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What YouWill Learn in This Chapter

In Chaps. 1 and 2, we showed that proper conclusions need full information and that
many popularmeasures, such as the Odds Ratio or the Percentage of Correct Responses,
provide only partial information. In this chapter, we use the framework of SDT to
understand statistical inference, including the role of the p-value, a dominant term in
statistics. As we show, the p-value confounds effect size and sample size and, hence,
also provides only partial information.

This chapter is about the essentials of statistics. We explain these essentials with
the example of the t-test, which is the most popular and basic statistical test. This is
the only chapter of this book where we go into details because, we think, the details
help a great deal in understanding the fundamental aspects of statistics. Still, only
basic math knowledge is required. The hasty or math phobic reader can go directly
to Sect. 3.3 Summary, where we summarize the main findings and the key steps.
Understanding at least this Summary is necessary to understand the rest of the book.
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24 3 The Core Concept of Statistics

3.1 Another Way to Estimate the Signal-to-Noise Ratio

In Chap. 2 we defined d ′ as the distance between population distribution means, divided
by the population standard deviation. Typically, we label one of the populations as noise-
alone, with mean μN , and the other population as signal-and-noise, with mean μSN . In
statistics, the d ′ of populations is also often referred to as Cohen’s δ or effect size. The
calculation is the same as in Chap. 2:

δ = d ′ = μSN − μN

σ
(3.1)

Oftentimes we do not have population information, and we want to estimate δ (i.e., d ′)
from empirical data. For example in Chap. 2, we could estimate d ′ in the patch present
vs. absent experiment by computing z(Hit)-z(FA) just from the behavioral data. We did
not have any knowledge about the underlying means and variance of the Gaussians. This
estimation approach is useful when we cannot directly measure the underlying variables
driving the performance of the system but we can measure decision outcomes. In other
situations we cannot easily measure decision outcomes but we can estimate the means and
variance of the Gaussians directly. For example, we can use a sonar and record the sonar
responses in many trials when a rock is present. We plot the results and obtain a graph,
from which we can estimate the mean and variance of the Gaussian. We can obtain the
mean and variance also for the no-rock condition. Next, the sample means xSN and xN and
the standard deviation s can be used to compute an estimated effect size called Cohen’s d:

d = xSN − xN

s
(3.2)

Once again, this standardized effect d is simply an estimate of the d ′ of the population
distributions. If d is large, it will be fairly easy to distinguish a single measurement
as coming from the signal-and-noise distribution or from the noise-alone distribution.
Regrettably, for many situations that scientists care about the value of d is quite small. For
example, within psychology, a value of around d = 0.8 is considered to be “large,” a value
around d = 0.5 is considered to be “medium,” and a value around d = 0.2 is considered to
be “small.” As Fig. 3.1 shows, even “large” values of d correspond to considerable overlap
between distributions. For situations like these we are never going to have a good ability
to correctly discriminate single measurements. All is not lost, though, as long as you are
willing to discriminate the means of those measurements. As we will see, the properties of
SDT apply for discriminating means similarly to discriminating single measurements.
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Fig. 3.1 Population distributions with small (d = 0.2), medium (d = 0.5), and large (d = 0.8)
effect sizes

Terms
Because very similar concepts were developed in many fields, there are many
identical terms, which we list here:

• Hit Rate = Power
• False Positive Rate = False Alarm = Type I error
• Miss Rate = Type II error
• d ′ = Cohen’s δ = effect size = standardized effect size
• Gaussian distribution = Normal distribution = Bell curve
• Sample values, such as tree height, are also called Scores

Some definitions
We collected a sample of n scores xi

• Sample mean
x = 1

n

∑n
i=1 xi

where the symbol
∑

means “add up all following terms”
• Sample variance

s2 = 1
n−1

∑n
i=1(xi − x)2

• Sample standard deviation
s = √

s2

• Standard error
sx = s/

√
n
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Facts about sample means
For n → ∞ :

1. The distribution of sample means x is Gaussian (Central Limit Theorem; CLT)
2. x → μ

3. sx → 0

3.2 Undersampling

Let us start with an example. We are interested in the hypothesis that the mean height of
Alpine oak trees at the Northern rim is different than the mean height of oaks from the
Southern rim. The straightforward way to address this hypothesis is to measure the height
of all trees in the North and South rims, compute the means, and compare them. If the
means are different, they are different. If they are the same, they are the same. It is that
easy.

Fig. 3.2 A small section of a forest in the Swiss Alps



3.2 Undersampling 27

Unfortunately, there are many oaks (Fig. 3.2) and our resources are limited, so we
can measure only a certain number, n, of both the North and South trees and measure
their heights. The collected trees of a population are called a sample, i.e., in this case we
collected two samples, one from the North and one from the South trees. The tree heights
we measured are also called scores and the mean height in a sample is called the sample
mean. The number n of trees of a sample is called the sample size. For each sample, there
is most likely a difference between the mean height of the sampled trees and the truemean
height of all trees of the population. For example, we may have, just by chance, sampled
more large than small trees. This difference is called the sampling error. Thus, because of
undersampling (measuring fewer than all trees), we likely do not obtain accurate estimates
of the two means. Importantly, we choose the trees for our samples randomly, a procedure
called random sampling.

Let us now collect both a sample from the North and a sample from the South trees.
If we find a difference of sample means we cannot know whether it was caused by a true
difference of the tree population means or whether the population mean heights were the
same but the difference was caused by undersampling. Hence, undersampling may lead to
wrong conclusions. For example, even though there is no difference between the means
for the North and South tree populations, we may decide that there is a difference because
there was a difference in the sample means. In this case, we are making a False Alarm,
also called a Type I error.

To understand how undersampling influences decisions, we will first study how likely it
is that a sample mean deviates from the true mean by a certain amount. As we will see, the
sampling error is determined by the standard deviation of the population, σ , and the sample
size, n. Second, we will study how undersampling affects how well we can discriminate
whether or not there is a difference in the mean height of the two tree populations. A simple
equation gives the answer. The equation is nothing else but a d for mean values. Hence,
we are in a SDT situation. Third, we want to control the Type I error rate. We will see that
the famous p-value just sets a criterion for the Type I error.

3.2.1 Sampling Distribution of a Mean

To begin with, let us focus on the North tree population. To arrive at a sample mean, we
collect a sample of North trees, measure the height xi for each tree, sum these heights up,
and divide by the sample size n. The sample mean is an estimate of the true mean μNorth:

xNorth = 1

n

n∑

i=1

xi (3.3)
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where xi is the height of the i-th tree we sampled. Similarly, we can estimate the variance
of the tree heights, s2 (see box). The difference between this sampled mean and the true
mean is

x̄North − μNorth (3.4)

How large is this difference on average? To answer this question, assume—for the sake
of the argument—we are going many times to the woods and randomly choose a sample
of a fixed sample size, n. The various samples most likely contain different trees because
we chose the trees randomly. How many sample means are close to the true mean and how
many are far from it? Let us assume that we know the true population mean and standard
deviation. Let us first collect a sample of only two trees and compute the mean. In the
example of Fig. 3.3, the true mean is 20m and the mean of the sample is 19m. Thus, the
difference is 1m. Let us collect another sample of two trees. This error is likely different
from the previous one because we have likely chosen two trees with different heights. Let
us continuemeasuring two trees and see how the sample means are distributed. The Central
Limit Theorem tells us that the distribution of the sample means is similar to a Gaussian
function. The Gaussian is centered around the true mean, thus many sample means reflect
well the true mean. However, the Gaussian is quite broad, i.e., the standard deviation is
large, and hence quite some sample means deviate substantially from the true mean.

Let us now collect 9 instead of 2 samples and repeat the procedure as before. Again,
we obtain a Gaussian distribution, which is, however, narrower than for the sample of two
trees, i.e., the standard deviation is smaller, and, thus, it is much more unlikely that the
mean of a randomly chosen sample deviates strongly from the true mean. In general, for
each sample size n, there is such a sampling distribution. The larger the sample size n,
the smaller is the standard deviation of the sampling distribution. This is not surprising
because the error is zero if we measure all trees and small if we fail to measure only a
few trees. Hence, the standard deviation σx of the sampling distributions is a measure of
how good we expect our estimate of the mean to be. σx is called the standard error of the
mean, and it can be shown that σx is equal to the standard deviation of the true population
distribution σ divided by the square root of the sample size n:

σx = σ√
n

(3.5)

If we do not know σ , then we can estimate the standard error by using the sample estimate
of the standard deviation:

sx = s√
n

(3.6)

The equation shows again why with larger sample sizes the sampling error becomes
smaller: as

√
n goes larger, σx = σ/

√
n goes to zero. σx depends on both n and σ . Suppose
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Fig. 3.3 Let us focus on the North trees only. Since we cannot measure the height of all trees,
we collect samples with a mean value that, because of undersampling, is likely different from the
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σ is zero, then all trees in our sample have the same height, which means all trees have
the mean height μNorth, and hence we need to only measure the height of one tree. On the
other hand, if σ is large, we need to sample many trees to obtain a good estimate of the
population mean.

Summary Because of undersampling, sample means likely differ from the true mean. The
standard error, sx , is a measure for the expected sampling error.

3.2.2 ComparingMeans

Let us next see how undersampling affects a comparison of the means of the North and
South trees. Obviously, there is a family of sampling distributions for the South trees too.
In the following, we assume that the sample sizes and the population variances are the
same for both tree populations. As mentioned, if our two samples contain all trees from
both populations, we can simply compare the means and note any difference. For smaller
samples, both sample means may strongly differ from the true means. First, we subtract the
two sample means: xNorth − xSouth. For each pair of samples of North and South trees,
we can compare the difference of sample means with the difference of the true means
μNorth − μSouth. Hence, we have only one sampling distribution and the same situation
as in the last subsection.

As in the last subsection, the sampling distribution is a Gaussian with a mean equal
to the difference of the population means, μNorth − μSouth. Moreover, something called
the “variance sum law” tells us that the standard deviation of this sampling distribution is

Fig. 3.3 (continued) true mean. (a) Left. The Gaussian at the top row shows the true population
distribution. Let us first measure the height of only two randomly collected trees (blue boxes). The
heights are 18.5m and 19.5 m. Hence, the mean of the two samples is 19m, shown as the green box
in the graph below, highlighted by the arrow. Hence, the sampling error of the mean is 1m since the
true mean is 20m. Let us now go to the woods and collect more samples of two trees. Each green box
shows one of the corresponding sample means. After having collected many samples, we obtain a
Gaussian function. The y-axis shows the probability how likely it is that a certain mean value occurs.
Right. Now let us sample nine trees. The true population distribution is the same as on the Left and
shown again on the top row along with one sample of nine trees. The corresponding sample mean is
shown by the arrow. Again, if we sample more trees, we arrive at more mean values (green boxes).
The Gaussian is more narrow, i.e., the standard deviation of the sample means is much smaller.
Hence, whereas for samples of two trees, an error of 2m is not unlikely, such an error is unlikely for
samples of nine trees. (b) For any population distribution there is a family of sampling distributions,
one for each sample size n. All sampling distributions are Gaussians. For increasingly large sample
sizes n, we obtain sampling distributions with decreasingly smaller standard deviations. Hence, when
n increases it becomes much more unlikely that the sample mean strongly differs from the true mean.
This is not surprising because if we measure the height of all trees, there is no sampling error. The
standard deviation is zero. If we fail to measure just a few trees, the error is very small
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related to the standard deviation of the populations and the sample size:

σxNorth−xSouth
= σ

√
2

n
(3.7)

This term is the standard error for the difference of sample means.1 If we do not know the
population means and standard deviation, we consider the estimate:

sxNorth−xSouth
= s

√
2

n
(3.8)

Let us recall our main question. We have collected one sample from the North trees
and one sample from the South trees, respectively, with a sample size of n. Most likely
there is a difference between the two sample means, i.e., xNorth − xSouth �= 0. Does
this difference come from undersampling even though there is no difference between the
population means, or does this difference reflect a true difference in mean height? This is a
classic SDT situation—just with means instead of single measurements. How well can we
discriminate between the two alternatives? We can answer the question by computing the
d ′ or Cohen’s δ between the two alternatives. For the first alternativeμNorth−μSouth = 0,
meaning that there is no difference between the mean heights of the North and South
trees, i.e., the noise alone distribution. The corresponding sampling distribution is centered
around 0 since there is no difference. For the second alternative, there is a real difference
and the sampling distribution is centered at μNorth − μSouth. Because we do not know the
true values, we use estimates.2

So, we have now estimated two sampling distributions: one for when there is a real
difference (signal-and-noise) with mean xNorth − xSouth and one when there is no
difference (noise-alone) with mean 0. Hence, we have exactly the same situation as in
the yellow submarine example and estimate d ′ or Cohen’s δ of the sampling distributions,
which is usually called t , by:

t = (xNorth − xSouth) − (0)

sxNorth−xSouth

(3.9)

The t-value is nothing else as a d ′ applied to sampling distributions. Just as for all SDT
situations, if t is large, it is fairly easy to distinguish whether a difference of means comes

1If the samples from the North and South trees are of different sizes, then the formula is

σxNorth−xSouth
= σ

√
1

nNorth
+ 1

nSouth
.

2Typically, the value s is computed by pooling the variances from the two samples. We describe one
way of doing this pooling in Sect. 3.4.
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from the signal with noise distribution or from the noise-alone distribution. If t is small,
then it will be difficult to determine whether there is a true difference.3

Let us substitute the estimate of the standard error into the t-equation:

t = (xNorth − xSouth) − (0)

sxNorth−xSouth

= (xNorth − xSouth)

s

√
2
n

= (xNorth − xSouth)

s

√
n

2
= d

√
n

2

(3.10)

By splitting up the standard error, which is the measure for the sampling error, into s and
n, we see that the t-value is d (the estimated δ of the population distributions) multiplied
by the square root of half the sample size.

We can interpret the t-value in two ways. First, we are interested in whether there is a
real difference between the mean values. For this reason, we subtract the estimates of the
two means to see how much they differ. However, a large difference is meaningless when
the noise, i.e., the standard deviation is high. For this reason, as in Chap. 2, we divide by
an estimate of the standard deviation, which in this case is the estimated standard deviation
of the sampling distribution of the difference of means. The estimated standard deviation
of the sampling distribution is the standard error:

sxNorth−xSouth
= s

√
n
2

(3.11)

Hence, the standard error of the sampling distribution of the means combines both
sources of uncertainty, namely the population standard deviation and the uncertainty from
undersampling. Second, we see that the t-value is the product of the estimated d of the
population distribution and a function of the sample size n. The t-value combines effect
and sample size.

Summary We wanted to know whether or not two means are identical but have difficulties
to decide because we have only inaccurate estimates caused by undersampling. This is a
classic discrimination task, just with means instead of single measurements. The t-value,
which is easy to calculate from the samples we collected, is nothing else than the estimated
d ′ for this situation. Most importantly, the t-value is a function of the estimated effect size
d and the sample size n, namely, a multiplication of the estimated effect size d and the
square root of the sample size n/2.

3Following the convention of SDT, we will always interpret t as being a positive number, unless we
specifically say otherwise. Should the computed value be negative, one can always just switch the
means in the numerator.
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3.2.3 The Type I and II Error

Undersampling may create an error, which may lead to wrong conclusions. For example,
we may decide that there is a true mean difference in the height of the North and
South trees—even though there is none—because there was a difference in the sample
means (False Alarm). Likewise, we may decide that there is no true difference—even
though there is one—because the sample mean difference was small (Miss). Following
the statistical conventions, we call a False Alarm a Type I error and a Miss a Type II
error. How do we cope with these errors? As we have seen in Chap. 2, False alarms and
Misses depend on where we set our criterion. The same is true here and the four possible
outcomes of a decision are summarized in Fig. 3.4. Commonly, people focus on a special
hypothesis called the null hypothesis: there is no difference between the population means.
In terms of SDT, the null hypothesis claims that, even though an observed difference of
sample means occurs, the difference comes from undersampling, i.e., from the noise-alone
distribution. The alternative hypothesis, Ha or H1, is that there is a difference between the
two population means. In terms of SDT, the alternative hypothesis states: the observed
difference of sample means comes from the signal-and-noise distribution. In Fig. 3.4 we
refer to this as “H0 is False.”

As in the yellow submarine example, a large t tells us that the discrimination between
population means should be easy, while a small t-value indicates that discrimination
should be hard and we may easily arrive at wrong conclusions. It is now straightforward to
decide about the null hypothesis. We compute t and then apply a criterion. If the computed
t-value is greater than the criterion, we take that as evidence that the estimated difference

False Alarm
(Type I error)

H0 is true

Correct Rejection

Hit

H0 is false

Miss
(Type II error)

Decide there is

difference

Do not decide 
there is a 

difference

Fig. 3.4 Statistics is about making conclusions about a hypothesis. We have, similar to Chaps. 1
and 2, four outcomes. (1) The null hypothesis is false and we come to the conclusion that there is
a difference in the means (Hit), (2) the null hypothesis is false and we have insufficient evidence
against the null hypothesis (Miss, or Type II error). (3) The null hypothesis is true and we come
to the conclusion that there is a difference in the means (False Alarm, Type I error). (4) The null
hypothesis is true and we come to the conclusion we have insufficient evidence against the null
hypothesis (Correct Rejection)
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of means did not come from the noise-alone distribution: there is a difference between
the two means. If the computed t-value is smaller than the criterion, then we do not have
confidence that there is a difference between the two means. Maybe there is a difference,
maybe not. We do not make any conclusions.

In practice, different fields use different criteria, which reflects their relative comfort
levels with making Hits or False Alarms. For example, physics often follows the “5σ
rule,” which requires t > 5 to claim that an experiment has found sufficient evidence
that there is a difference between mean values. Compared to other fields, this is a very
high criterion; and it partly reflects the fact that physicists often have the ability (and
resources) to greatly reduce σ and s by improving their measurement techniques. In
particle physics, the Large Hadron Collider produces trillions of samples. Fields such
as medicine, psychology, neuroscience, and biology, generally use a criterion that (to
a first approximation) follows a “2σ rule.” This less stringent criterion partly reflects
the circumstances of scientific investigations in these fields. Some topics of interest are
inherently noisy, and the population differences are small. Simultaneously, the per-unit
cost for medical or biological samples is often much higher than for many situations in
physics; and in some situations (e.g., investigations of people with rare diseases) a large
sample size is simply impossible to acquire.

SDT also tells us that any chosen criterion trades off Hits and False Alarms, and the 5σ
and 2σ rules are no exception. Everything else equal, the 5σ rule will have fewer Hits than
the 2σ rule. Likewise, everything else equal, the 5σ rule will have fewer False Alarms than
the 2σ rule.

Rather than setting a criterion in terms of standard deviation σ , in many fields (including
medicine, psychology, neuroscience, and biology), scientists want to keep the Type I error
smaller than a certain value, e.g., 0.05. It should be clear why one wants to limit this
kind of error: it would cause people to believe there is an effect when there really is not.
For example, one might conclude that a treatment helps patients with a disease, but the
treatment is actually ineffective, and thus an alternative drug is not used. Such errors can
lead to deaths. From a philosophical perspective, scientists are skeptical and their default
position is that there is no difference: a treatment does not work, an intervention does not
improve education, or men and women have similar attributes. Scientists will deviate from
this default skepticism only if there is sufficient evidence that the default position is wrong.

Summary A Type I error occurs when there is no difference in the means, i.e. the null
hypothesis is true, but we decide there is one. The Type I error is a False Alarm in terms of
SDT. To decide about the null hypothesis, we compute t , which reflects the discriminability
in terms of SDT, and then apply a criterion.
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3.2.4 Type I Error: The p-Value is Related to a Criterion

Here, we show how the criterion determines the Type I error rate. Let us consider what
the sampling distribution of the difference of sample means looks like when the Null
hypothesis H0 is true, i.e., μNorth − μSouth = 0. The distribution is centered on zero with
a standard error that we estimated from our data. Suppose we set the criterion to t = 2.0,
which is often called the critical value (cv) and written tcv = 2.0. If our data produces a
t-value larger than tcv = 2.0, we will decide that there is a difference between the sample
means-even though there is none, i.e, a Type I error. The probability of such a t-value is
the area under the curve beyond tcv = 2.0 (see Fig. 3.5a). This kind of test is called a
“one-tailed t test”. Calculating this area (assuming large sample sizes) gives 0.0228. Thus,
if you use the criterion tcv = 2.0, you will make a Type I error with a probability of only

Fig. 3.5 The relation between criterion critical values and Type I error rates. The curve shows the
noise alone distribution, i.e., when the Null hypothesis is true. The distribution is centered at zero
and the variance is estimated from the data. (a) With a critical value of tcv = 2.0, the Type I error
rate is the area under the curve larger than tcv . This test is called a one-sample t-test. (b) With a
critical value of tcv = ±2.0, the Type I error rate is the area under the curve for scores more extreme
than ±2.0
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0.0228. If you followed the physics approach and used a 5σ rule, then tcv = 5 and the
Type I error rate is 0.000000287.

There is great flexibility in this approach. For example, you might suspect that Northern
and Southern trees have different heights, but have no guess as to which would be larger. In
this scenario, you might use a criterion tcv = ±2.0, where a t-value more extreme (further
from zero) than 2.0 would be taken as evidence that there is a difference in population
means. With this approach, the Type I error rate would be 0.0456, which is twice as large
as for the one-tailed test (see Fig. 3.5b). This test is called a “two-tailed t test”.

In the above example, we set a criterion and computed the Type I error for this criterion.
In statistics, usually, it is the other way around. We fix a Type I error rate and compute the
corresponding criterion t-value. For example, if we accept a 5% Type I error rate, the
corresponding criterion t-value is tcv = ±1.96 for the two-tailed t test if n is large.4

Rather than specify a certain t-value as the criterion, people compute the area under the
curve beyond the t-value computed from the data. This area is called the p-value (see
Fig. 3.6). Hence, we compute the t-value from the data and then the p-value. The p-value
tells how likely it is that, if the Null hypothesis is true, we obtain our t-value or an even
larger one. If the p-value is smaller than 0.05, we call the effect significant. Hence, to
control the Type I error rate one simply requires that the computed p-value be less than
the desired Type I error rate.

As mentioned, within medicine, psychology, neuroscience, and biology, a common
desired rate is 0.05. For large sample sizes and for situations where one considers both
positive and negative t-values (two-tailed t-test), a p = 0.05 corresponds to t = ±1.96.
Thus, setting the Type I error rate to 0.05 corresponds to setting a criterion of tcv = ±1.96.
This relationship is why these fields follow an (approximate) 2σ rule. Whereas the t-value
can be computed by hand, we need a statistics program to compute the p-value.

Summary If the t-value is larger than a certain value (which depends on the sample size
n), we conclude that there is a significant effect.

3.2.5 Type II Error: Hits, Misses

In general, SDT tells us that for a given d ′, setting a criterion not only determines the Type
I error rate, it also establishes the rate of Hits, Misses, and Correct Rejections. Indeed, it
is easy to see that using a criterion that sets the Type I error rate to 0.05 also determines
the Correct Rejection rate (the rate of concluding there is insufficient evidence for an
effect when there really is no effect) to be 1.0 − 0.05 = 0.95. As shown by the blue

4For small sample sizes, the tcv criterion is larger because the sampling distributions are not
quite Gaussian shaped. Statistical software that computes the p-value automatically adjusts for the
deviation of sampling distributions from a Gaussian shape.
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Fig. 3.6 The relation between t test statistics and p-values. (a) For a one-tailed test with t = 1.8,
the p-value is the area under the curve larger than 1.8, p = 0.0359. (b) For a two-tailed test with
t = 1.8, we compute the area more extreme than ±1.8 in both tails. Here the p-value is 0.0718

area in Fig. 3.7, for a given criterion the area under this alternative sampling distribution
to one side or the other corresponds to the probability of taking samples that produce
a Hit (exceed the criterion and conclude evidence for a difference of population means)
and Type II error (not satisfy the criterion and not conclude evidence for a difference of
population means).

Hence, it seems that it would likewise be easy to compute the Type II error rate.
However, this is not the case. When computing the Type I error, we know that the sampling
distribution corresponding to the Null hypothesis is centered at one value, namely, 0.
Hence, there is only one Null hypotheses. However, there are infinity many alternative
hypotheses (see Implication 2e). But perhaps, we are only interested in substantial
differences between the means of the North and South trees when the North trees are
at least 1.2m larger than the South trees. In this case, we know the minimal separation
between the population distributions and can ask the question how large the sample size n

must be to reach a significant result at least 80% of the time.
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Fig. 3.7 Sampling distributions and the calculation of the Hit rate. The criterion corresponds to the
lower end of the red hatched region and the lower end of the blue filled region. Any t-value that
falls above this criterion will lead to a decision to reject the H0 and conclude there is a difference in
population means. The area in blue is the probability that the Ha sampling distribution will produce
a t-value from this region. The Type I error rate is the red hatched area under the red curve

The Type II error plays an important role in terms of power. Power is the probability
to obtain a significant result when indeed there is an effect, i.e., the Alternative hypothesis
is true. Power is just another term for the Hit rate. The Hit rate is 1—Type II error rate.
Power will be crucial in Part III and further explained in Chap. 7.

3.3 Summary

The above considerations are fundamental for understanding statistics. For this reason, we
spell out the main steps once more and highlight the most important points. Even if you
did not go through the above subsections, the main ideas should be understandable here.

We were interested in whether the mean height of oak trees of the North rim of the
Alps is the same as for the South rim. The question is easy to answer. We just measure all
trees, compute the two means, and know whether or not there is difference. If we miss a
few trees, we obtain estimates, which are likely not too different from the true means. The
fewer trees we measure, the larger is the sampling error, i.e., the more likely it is that our
two sample means differ substantially from the two true means. As we have shown, this
sampling error can be quantified by the standard error sx , which depends on the population
standard deviation σ and the sample size n. If σ is small, we need only to sample a few
trees to get a good estimate of the mean. For example, if σ = 0 we need only to sample
one tree from each population because all trees have the same height in each population.
If σ is large, we need to sample many trees to get a good estimate of the mean.

Let us now collect a sample of n trees from both the North and the South rim of
the Alps with the samples being much smaller than the number of all trees in the two
populations. We compute the mean heights for both samples. Because of undersampling,
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almost surely there is some difference between the two sample means. However, we cannot
know whether the observed difference indicates that there is a real difference in the means
of the populations or whether the observed difference occurs because of undersampling
while the population means are actually identical. If the true means are identical but we
conclude, based on the sample mean difference, that the true means are different, we are
making a Type I error (Fig. 3.4). Scientists generally want to avoid making a Type I error
because their default position is that there is no effect until the data suggest otherwise. No
decision making process can avoid sometimes making a Type I error, but we can control
how often we make such an error. The important value is the t-value, which we can easily
compute by hand:

t = (xNorth − xSouth)

s

√
n

2
= d

√
n

2
(3.12)

We compute the sample means xNorth and xSouth from the n trees xi we collected, we
estimate the standard deviation s of the trees (see grey box), and multiply by a function
(the square root) of the sample size n/2. The right hand side shows that the t-value is
nothing else as an estimate of the effect size d multiplied with a function of the sample
size. The t-value tells us how easily we can discriminate whether or not a difference in
the sample means comes from a real difference of the population means. The situation is
exactly as in Chap. 2. The t-value is nothing else as a d ′ where, instead of dividing by the
standard deviation, we divide by the standard error, which is a measure of the sampling
error, taking both sources of noise, population variance and undersampling, into account.
A large t-value means we can easily discriminate between means and a small t-value
suggests the decision is hard. Note that a large t-value can occur because the estimated
effect size d is large, n is large, or both are large.

Assume that there is no effect, i.e., the mean height of the North and South trees is
identical (δ = 0), then the p-value tells us how likely it is that a random sample would
produce a t-value at least as big as the t-value we just computed. Thus, if we are happywith
a 5% Type I error rate and the p-value is smaller than 0.05, we call our mean difference
“significant”.

The p-value is fully determined by the t-value and is computed by statistics programs.
Most importantly, the t-value combines an estimate of the effect size d with the sample

size (
√

n
2 ), which is why the t-value, and hence the p-value, confounds effect and sample

size and, therefore, represents only partial information! This insight will be important to
understand several implications, which we present after the following example.
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3.4 An Example

Computing the p-value is simple, as the following short examplewill show. Understanding
the implications of the t-test is more complicated.

Let us assume that we collected the heights of five trees from the North and five trees
from the South. The data are presented in the first column of Fig. 3.8. The computations
for the two-tailed t-test are also presented in the figure. For the given sample sizes and the
computed t-value, our statistical software program tells us that the corresponding p-value
is 0.045. Since this p-value is smaller than 0.05, we conclude that the data indicates a
significant difference between the mean heights of Northern and Southern trees.5

Results from tests like this are often summarized in a table as presented in Table 3.1.
The p-value is in the column marked “Sig. (2-tailed).” In the table, degrees of freedom
(df) are mentioned. The degrees of freedom are important for the computation of the p-
value because the shape of the sampling distribution is slightly different from a Gaussian
for small sample sizes. In addition, one can compute the df from the sample size and
vice-versa. In the case of the t-test, df = n1 + n2 − 2 = 5 + 5 − 2 = 8.

As mentioned, significance does not tell you too much about your results. It is important
to look and report the effect size. Cohen proposed guidelines for effects sizes for a t-test,
which are shown in Table 3.2.

Take Home Messages

• Since the p-value is determined by the t-value, it confounds effect size (d) and
sample size (n). The original idea behind the t-test was to provide tools to
understand to what extent a significant result is a matter of random sampling,
given a certain effect size d . Nowadays, the p-value is often mistaken as a
measure of effect size, which was never intended and is simply wrong!

• Partial information: proper conclusions can only be based on both the estimated
population effect size, d , and the sample size, n. Hence, it is important to report
both values, to take both values into account for conclusions, and to understand
whether a significant result is driven by the estimated effect size d , the sample
size, or both.

5Alternatively, one could identify a critical value criterion, tcv = ±2.306 and note that t is farther
from zero than this critical value.
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Fig. 3.8 The computations for the independent samples t-test start with computing the means for
each data column (x̄North and x̄South shown at the bottoms of the first column). Using these, the
variances can be computed (s2North and s2South at the bottoms of the second column). The degrees
of freedom (df ) for each column is computed by taking the number of scores in the column minus
one. The pooled variance (s2p) is then computed by taking a weighted sum of the two variance terms
(weighting by the degrees of freedom). We then substitute the pooled variance into the formula for
the standard error sx̄North−x̄South

and use this in the denominator of our t formula. The numerator is
simply the difference between the means we calculated in our first step

Table 3.1 Output from a
typical statistical software
package

t df Sig. (2-tailed) Cohen’ s d

Tree height 2.373 8 0.045 1.5 (large effect)

The columns labeled t, df, and Sig. (two-tailed) yield the t-
value, its corresponding degrees of freedom, and p−value

respectively. The df value reported here is the sum of dfN and
dfS (i.e., 4 + 4 = 8)

Table 3.2 Effect size
guidelines for d according to
Cohen

Small Medium Large

Effect Size 0.2 0.5 0.8

3.5 Implications, Comments and Paradoxes

For the following implications, Eq. 3.12 is crucial, because it tells us that the t-value and,
thus the p-value, are determined by the estimated d and the sample size n.
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Implications 1 Sample Size

Implication 1a According to Eq. 3.12, if the estimated d �= 0, then there is always an n for
which the t-test is significant. Hence, even very small effect sizes can produce a significant
result when the sample size is sufficiently large. Hence, not only large effect sizes lead to
significant results as one might expect, any non-zero effect size leads to significant results
when n is large enough.6

Implication 1b If the estimated d �= 0 (and d < 4.31), then there are sample sizes n < m,
for which the t-test is not significant for n but is significant for m.7 This pattern may seem
paradoxical if you read it as: there is no effect for n but there is an effect for m. However,
this is not the correct reading.We can only conclude that for mwe have sufficient evidence
for a significant result but insufficient evidence for n. From a null result (when we do not
reject the null hypothesis) we cannot draw any conclusions (see Implication 3). We will
see in Part III that this seeming paradox points to a core problem of hypothesis testing.

Implication 1c. Provocative Question Isn’t there always a difference between two con-
ditions, even if it is just very tiny? It seems that, except for a few cases, the difference
between population means μ1 −μ2 is never really zero. How likely is it that the North and
South tree means are both exactly 20.2567891119m? Hence, we can always find a sample
size n such that the experiment is significant. Why then do experiments at all?

Implications 2 Effect Size

Implication 2a As mentioned, the p-value is not a measure of the population effect size
δ and, for each d �= 0, there is a n for which there is a significant outcome. Thus, small
effects can be significant. According to a study, consuming fish oil daily may significantly
prolong your life. However, it may prolong your life by only 2min. Do you bother?

Implication 2b By itself, the p-value does not tell us about the effect size. For example,
when the sample size increases (everything else equal), the p-value decreases because the
variance of the sampling distribution becomes smaller (see Fig. 3.3). Thus, if the effect
size d is exactly the same, the p-value changes with sample size.

6We can describe the situation also as following. If there is a real effect d �= 0, e.g., between the tree
means, we can find a sample size n, for which we obtain a significant result in almost all cases (or
with a certain high probability).
7If d > 4.31 you do not need to compute statistics because the difference is so large. In this case,
even n = 2 leads to a significant result.
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Null hypothesis is true

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Fig. 3.9 In terms of effect size, the null hypothesis is represented by exactly one point, the null
point. All other, infinitely many, points belong to the H1 hypothesis

Implication 2c The p-values of two experiments A and B may be exactly the same.
However, one cannot draw conclusions from this fact. For example, it may be that
experiment A has a large effect size d and a small sample size and vice versa for
experiment B. Hence, one can never compare the p-values of two experiments when the
sample size is not the same. Likewise, a lower p-value in experiment A than B does not
imply a larger effect size. The sample size might just be higher.

Implication 2d A study with a small sample size leading to a small p-value indicates a
higher estimated effect size than a study with a larger sample size and the same p-value.

Implication 2e Just to reiterate and to visualize the basic situation. The worst case scenario
is when the null hypothesis is true, i.e., there is no difference between means, and we
conclude there is one: making a Type I error. In this caseμ1−μ2 = 0. If the null hypothesis
is not true, μ1 − μ2 is not 0 and can be a value from −∞ to +∞ in principle. All of these
values are part of the alternative hypothesis that there is a difference between the North and
South trees. Hence, when we are worrying about the Type error I and the null hypothesis,
we are worrying about only one single point embedded in infinitely many other points (see
Fig. 3.9).

Implications 3 Null results

Implication 3a Absence of proof is not proof of absence: one can never conclude that
there is no effect in an experiment (d = 0) when there was no significant result. A non-
significant p-value indicates either that there is no difference or a real difference that is too
small to reach significance for the given sample size n.

Implication 3b A difference of significance is not the same as a significant difference.
Consider a study measuring the effect of a cream containing Aloe Vera on skin eczema.
Patients with eczema are randomly assigned to two groups: one receiving the cream with
Aloe Vera and one receiving a placebo cream. After 4 weeks, the size of the eczema is
measured again. There was a significant reduction in the Aloe Vera group but not in the
placebo group (Fig. 3.10). It might be tempting to conclude that the study demonstrates
that Aloe Vera cures eczema. However, there is a reduction in the placebo group too—
just smaller (which may be due to self-healing). In fact, when we compute the difference
in eczema reduction for each participant in both groups and compute a two-tailed t-test
between the two groups, the difference is not significant.
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Fig. 3.10 An Aloe Vera cream was given to an experimental group and a placebo to a control group
to study whether Aloe Vera can reduce the effects of eczema. The strength of eczema was tested at
the beginning of the experiment and after 4 weeks. The plot shows the mean value of eczema strength
for each group at each measurement. The error bars indicate the standard error for each mean value.
Eczema strength significantly reduced in the experimental group but not in the control group. Can
we conclude that Aloe Vera reduces eczema?We cannot because eczema strength reduced also in the
control group potentially because of self-healing. Actually, there was no significant effect when the
improvements in both groups were compared with a two-tailed t-test. A difference of significance
is not the same as a significant difference. The graph shows the mean values and corresponding
standard errors (see grey box “Some definitions”)

One might argue that with a larger sample size, the difference between the two groups
might become significant. This may indeed be true. However, also the effect in the placebo
group may become significant. What should we conclude? Contrary to intuition, this
situation does not constitute a problem because we can ask whether or not there is a
stronger effect in the Aloe Vera than the placebo condition (thus, discounting for the self-
healing).

Importantly, the example shows that it often makes very little sense to compare
statements such as “there was an effect in condition A but not in condition B”. Such
conclusions are ubiquitous in science and should be treated with great care (see also
Chap. 7). The classic example is as in the Aloe Vera case to compare an intervention
condition, where a significant results is aimed to occur, with a control condition, where
a Null result is aimed for.

Implications 4 Truth, Noise and Variability

Implication 4a Why do we compute statistics? Often it is implicitly assumed that statistics
“clears off” the noise that is inevitable in complex systems. In the submarine example
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measurements are corrupted by changes in the water, such as fish, algae, or the device
itself, which randomly fluctuate. This kind of noise is called measurement noise. All these
noise sources compromise the true signal from the rock and the true signal when there is
no rock. The situation can be described with the following equation:

xj = μ + εj

where xj is the outcome in the j th measurement, μ is the true signal, and εj is the noise,
which changes from trial to trial. Usually it is assumed that εj is Gaussian distributed with
a mean of zero. Thus, basing decisions on one trial is not a good idea. As mentioned,
averaging across many measurements can clear off the noise. That’s why it is better to
compare mean values than single measurements. As we have seen, the larger the n, the
better the measurement of the mean.

This kind of model is appropriate in many fields, such as physics. However, in biology,
medicine and many other fields, the situation is often quite different. For example, we
might determine the strength of headaches before and after a pain killer was consumed.We
find that the drug decreases headache strength on average. However, as with most drugs,
there may be people who do not benefit from the drug at all. In addition, some people
receive more benefit than others, i.e., for some people headaches may almost disappear
while for others there is only a small (or even opposite) effect. These person-specific
effects might hold for all days and situations.

Person-specific effects can be described with the following equation:

xij = μ + vi + εij

where xij is one measurement, e.g., person i taking the pain killer at day j . μ is the
mean value of the entire population, e.g., to what extent the drug decreases headaches on
average. vi is the sensitivity of the person i for the pain killer. As mentioned, some people
always benefit strongly from the drug, while for others there is no effect, and for even
others headaches always increase when taking the pain killer. Hence, vi determines how
much one person differs from other persons—and the mean μ. εij is measurement noise
and reflects, for example, to what extent the pain killer leads to different effects from day to
day in the very same person. In some way, εij indicates unsystematic variability, whereas
vi captures systematic variability. Just as another example. A person may have a higher
blood pressure than someone else, and this difference is reflected by the inter-participant
variability vi . At the same time, blood pressure varies greatly from minute to minute in the
very same person, and this difference is reflected by εij , the intra-participant variability.

In many experiments, one cannot easily disentangle vi and εij . Both terms contribute to
the estimated standard deviation of the population distribution, s. From a mathematical
point it does not matter whether there is strong inter-participant variability or strong
measurement noise. However, for interpreting the statistical analysis, the distinction is
crucial. Assume there is a strong beneficial effect of the pain killer for half of the
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populationwhereas there is a smaller detrimental effect for the other half of the population.
On average, the drug has a positive effect and this effect may turn out to be significant.
Importantly, whereas the drug is beneficial on average, this is not true individually. For
half of the population, the effect is detrimental and it is not a good idea to use the pain
killer. Hence, when vi is not zero, significant results do not allow conclusions on the
individual level. A study may show that carrots are good for eye sight on average. Whether
this is true for you is unclear. Carrots may actually deteriorate your vision, even though
they help the vision of other people. These considerations do not imply that such studies
are wrong, they just show the limitations of studies where vi �= 0 for some i. For an
international comparison of blood pressure values, average values are good. However, it
is usually not a good idea to compare yourself to such a large group, whatever is being
measured. Such a sample is not only heterogeneous across the regions but also contains
people of different ages. A body mass index of 27 may be an issue for children below
5 years but not necessarily for people older than 70 years. Hence, it depends very much
on the research question to what extent a mean comparison makes sense. It is a matter of
interpreting statistics, not of computing statistics.

Implication 4b The above considerations have philosophical implications. Usually, we
assume that something is either the case or it is not the case. Either gravity acts on all
matter in the entire universe, or it does not. Either oxygen is necessary for humans, or it is
not. All of these facts hold true for each individual, i.e., for each element in the universe, for
all humans, etc. If a fact has been proven by methods involving statistics, this conclusion
is not necessarily justified when vi is different from 0 because the results hold true only on
average, not necessarily for all individuals.

Implication 4c The variability vs. noise problem becomes even more serious when the
study contains a non-homogeneous sample differing systematically in a feature that is not
explicitly considered. For example, based on how often they go to the doctor, it seems that
shorter students are ill more often than taller students. However, this fact has nothing to do
with body size. It is simply the case that female students are shorter than male students on
average and see the gynecologist much more often than male students see the urologist.
However, females see the gynecologist mainly for preventive medical checkups and are
by no means more often ill than male students. Since students generally see doctors very
infrequently, visits to the gynecologist weigh strongly in the statistics. It is obvious how
mis-interpretations can occur even in such simple examples. In more complex situations
such mis-interpretations are less easy to spot. By the way, one should question whether it
is good idea to make conclusions about illness frequency based on doctor visits.

Implication 4d One can also consider the variability vs. noise problem the other way
around. When you are planning an experiment, you need to specify whom to include.
To be representative, it is good to sample from the entire population, e.g., from all
people in a country or even world wide. However, with this procedure, you may include
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a heterogeneous population, which makes conclusions difficult. Should you include
astronauts or coma patients? What about ill people? The large portion of people with too
high blood pressure? The more subpopulations you exclude, the less representative is your
sample. Eventually, your sample may include only you.

Implication 4e As a last point. Effects often depend on dosage, i.e., different people may
respond differently to different dosages. A pain killer may have beneficial effects for some
people in a low dosage but be detrimental for a higher dosage. Hence, there is not only
systematic inter-person variability but also systematic intra-person variability in addition
to the unsystematic noise εij . In many experiments, there are many sources involved, i.e.,
effects depend on dosage, inter-individual differences, and noise—limiting conclusions
strongly. As we will see, dosage dependent effects are best described by correlations
(Chap. 8) rather than by t-tests.

Implications 5a The Statistics Paradox and the Dangers of Cohort Studies

For large effect sizes, as they occur for example in physics, we often do not need to
compute statistics. Likewise, the hypothesis that elephants are on average larger than ants
does not need statistics because any living elephant is larger than any ant, δ is extremely
large. The original idea of statistics was to determine whether a “bit noisy effect” really
exists and to determine the sample sizes n needed to show that indeed the effect is real. We
may say that statistics was developed for medium effect sizes and medium sample sizes.
In the past it was usually impossible to obtain significant results with small effect sizes
because data were scarce and handling large sample sizes was cumbersome. Hence, n was
usually small and only experiments with large effect sizes produced significant results.
This has changed largely because data collection has become cheap, and it is possible
to combine and handle millions of samples as, for example, in genetics. For this reason,
nowadays statistics is widely used not only for medium effects but also for very small
effect sizes. However, this development is not free of danger. First of all, large sample
sizes should not be confused with large effect sizes (Implication 2a). Second, conclusions
are often very difficult to draw, particularly, in so called cohort studies. In cohort studies,
for example, patients are compared with controls, or vegetarians are compared with meat
eaters. The two groups are defined by a given label.

Here is an example. Starting in 1948, blood pressure was measured for 5209 partic-
ipants in the small city of Framingham in Massachusetts. Participant age is plotted in
Fig. 3.11 on the x-axis and the systolic blood pressure on the y-axis. Data were split
depending on the level of education. First, there is a clear effect of age. Second, more
education is associated with lower blood pressure. Using statistical techniques described
in Chap. 6, the effect of education turned out to be significant. Does this mean that
prolonged education causes lower blood pressure? Likely not. Maybe people with more
education smoke less. Maybe, maybe not. They may smoke fewer cigarettes per day
(dosage dependent). Maybe, maybe not. They may have started smoking later or quit
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Fig. 3.11 Mean systolic blood pressure for three populations of people from the city of Framingham
inMassachusetts, USA, as a function of age. The error bars indicate the standard error for each mean.
The three populations differ in the number of years of education. Blood pressure increases with age.
In addition, blood pressure is lowest for the group with the most years of education and is highest
for the group with the fewest years of education. What can we conclude? As we argue below: not
too much. Data are re-plotted from Loucks et al. [1]

earlier. Nutrition may play a role. Sports. The work environment. Genetics. Maybe there
is a small subgroup, who works under very unhealthy conditions, which alone causes the
higher blood pressure. There are so many potential factors, many of which are unknown
today and will be discovered in the future: tangerines in your diet may lower blood
pressure. Moreover, combinations of factors may play a role. Perhaps nutrition only plays
a role when people do no sports.

The difference in blood pressure between the different education groups is only about
2mm Hg. To put this effect size into perspective, measure your blood pressure and repeat
5min later. You will see that 2mmHg is very small compared to your intra-person variance
(εij ) and very low compared to the large range of inter-person variability (vi). In addition,
blood pressure strongly changes during activity. Maybe there is only a difference when
the blood pressure is measured during rest. Maybe, maybe not. The main problem with
these, so called, cohort studies is that there are too many factors that are causally relevant,
but cannot be controlled for. To control for all these effects and the combinations, sample
sizes may need to be larger than the number of people on the planet. In addition, is it really
worth investigating 2mm Hg? If you want to lower your blood pressure, a little bit of sport
might do a good job and is much cheaper than paying thousands of dollars for education.
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Implications 5b. Small Effects Sizes As shown, studies with small effect sizes require extra
care. However, small effect size are not always problematic. First, it is good to reduce
the side effects of a drug that is consumed by millions of people, even if it is only by
1%. Second, many important discoveries started off with small effects; but subsequent
investigations refined the methods and produced bigger effects.

Implications 5c. Conclusions Importantly, both small and large sample sizes can be prob-
lematic. It is well known that small sample sizes are a problem because of undersampling.
It is less well understood that large sample sizes may be as problematic when effect
sizes are small because even tiny differences may become significant. In particular, cohort
studies with small effects sizes and large sample sizes are often useless because small
correlations between the investigated factor and unrelated factors can create significant
results. For this reason, it is important to look at both the effect size and the sample size.
Whereas the sample size n is usually mentioned, this is not always true for effect sizes.
For the t-test, the effect size is often expressed as Cohen’s d (see also Chap. 4). In the
following chapters, we will introduce effect sizes for other tests.

How to Read Statistics? For different samples, the estimate of the effect d’ may vary
strongly. The larger the sample size n the less variance is there and the better is the
estimate. Hence, first, look whether n is sufficiently large. If so, decide whether the effect
size is appropriate for your research question. Tiny effect sizes are only in some cases
important and may come from confounding, unidentifiable factors. In Part III, we will see
that the combination of sample size and effect size can give interesting insights into the
“believability” of a study. For example, we will ask how likely it is that four experiments,
each with a small sample and effect size, all lead to significant results with p-values just
below 0.05.

Take Home Messages

1. Even small effect sizes lead to significant results when the sample size is
sufficiently large.

2. Do not compare the p-value of two experiments if n is not identical: a smaller p

does not imply more significance.
3. Statistical significance is not practical significance.
4. Absence of proof is not proof of absence: avoid conclusions from a Null result.
5. Do not pit a significant experiment against a non-significant control experiment.
6. Cohort studies with small effects are usually useless.
7. A statement like “X is true” can only be true for sure if inter-subject variability is

zero.
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