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Abstract. Cloud based robotic services can be adopted for emergency
management in smart factory. When multiple robots work collabora-
tively in such system, optimal resource allocation for executing the tasks
of robotic services becomes a challenging problem due to the heterogene-
ity and energy consumption of resources. Since the tasks of multi-robotic
services are inter-dependent, the inconvenience of data exchange between
local robots and distant Cloud can significantly degrade the quality of
service. Therefore, in this paper, we jointly address the energy consump-
tion and service delay minimization problem while allocating resources
in proximate Cloud (Cloudlet) based multi-robot systems for emergency
management service in smart factory. A multi-objective evolutionary
approach, NSGA-II algorithm is applied to solve this constrained multi-
objective optimization problem. We augment the NSGA-II algorithm by
defining a new chromosome structure, presorted initial population, muta-
tion operator and selection of minimum distant solution from the non-
dominated front to the origin while crossing over the chromosomes. The
experimental results on the basis of synthetic data demonstrate that our
approach performs significantly well compared to benchmark NSGA-II.

Keywords: Resource allocation · Multi-robot system · Cloudlet
Optimization · Evolutionary algorithm

1 Introduction

In Cloud based multi-robot systems, Cloud offers virtualized resources, platform
and software services so that both localized robots and remote resources can be
utilized to process the tasks of robotic services. In a smart factory, such Cloud-
robotic services can manage entire production and supply chain. However, safety
assurance in smart factory during hazardous situation like fire occurrence is very
crucial. In this case, both robot and Cloud resources should complement each
other to process diversified tasks of emergency management service within a
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stringent deadline. These tasks are usually inter-dependent, latency sensitive
and compute intensive. In addition, the resources are heterogeneous in terms of
processing capability and energy consumption [3]. In such scenario, an optimal
allocation of computing resources to the tasks with the aim of minimizing both
service delay and energy consumption is one of the key research challenges.

Taking cognizance of the afromentioned issues, we focus on energy-delay co-
optimized resource allocation for processing the tasks of emergency management
service such as fire driven emergency service in a smart factory across robot
and Cloud infrastructure. Tasks of this service require real-time response and
data transmission among robots and Cloud. Therefore, the concept of Cloudlet
[4] infrastructure is introduced between robot-Cloud. Cloudlet is a prominent
extension of Cloud closer to the data source that can provide multi-robot systems
with virtualized resources to execute latency sensitive services.

To the best of our knowledge, this is the first work to design a Cloudlet
based multi-robot framework for emergency management service in smart fac-
tory. Resource allocation in this context appears as a constrained multi-objective
optimization problem when both energy consumption of resources and over-
all makespan for processing the tasks are targeted to minimize simultaneously.
Since, multi-objective evolutionary algorithms help to generate pareto-optimal
solutions of such multi-objective optimization problem, in this paper, we extend
the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [2] to solve the
resource allocation problem for its capability of finding diverse set of solutions.
Here, we augment the NSGA-II by defining a new chromosome structure, pre-
sorted initial population based on the task size and processing speed of the
resources. Besides, while crossing over the chromosomes, rather than selecting
arbitrarily, the chromosome having minimum distant solution from the pareto-
front to the origin is selected to balance the values of both objectives in sub-
sequent generations. The results of our simulation experiments significantly
improves the benchmark NSGA-II in minimizing both objectives.

The rest of the paper is organized as follows. In Sects. 2 and 3, related work
and Cloudlet-based framework for multi-robot system are discussed, respectively.
The problem formulation and the solution mechanism are described in Sect. 4.
In Sect. 5, the efficacy of our proposed approach is validated through simulation
and Sect. 6 concludes the paper with future directions.

2 Related Work

In literature, the integration of Cloud services and multi-robot systems has
already been investigated. The concept of Robot as a Service through a Ser-
vice Oriented Architecture is defined in [1] that incorporates robot services in
Cloud. A smart city-based Cloud robotic framework for optimal task offloading
is designed in [7]. Motion and connectivity-aware offloading for Cloud robotic
services using evolutionary algorithm is further introduced in [6]. However, in
both [7] and [6], the offloading decision-making is done by a single robot.
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Task allocation in resource-constrained multi-robot systems for search and
rescue or other emergency and hazardous scenarios is discussed in [8]. Cost-
efficient deployment of robots for a search and rescue use case during large-scale
disaster management is explored in [5]. However, in the aforementioned works,
no multi-robot task allocation policy targeting both local and Cloud resources is
pursued. Nevertheless, considering the intrinsic constraints of Cloud and multi-
robot assisted smart factory during the execution of emergency management
services, neither the combined task allocation problem nor the solutions has
been enlightened in the literature so far.

3 Framework for Cloudlet Based Multi-robot System

The Cloudlet infrastructure between robot and Cloud forms a three-tier com-
putational framework and helps to execute emergency management service for
smart factory with less communication delay. In this framework, the robots using
Zigbee, Bluetooth and WiFi can communicate with each other. They also com-
municate with Cloudlet and Cloud through gossip protocols [3].

Fig. 1. Framework design for Cloudlet based multi-robot system

In a Cloudlet, Resource Manager (RM) creates a combined resource pool with
both local and remote resources while executing the emergency management ser-
vice as shown in Fig. 1. Here, we consider emergency fire management service in
smart factory as an example case scenario. This service consists of multiple tasks
such as fire origin and cause identification, human victim and hazardous mate-
rial detection, evacuation planning, navigation as well as management of exter-
nal help. These tasks are interdependent and orchestrated through a Directed
Acyclic Graph (DAG) based workflow model. We assume that the corresponding
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tasks of a service and the meta-data of the tasks (inter-data dependency delay,
Quality of Service requirement etc.) are stored in the Cloudlet. Whenever an
event of interest triggers the service initiation, the RM residing in the Cloudlet
assigns the tasks to the combined resource pool.

4 Proposed Energy-Delay Optimized Resource Allocation

4.1 Multi-objective Optimization Problem Formulation

The optimal resource allocation for processing the service tasks is subject to
multiple constraints driven by the characteristics of tasks (e.g., latency sensitiv-
ity, interdependency, resource requirements, etc.). It turns into a multi-objective
optimization problem when simultaneous minimization of overall makespan for
completing the tasks and energy consumption of the resources are taken into
account. In the proposed Cloudlet-based framework, this multi-objective opti-
mization problem can be expressed through Eqs. 1 and 2 for the corresponding
set of tasks T and resources R. In Eq. 1, mt

r denotes the time required to com-
plete a task t ∈ T on a resource r ∈ R and it minimizes the overall makespan
∀t ∈ T . At the same time, Eq. 2 minimizes the overall energy consumption et

r

while processing each task t ∈ T on particular resource r ∈ R. The solution of
both equations points the assignment of task t ∈ T to resource r ∈ R through
non-zero value of binary decision variable xtr. The constraints of Eqs. 1 and 2
ensure that a task t ∈ T will not assign to multiple resources (Eq. 3), the total
task completion time will not exceed the maximum allowable delay MT to exe-
cute the service (Eq. 4) and the total energy consumption of resources should
be within the energy threshold, ET (Eq. 5). In addition, Eq. 6 signifies that the
assignment of a dependent task t ∈ T to a resource r ∈ R and its tolerable
inter-task data dependency delay δt will not be affected by the assignment of
all its predecessor tasks t′ ∈ T ′

t on computing resources r′ ∈ R. In this case,
maximum processing time pt′

r′ of the predecessor tasks and data exchange time
ηr′r, ∀t′ ∈ T ′

t is taken into account.

min
∑

t∈T ,r∈R

xtr × mt
r (1)

and
min

∑

t∈T ,r∈R

xtr × et
r (2)

subject to ∑

t∈T ,r∈R

xtr = 1 (3)

∑

t∈T ,r∈R

mt
r ≤ MT (4)

∑

t∈T ,r∈R

et
r ≤ ET (5)

max(pt′
r′ + ηr′r) ≤ δt;∀t′ ∈ T ′

t (6)
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4.2 Energy-Delay Co-optimization Using Multi-objective
Evolutionary Algorithm

To solve the resource allocation problem, we augment multi-objective evolu-
tionary algorithm, NSGA-II. In NSGA-II algorithm, solution of a chromosome
contains the values of different objectives obtained from fitness functions and the
solutions of a population are classified into different sets according to the ascend-
ing level of their domination. A set of solutions S dominates another solution set
S′ if each solution x ∈ S is no worse than solution x′ ∈ S′,∀x′ in every objectives
and each solution x ∈ S is strictly better than solution x′ ∈ S′,∀x′ in at least
one objective. If a solution set is not dominated by any other set of solutions, the
elements of that set is called the non-dominated solutions. Each set of solutions
represents a particular front on the solution space and the chromosomes gener-
ating those solutions are treated as the builder of the front. The non-dominated
set of solutions provides the optimal front (first front) on the solution space, is
termed as the pareto-front. Here, we extend the basic concept of NSGA-II and
further refine it to develop an energy-delay co-optimized resource allocation for
emergency management service in Cloudlet infrastructure as follows:

Population Initialization. In the augmented NSGA-II, rather than creat-
ing randomized initial population, a presorted initial population relying on the
heuristics is generated. Here, the set of resources R in the combined resource pool
is divided into k categories based on the ascending processing speed ρr,∀r ∈ R.
Similarly, the set of tasks T is also classified in k types according to the incre-
mental size λt,∀t ∈ T . Thereafter, taking the problem range and constraints
(Eqs. 3–6) into account, mathematical combination is used to conceptually assign
the tasks of j type to the resources of jth category for generating the chromo-
somes of initial population. The structure of chromosomes is aligned with the
steps of initial population creation, where a Gene Index symbolizes a particular
task and the Gene refers to a specific resource.

Domination Count and Ranking. The solution space of a population is deter-
mined by the outcome of its member chromosome’s fitness value on makespan
and energy objectives using Eqs. 1–2. The solutions of combined parent and child
population Ui for any generation gi; i ∈ {1...G}, generated by its member chro-
mosomes are ranked in different fronts within corresponding solution space based
on the level of their domination according to NSGA-II [2].

Selection of Population. Since the size of combined population Ui for any
generation gi is 2N , for iterative refinement, it is very important to select the
best N number of chromosomes from Ui to form the parent population Pi+1 for
the next generation gi+1. In this case, chromosome slots within Pi+1 is filled with
the builder chromosomes of comparatively better fronts on the solution space.

Crowding Distance Calculation. In selecting N number of chromosomes for
the parent population Pi+1 of next generation gi+1, sometimes the available slot
in Pi+1 can be less enough to accommodate the entire builder chromosome set
Fτ of a particular front. In this case, crowding distance of the solutions are
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calculated to identify the compatible builder chromosomes of that front to fill
the available slot in Pi+1.

Extension of Genetic Operator. For a particular generation gi, while gener-
ating the child population Ci from the parent population Pi, genetic operators
such as fitness calculation, selection, crossover and mutation are applied. The
fitness of the population is determined through the objective functions discussed
in Eqs. 1–2. To imply mutation on the population, binomial distribution and to
make crossover of a particular chromosome with the fittest chromosome of the
population, simulated binary approaches are used. To select the fittest chromo-
some, for each chromosome c, the distance c.d of makespan and energy consump-
tion objective value (c.M, c.E) from the theoretical lowest value of makespan and
energy, (0, 0) is calculated. The chromosome having minimum distance value
from the origin is selected as the fittest chromosome of the population for mak-
ing crossover. However, the selection of final solution and characteristics of the
corresponding chromosome solely depends on the intention of service providers.

5 Simulation Results and Discussion

5.1 Simulation Environment

To conduct our experiments in Matlab, we use synthetic data, driven from real-
world references and selects system parameters carefully for fair evaluation [6].
The parametric values for the simulation environment are summarized in Table 1.
The value of simulation parameters within a specific range is set by a pseudo
random number generator. For simplicity of the simulation, we consider three
types of computing resources based on their heterogeneous processing speed. In
addition, we set the ratio of local and virtual resources in the combined resource
pool to 1

3 and the ratio of dependent and independent tasks is set to 2
5 .

5.2 Simulation Scenarios and Result Analysis

The performance of our proposed approach is compared with a benchmark strat-
egy which follows NSGA-II algorithm with randomized initial population and
arbitrary chromosome selection during crossover.

Comparison of Pareto-Optimal Solutions and Generations to Meet
Stopping Criteria. After 200 generations, the pareto-optimal solutions of our
augmented NSGA-II and benchmark NSGA-II on fixed number of heterogeneous
tasks (50) and resources (30) are depicted in Fig. 2(a). In this scenario, each
pareto-optimal solutions of energy-delay co-optimized approach provides better
outcome for both objectives, compared to the benchmark strategy. The initial
population of proposed approach that is determined based on the task’s size and
processing speed of resources, inherently minimizes the overall makespan and
energy consumption. In addition, selection of the chromosome having minimum
distant solution from the origin for crossover further improves its performance.



Energy-Delay Co-optimization for Robotic Services 301

Table 1. Simulation parameters

Parameter Value

Population size 50

No of generations 50–500

Mutation rate 0.5

Crossover rate 0.5

Number of tasks in a service 35–65

Number of computing resources 15–45

Processing speed of virtual resources 10000–30000 MIPS

Processing speed of local resources 8000–15000 MIPS

Per unit energy consumption of virtual resources 50–150 W

Per unit energy consumption of local resources 40–90 W

Tasks data size 5000–10000 MI

Allowable completion time of all tasks 5000 ms

Maximum allowable energy consumption of service 2500 W

Data dependency threshold 1500 ms

Communication bandwidth 128–512 Kbps

Therefore, after a fixed number of generations, it provides significantly better
solution than the randomized benchmark. The simulation results on Fig. 2(b)
represents the efficacy of proposed approach in achieving no further optimization
state within less generations compared to the benchmark strategy. For using pre-
sorted population, compared to the benchmark, our approach implicitly advances
a certain number of generations in meeting the stopping criteria.

Impacts of Varying Number of Tasks. The average makespan and energy
consumption for varying number of tasks while the number of generations (200)
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Fig. 2. (a) Pareto-optimal solutions and (b) Number of generations required to meet
stopping criteria
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Fig. 3. (a) Average makespan and (b) average energy consumption of resources for
varying number of tasks

and resources (30) are fixed, are illustrated in Figs. 3(a) and (b) correspondingly.
Since the resource number is fixed, with increasing of the tasks objective values
increases for both approaches. However, compared to benchmark, our proposed
approach provides improved solutions in this scenario due to presorted popula-
tion. In the presorted population, the computing resources are categorized based
on their processing speed for assigning the tasks to a particular type of comput-
ing resources according to their size. As a consequence, it generates efficient
initial population and refines it consistently after each generation.

6 Conclusion and Future Directions

Evaluation results acquired through simulating different scenarios show that our
augmented NSGA-II algorithm improves the benchmark NSGA-II algorithm by
minimizing both makespan and energy consumption. In future, our proposed
approach will be compared with other existing multi-objective problem solv-
ing approaches like PAES, SPEA. Furthermore, as our evaluation is based on
simulation, sources of uncertainty in the system and their effects on simula-
tion parameters, sensitivity of independent variables will be analysed and imple-
mented in real-world testbed. The impact of complexities on different tasks will
also be investigated. Utilizing edge resources for task allocation will be a good
extension.
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