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What You Will Learn in This Chapter

In Chaps. 3 and 6 we investigated the effect of latitude on tree height by measuring
trees at 2 and 3 locations, respectively, and testing for differences in mean heights. As
we will see, a better way to answer this question involves testing tree heights at even
more locations of latitude. Computing an ANOVA is not a good idea for this situation
because the ANOVA does not take the ratio scale properties of the latitude into account.
The ANOVA treats each location as nominal (see Chap. 7). Correlations allow us to
include the ratio scale aspect of the information and thereby summarize the effect of
latitude into one value, r.

8.1 Covariance and Correlations

Let us first visualize correlations. If there were a perfect negative correlation, then an
increase in one variable corresponds to a consistent decrease in another variable, for
example, tree height decreases as latitude increases. If we plot latitude on the x-axis and
tree height on the y-axis, the points fall on a straight line as in Fig. 8.1a (perfect negative
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Fig. 8.1 Tree heights versus latitude for five different scenarios, (a)—(e). Each data point shows

the height of one tree at one location. Correlations measure the linear relationship between the two
variables

correlation). On the other hand, if there is no relationship between the variables, the data
looks like a diffuse cloud of points as in Fig. 8.1c (no correlation). If tree height increases
as latitude increases, there is a perfect positive correlation (Fig. 8.1e). Usually, we find
cases in between the three basic scenarios (Fig. 8.1b, d).

This linear relationship is captured by the covariance equation:

Y= X)x (i —Y)

cov(x, y) = e

8.1)

where, for example, the latitude data are x;, the tree heights are y;, and the X and Y are
the respective mean values, i.e., the mean latitude and the mean tree height, respectively.
The data consists of n pairs of latitudes and tree heights. The covariance generalizes the
concept of variance because cov(x, x) is the variance of x.

A disadvantage of covariance is that it depends on the scale. For example, if you
measure tree height in meters the covariance is smaller than if you measure it in
centimeters. For this reason, we normalize the covariance by the standard deviation of
x and y and arrive at the correlation:

y = OV Y) (8.2)

SxSy

This type of correlation is called Pearson’s correlation. Correlation values range between
—1.0 and +1.0, where —1 indicates a perfect negative correlation, 0 indicates no
correlation, and +1 indicates a perfect positive correlation (see Fig.8.1a, ¢, and e).
Values between these limits indicate intermediate strengths of the relationship between
the variables.

8.2  Hypothesis Testing with Correlations

Figure 8.2 shows a sample (n = 50) of tree height data from many latitudes. Each point
corresponds to a single tree. Obviously, there is not a perfect correlation, but the correlation
seems to be different from zero. We use hypothesis testing to look for a significant
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Fig. 8.2 Tree heights versus latitude for a sample of 50 trees. The correlation is r = —0.312. The
red line is a best fitting straight line

correlation. Our null hypothesis is:
Hy:p=0

where p corresponds to the population correlation.
We do not need to go into the details, but if the null hypothesis is true, then the standard

deviation of the sampling distribution of a sample correlation is:

L=r (8.3)
Sy = .
" n—2
and the appropriate test statistic is a ¢ value computed as:

p="70 (8.4)

Sr

with degrees of freedom df = n — 2. The typical statistical software output for the data in
Fig. 8.2 would look something like that shown in Table 8.1.
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Table 8.1 Typical statistical r ¢ df p
software outputs for a

. —0.312 —2.28 48 0.027
correlation

Since the p value is less than
0.05, we conclude there is a
significant correlation. The fact
that the r-value is negative indi-
cates that taller trees are found
at lower latitudes

8.3 Interpreting Correlations

Assume we found a significant correlation between variables x and y, what does it tell us?
First, it does not tell us that x causes y. This can be simply understood by noting that

Yici i = X)x (i =Y) _ Ui —Y) x (6 = X)

cov(x,y) =
(x. ) n—1 n—1

= cov(y, x)

(8.5)

which, if interpreted improperly, would suggest that x causes y and that y causes x. A
significant correlation can occur for four reasons:

. X causes y

. y causes x

. some intermediate variable z causes x and y
. the correlation is spurious

B W o =

An example for an intermediate variable (reason 3): it is not the latitude that determines
tree heights. Rather factors related to latitude directly influence tree heights, such as water
supply. Spurious correlations (reason 4) can occur by random. For example, for years
2000-20009 the correlation is r = 0.947 between US per capita consumption of cheese
and the number of people who died by becoming tangled in their bedsheets. If scientists
find such a high correlation in an experiment, they open a bottle of champagne! Spurious
correlations are inevitable if you look across large enough sets of data.

It is important to note that because correlations only measure linear relationships, a non-
significant correlation does not mean there is no relationship (or causation) between x and
y. For example, air temperature systematically changes with time of day in a sinusoidal
fashion (it goes up and down during the day-night cycle), but a correlation between time
of day and temperature might produce r =~ 0.

It is always a good idea to look at a graph of data in addition to computing a correlation.
Data of very different types can give rise to the same r-value (Fig.8.3), so knowing
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Fig. 8.3 Anscomb’s quartet. Each data set has the same r-value (r = 0.816) despite looking very
different when plotted
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Fig. 8.4 Outliers can have a substantial impact on correlation. Left: original data set with r = 0.71.
Right: a single outlier has been added (blue point at the bottom right) causing a big decrease in the
correlation (r = 0.44)

only the correlation value provides only partial information about the data set. Moreover,
correlations are very sensitive to outliers (Fig.8.4), and a single data point added or
removed from a data set can dramatically change the correlation value.
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Table 8.2 Effect size
guidelines for |r| according to
Cohen

Small Medium Large
Effect size 0.1 0.3 0.5

8.4 Effect Sizes

Correlation is often used as a measure of effect size that indicates how much one variable
is related to another variable. In particular, the square of a correlation, r2, indicates the
proportion of variability in one score (e.g., tree height) that can be explained by variability
in the other score (e.g., latitude). This is the same kind of information provided by 7,
which we covered in Chap. 6. According to Cohen, an r-value of less than 0.1 is considered
a small effect and the very same is true for values lower than —0.1 (Table 8.2).

8.5 Comparison to Model Fitting, ANOVA and ¢-Test

In Chap.7 we fit a linear model to the learning data and focused on the slope, which
is similar to computing a correlation because the correlation is a measure of linear
relationships. A hypothesis test for a non-zero slope gives the same result as a hypothesis
test for a non-zero correlation.

As mentioned in Chap. 7, it is not a good idea to use an ANOVA when the independent
variable is on a ratio scale because the ANOVA treats the independent variable as being on
anominal scale. By taking full advantage of the ratio scale an analysis based on correlation
has higher power than an ANOVA.

One could also use the ¢-test by splitting the data into, for example, smaller and larger
than median latitudes, i.e., half the data go into a North group, the other half into a South
group. In general, such approaches are not as good as an analysis based on the correlation
because they (again) do not include the ratio scale nature of the independent variable. For
example, in Fig. 8.5 the data from Fig. 8.2 are split into lower and higher latitude regions.
The ¢-test does not produce a significant result. Thus, if we analyze the data with these
subsets, we fail to note the significant difference found by looking at the correlation in the
original data set (Table 8.1).

In some way, a correlation may be seen as a generalization of the ANOVA and the
t-test.
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o5 t(48) = 1.68, p = 0.09960
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Fig. 8.5 Data produced from a median split of the data in Fig. 8.2. A ¢-test investigating differences
between the means is not significantly different

8.6  Assumptions and Caveats
Hypothesis tests for correlations hold several assumptions.

1. As always, data need to be independent and identically distributed.

2. The y-variable is Gaussian distributed when conditioned on any given x-value. That is,
if we were to take all the y-values at a single x-value and make a histogram of them,
the histogram would be Gaussian distributed.

. Both variables are interval or ratio scaled.

4. Sample size is fixed before the experiment.

w

If data are on an ordinal scale, correlations can be computed with the Spearman’s p,
which uses ranks (ordinal scale) rather than the ratio scale. Spearman correlations are the
non-parametric equivalent of the parametric Pearson correlations.

8.7 Regression

In this subsection, we quickly sketch the relationship between correlations and regressions.
The hasty reader may skip it. Regression will play no role in the following chapters.

A correlation tells us about how tightly packed the data are around the best fitting line.
For example a correlation of 1.0 tells us that all data points are perfectly on the line.
However, what is this best fitting line? Regression gives us the equation of that best fitting
line, which has one parameter for the slope (m) and one for the y-intercept (b; i.e., where
the line hits the y-axis). The slope of the regression line is the standard deviation in the
y-direction divided by the standard deviation in the x-direction, weighted by the r value
from Eq. 8.2:

m=r (8.6)
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Table 8.3 Typical statistical

- " Parameter Coefficient value ¢ )4
50 twar.e outputs fora Intercept (constant) 12.146 4.079 0.00017
regression
Slope (latitude) —0.147 —2.275 0.027

This means for every standard deviation we walk in the x-direction, we step up by the
standard deviation in the y-direction multiplied by the r-value.
The intercept b is:

b=y—mx

For the tree height data presented in Fig. 8.2, the slope is m = —0.1473 and the intercept
is b = 12.1461. This means that at a latitude of zero degrees, the average tree height is
12.1461 m, and that for every degree of latitude that we go North of that, we increase in tree
height by —0.1473 m (in other words, tree heights go down as we increase our latitude).
These results are typically summarized in statistical software as shown in Table 8.3

Here, in addition to the regression line slope and intercept, the statistical software also
outputs a ¢- and p-value for the slope and intercept, the so-called regression coefficients.
These statistics test the null hypothesis that the slope and intercept are equal to zero. In this
example, the p-values are smaller than 0.05, and so both are significantly different from
zero. In such a situation, the corresponding correlation (r-value) is typically significantly
different from zero. An intercept that is not significantly different from zero means that
the regression line roughly crosses the point (0, 0) on the graph.

Take Home Messages

1. Correlations are the preferred choice if both the x- and y-axis are ratio or interval
scaled.

2. Causation and correlation should never be confused.

3. Very different sets of data can lead to the same r.
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