang, Z., Zheng, Y., Cheng, R., Sun, Y., Mamoulis, N., Li, X.: Meta structure:
computing relevance in large heterogeneous information networks. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD), pp. 1595–1604. ACM (2016)

7. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Con-
ference on Neural Information Processing Systems (NIPS), pp. 556–562 (2001)

8. Liang, T., He, L., Lu, C.T., Chen, L., Yu, P.S., Wu, J.: A broad learning approach
for context-aware mobile application recommendation. In: International Conference
on Data Mining (ICDM), pp. 955–960. IEEE (2017)

9. Rendle, S.: Factorization machines. In: International Conference on Data Mining
(ICDM), pp. 995–1000. IEEE (2010)

10. Shi, C., Li, Y., Zhang, J., Sun, Y., Philip, S.Y.: A survey of heterogeneous infor-
mation network analysis. IEEE Trans. Knowl. Data Eng. 29(1), 17–37 (2017)

11. Shi, C., Liu, J., Zhuang, F., Philip, S.Y., Wu, B.: Integrating heterogeneous infor-
mation via flexible regularization framework for recommendation. Knowl. Inf. Syst.
49(3), 835–859 (2016)

12. Shi, C., Zhang, Z., Luo, P., Yu, P.S., Yue, Y., Wu, B.: Semantic path based per-
sonalized recommendation on weighted heterogeneous information networks. In:
Proceedings of the 24th ACM International on Conference on Information and
Knowledge Management (CIKM), pp. 453–462. ACM (2015)

13. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

14. Sun, Y., Han, J., Yan, X., Yu, P.S., Wu, T.: PathSim: meta path-based top-k sim-
ilarity search in heterogeneous information networks. Proc. VLDB Endow. 4(11),
992–1003 (2011)

15. Willmott, C.J., Matsuura, K.: Advantages of the mean absolute error (MAE) over
the root mean square error (RMSE) in assessing average model performance. Clim.
Res. 30(1), 79–82 (2005)

16. Wu, J., Chen, L., Xie, Y., Zheng, Z.: Titan: a system for effective web service
discovery. In: Proceedings of the 21st International Conference on World Wide
Web, pp. 441–444 (2012)

17. Yang, C., Sun, J., Ma, J., Zhang, S., Wang, G., Hua, Z.: Scientific collaborator
recommendation in heterogeneous bibliographic networks. In: Hawaii International
Conference on System Sciences (HICSS), pp. 552–561. IEEE (2015)

18. Yin, H., Chen, L., Wang, W., Du, X., Nguyen, Q.V.H., Zhou, X.: Mobi-SAGE: a
sparse additive generative model for mobile app recommendation. In: International
Conference on Data Engineering (ICDE), pp. 75–78. IEEE (2017)

19. Zhao, H., Yao, Q., Li, J., Song, Y., Lee, D.L.: Meta-graph based recommenda-
tion fusion over heterogeneous information networks. In: Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing (KDD), pp. 635–644. ACM (2017)

https://doi.org/10.1007/978-3-319-46295-0_16

420 F. Xie et al.

20. Zheng, J., Liu, J., Shi, C., Zhuang, F., Li, J., Wu, B.: Dual similarity regularization
for recommendation. In: Bailey, J., Khan, L., Washio, T., Dobbie, G., Huang, J.Z.,
Wang, R. (eds.) PAKDD 2016. LNCS (LNAI), vol. 9652, pp. 542–554. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-31750-2 43

21. Zhu, K., Zhang, L., Pattavina, A.: Learning geographical and mobility factors for
mobile application recommendation. IEEE Intell. Syst. 32(3), 36–44 (2017)

https://doi.org/10.1007/978-3-319-31750-2_43

	A Weighted Meta-graph Based Approach for Mobile Application Recommendation on Heterogeneous Information Networks
	1 Introduction
	2 Weighted Meta-graph Based Mobile App Recommendation
	2.1 Basic Concepts
	2.2 Meta-graph Based Similarity
	2.3 Meta-graph Based Latent Features
	2.4 WMGRec Model

	3 Empirical Study
	3.1 Dataset Description
	3.2 Evaluation Metrics
	3.3 Performance Comparison
	3.4 Study on Parameter Impacts

	4 Related Work
	5 Conclusion
	References

