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What YouWill Learn in This Chapter

This chapter uses the power analyses from Chap. 7 and the meta-analytic methods
from Chap. 9 to identify improper statistical analyses in published findings. The basic
idea is simple. Unless the power is very high, we know that even real effects will not
always produce significant outcomes simply due to random sampling. If power is only
moderate but all studies are significant, the reported results seem too good to be true.
Our considerations have a crucial implication: replication cannot be the final arbiter
for science when hypothesis testing is used, unless experimental power is very high.
Chapter 11 shows how such results can be produced even when scientists are trying to
do everything properly.

10.1 The Replication Crisis

Across all sciences, replication is considered to be the “gold standard” for demonstrating
important findings. Should a colleague happen to doubt the veracity of your empirical
claim a surefire way to shut him down is to demonstrate that the effect can be consistently
reproduced. The demonstration is especially effective if an independent lab replicates the
effect. Along similar lines, if an independent lab reports that an effect cannot be replicated,
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Fig. 10.1 Each point corresponds to a pair of p-values for an original study and its replication.
While almost all original studies produced p < 0.05, very few replication studies produced such a
small p-value. The figure is reproduced from Open Science Collaboration [1]. Please note the highly
different scales of the x- and y-axes. The x-axis shows values in the range from 0.0 to 0.1, while the
y-axis goes from 0.0 to 1.0. There is no obvious relationship between the p-values of the original
and reproduction studies. A good result would have found that the p-values of the replication studies
were smaller than 0.05, i.e., all black dots should be below the dashed horizontal line

there tends to be vigorous discussion about whether the correct procedures were followed
and what the results mean. Successful replication is highly valued, and is taken as strong
support for a scientific claim.

Unfortunately, many fields do not seem to be doing well with regard to replication. A
group of psychologists, called the Open Science Collaboration [1], conducted replications
of 97 studies that were published in three top journals. In their 2015 report, only 36%
of the replication studies produced results consistent with the original studies. Each point
in Fig. 10.1 plots the reported p-value for a replication study against the p-value for the
original study. The dashed vertical line indicates the 0.05 criterion for the original studies,
and almost all original studies reported a p-value below this criterion. This is not surprising
because usually only significant results are published. The dashed horizontal line indicates
the 0.05 for the replication studies, and almost all studies reported p-values above this
criterion. The shocking result is that there hardly seems to be any relationship between
the original study p-value and the replication study p-value. For example, some original
studies reported p-values much smaller than 0.01 but the replication results yield p-values
close to 1.0. Even worse, many of the replication studies had larger sample sizes than
the original studies, and so should have produced smaller p-values, as we emphasized in
Chap. 3 (Implication 2d).
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Replication problems are not limited to psychology. In 2012, researchers at the biotech
firm Amgen reported that they were unable to reproduce findings in 47 out of 53 landmark
papers involving cancer research. There is an on-going effort by academic researchers to
run replication studies similar to what was done by psychologists. The early results of that
effort do not seem better than the replication results in psychology. For many people the
lack of replication success in these studies indicates extremely serious problems that are
sometimes referred to as a “replication crisis.”

We agree that the problems are serious. However, we propose that rather than looking
at new replication studies and wonder why they do not succeed, it is easier to look at the
original published results and show that they never made sense.

Consider the following two phenomena that have been studied with multiple experi-
ments.

• Phenomenon A: Nine of the ten experiments produced significant results, so it has a
replication success rate of 0.9.

• Phenomenon B: Ten of the nineteen experiments produced significant results, so it has
a replication success rate of 0.53.

If you follow the view that successful replication is a good guide for veracity, then
the experimental outcomes definitely favor phenomenon A over phenomenon B. Neither
phenomenon shows perfect replication, but we know from Chaps. 3 and 7 that not every
experiment should work. Even so, phenomenon B only replicates about half the time, so
we might even wonder whether the effect is real.

The problem with this interpretation is that phenomena A and B correspond to real
investigations. Phenomenon A refers to what is known as precognition: the ability of
people to get information from the future and use it in the present. A paper published in a
top journal in 2011 reported that nine out of ten studies produced significant evidence for
precognition. Despite the reported findings, very few scientists believe that precognition is
a real effect; largely because its existence would undermine the very successful theory of
general relativity. Thus, we are left to conclude that a high replication rate is not always
sufficient to cause people to believe in the veracity of the effect.

Likewise, phenomenon B refers to what is known as the bystander effect: a tendency
for people to not provide help to someone if there are other people around who could
also provide help. Experiments on the bystander effect are rather difficult to run because
one needs to have collaborators who pose as people needing help and other collaborators
who pose as people who are around but not providing help. For this reason, these studies
tend to use relatively small sample sizes. As a result, it is not uncommon for a study on the
bystander effect to not produce a significant result. Even so, pretty much everyone believes
that the bystander effect is a real phenomenon. Thus, we are left to conclude that a high
replication rate is not always necessary to cause people to believe in the veracity of the
effect.
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We seem to be left with an odd situation. Scientists cite replication as a gold standard for
judging the veracity of effects, but when faced with actual sets of experiments, replication
seems neither sufficient nor necessary to establish veracity. It makes one wonder why
scientists bother running experiments at all!

The way out of this odd situation requires a better understanding of statistics and
replication. In the next subsection, we show that experiments should not always replicate,
in particular, when effect and sample sizes are small. Replication success should reflect
the estimated success probabilities of experiments. We should worry when experiments
replicate too often.

10.2 Test for Excess Success (TES)

A set of experiments should succeed at a rate that follows the probability of success. Let
us see whether that holds true for the precognition studies.

In the precognition study, each experiment was analyzed with a one-tailed, one-sample
t-test. Table 10.1 lists the sample size for each experiment and the standardized effect
size (Hedge’s g). We use the meta-analytic techniques described in Chap. 9 to compute a
pooled estimate of the standardized effect size. Doing so gives g∗ = 0.1855. Doing the
meta-analysis here is appropriate because the author of the studies used a similar analysis
to provide partial support for his theoretical claim that precognition exists. Our pooled
effect size, g∗, is our best estimate of the effect size, and we can use it to estimate the
power of each individual experiment as described in Chap. 7. The last column in Table 10.1
shows the estimated power based on this meta-analytic effect size. Consistent with the
observations about power made in Chap. 7, power values rise and fall with sample size.
Experiment 9 (n = 50) is expected to have the smallest power (0.36) and Experiment 7
(n = 200) is expected to have the highest power (0.83). About half of the experiments
(those with n ≈ 100) have power values a bit above one half.

Table 10.1 Statistics for ten
experiments that purported to
find evidence for precognition

Sample size (n) Effect size (g) Power

Exp. 1 100 0.249 0.578

Exp. 2 150 0.194 0.731

Exp. 3 97 0.248 0.567

Exp. 4 99 0.202 0.575

Exp. 5 100 0.221 0.578

Exp. 6a 150 0.146 0.731

Exp. 6b 150 0.144 0.731

Exp. 7 200 0.092 0.834

Exp. 8 100 0.191 0.578

Exp. 9 50 0.412 0.363
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Suppose a scientist decided to replicate this set of ten experiments with the very same
sample sizes as in the original report. If we accept the pooled effect size as a good measure
of the precognition effect, then the expected number of successful outcomes in a set of
ten experiments like these is the sum of the power values across the ten experiments.
For example, if the power of each experiment is 1.0, then the number of significant results
must be 10, the sum of the power values. For the studies in Table 10.1 the sum of the power
values is 6.27. Hence, the experiments should have replicated 6.27 times. That expected
degree of success is quite a bit lower than the 9 out of 10 success reported in the original
investigation.

How likely is it to get 9 or 10 significant results for this effect? Doing something like a
hypothesis test, we can estimate the probability of getting 9 or more successful outcomes
from 10 experiments like these. We do not have to get exactly the 9 successes reported
in the original report, any 9 out of 10 experiments will do. We compute the success
probability by identifying all 11 combinations of experiments that demonstrate 9 or 10
successful outcomes. For each combination, we compute the probability of that particular
result by multiplying the power of each successful experiment and the complement of
power for each unsuccessful experiment. We then add up all those probabilities to get
0.058. That is, if the effect is real and similar to what was reported, a scientist doing
a precise replication of the original ten experiments has only around a 6% chance of
having the same degree of success as claimed in the original report. If replication success
is supposed to guide our belief in the veracity of experimental results, this low rate seems
like a serious problem.

Moreover, the low estimated replication rate begs the question of how the original
author was able to produce such a high success rate. Given what we now know (from
those studies) about the effect of precognition, it is very strange that those ten experiments
were so successful. It is so strange that we can suspect that something went wrong in this
set of experiments. We may never know exactly what happened in this set of experiments
(even the original researcher might not know), but the burden of proof is on the researcher
presenting the results. Perhaps there is a true precognition effect, but these studies do not
provide good scientific evidence for it.

What if we apply the same kind of analysis to phenomenonB, where ten out of nineteen
studies found statistically significant results for the bystander effect? Following the same
basic approach, the pooled standardized effect size is −0.47, where the negative number
indicates the presence of the bystander effect. That pooled effect size can be used to
estimate the power for each of the nineteen experiments. The power varies from 0.2 to
nearly 1.0 because several experiments had as few as 24 participants and one experiment
had 2500 participants. Across all nineteen experiments, the sum of the power values is
10.77. Thus, we would expect to see around 11 significant results for experiments like
these; and the nineteen experiments actually produced 10 significant results. Thus, the
set of experimental results investigating the bystander effect seems believable, because
the rate of success matches the estimated magnitudes of the effect and sample sizes of
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the experiments. The estimated probability of observing 10 or more significant results for
studies like these is calculated to be 0.76.

10.3 Excess Success from Publication Bias

The previous subsection described the Test for Excess Success (TES), which examines
whether the reported success rate of a set of experiments agrees with the estimated
magnitude of the effect and the sample sizes of the experiments. If there is a big mismatch,
then the TES suggests that there is a problem with the set of experiments, a problem with
the analyses, or a problem with the theoretical claims based on the data/analyses. This
subsection and the next use simulated experiments to show how it might happen that there
is too much replication. This subsection considers the impact of publication bias: selective
publishing of significant findings and suppression of non-significant findings.

Table 10.2 summarizes statistics from 20 simulated experiments that were each
analyzed with a two-sample t-test. Each experiment had a simulated control group, for
which there was no effect. For this group, scores were drawn from a normal distribution
with a mean of zero and a standard deviation of one. For a simulated experimental group,
scores were drawn from a normal distribution with a mean of 0.3 and a standard deviation
of one. Hence, the population standardized effect size is δ = 0.3. Sample sizes were the
same for the two groups, n1 = n2. The sample sizes were drawn at random from a uniform
distribution between 15 and 50.

The second column in Table 10.2 shows the t-value for each simulated experiment.
The bolded t-values indicate statistical significance, as the p-values are less than the 0.05
criterion. There are five significant experiments. How does the success rate of five out
twenty do when investigatedwith the TES?We can treat the simulated data in a way similar
to the studies on precognition and the bystander effect. When we pool the effect sizes
across all twenty experiments, we get g∗ = 0.303. This estimated value is very close to the
true value of 0.3, which simply demonstrates that meta-analysis works if all experiments
are included in the analysis. We can use the pooled effect size to estimate power for
each experiment, with the results reported in column 4 of Table 10.2. Summing these
power values gives 4.2, and the probability of such experiments producing five or more
significant outcomes is 0.42. There is no commonly agreed criterion for an appropriate
success probability, but many people get concerned if the probability is less than 0.1.When
both significant and non-significant experiments contribute to the analysis, the success rate
tends to be consistent with the estimated power values. So far, so good.

Now suppose that a researcher practices a form of publication bias so that only the
significant experiments (bolded t-values in Table 10.2) are published and available for
further investigation. If we pool only the effect sizes for the five published experiments,
we get g∗ = 0.607, which is double the population effect size. This makes sense because
those significant experiments must have a relatively large t-value. Since the effect size is a
function of the t-value, these experiments must also have an unusually large estimated



10.4 Excess Success from Optional Stopping 117

Table 10.2 Statistics from
twenty simulated experiments
to investigate the effects of
publication bias

Power from Power from

n1 = n2 t Effect size pooled ES biased ES

29 0.888 0.230 0.206

25 1.380 0.384 0.183

26 1.240 0.339 0.189

15 0.887 0.315 0.126

42 0.716 0.155 0.279

37 1.960 0.451 0.251

49 −0.447 −0.090 0.318

17 1.853 0.621 0.138

36 2.036 0.475 0.245 0.718

22 1.775 0.526 0.166

39 1.263 0.283 0.262

19 3.048 0.968 0.149 0.444

18 2.065 0.673 0.143 0.424

26 −1.553 −0.424 0.189

38 −0.177 −0.040 0.257

42 2.803 0.606 0.279 0.784

21 1.923 0.582 0.160

40 2.415 0.535 0.268 0.764

22 1.786 0.529 0.166

35 −0.421 −0.100 0.240

Bolded t values indicate statistical significance (p < 0.05)

effect size. Hence, one impact of a publication bias is that the published studies can
dramatically overestimate the magnitude of effects. Using the overestimated effect size to
compute power for each experiment produces the values in the last column of Table 10.2.
These values are dramatically larger than the true power values because they are based
on a gross overestimate of the effect size. Nevertheless, the power values sum to 3.13,
which indicates that out of five published experiments like these we would expect around
three significant results. In reality, all five experiments produced significant results, and
the probability that all five experiments would produce a significant result is the product
of the power values, which is 0.081. For many people this is such a low probability (e.g.,
less than 0.1) that they would doubt the validity of the published results.

10.4 Excess Success fromOptional Stopping

As mentioned in Chap. 4, a requirement for the t-test is that the sample sizes for the two
groups are fixed before the experiment. In practice, however, it is very common for a
sample to not have a fixed size. Consider the following situation. A scientist gathers data
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from two populations and ends up with n1 = n2 = 10 scores in each sample. The scientist
runs a t-test and computes p = 0.08. This p-value does not fall below the 0.05 criterion
that is used for statistical significance, but it looks promising. Oftentimes researchers in
this situation decide to gather ten more scores, so that they now have n1 = n2 = 20 scores
in each sample. Suppose that when the t-test is run on this larger sample it produces p =
0.04, which indicates statistical significance. This sounds good: more data gives a better
answer. Unfortunately, this kind of procedure can dramatically inflate the Type I error rate.
One problem is that this procedure involves multiple tests. Each test has some probability
of producing a Type I error. As shown in Chap. 5, with multiple tests the probability of
at least one of them making a Type I error is higher than the probability of a single test
producing a Type I error.

The more serious problem with this procedure is that data collection is stopped once
a desired result has been found. As additional observations are added to the original data
set, a conclusion of significance may switch to non-significance, and vice-versa. If the
decision to add data is tied to finding a significant result (e.g., no more data is collected
once p < 0.05), then the data collection process is biased toward producing significant
outcomes. This kind of procedure is called “optional stopping,” and it increases the Type
I error rate. An unscrupulous scientist who started with n1 = n2 = 10 and added one
observation to each data set until getting a significant outcome (p < 0.05) or a maximum
of n1 = n2 = 50 would have a Type I error rate over 20%.

It is important to recognize that the problem here is not with adding data but with
stopping data collection because the Type I error rate refers to the full procedure. Thus,
optional stopping is a problem even if the first data set happens to produce a significant
result, but the scientist would have added more subjects to a non-significant data set.
Importantly, if a researcher does not have a specific plan for data collection, then it
is impossible to compute the Type I error rate. This is why the standard approach to
hypothesis testing assumes a fixed sample size.

The TES is sensitive to a set of studies where researchers followed this kind of improper
approach, and it is fruitful to look at simulated experiments to get some intuition on
what happens. Table 10.3 summarizes statistics from 20 simulated experiments that were
analyzed with a two-sample t-test. For both the control and experimental groups, the
sample sizes n1 and n2 were the same. Scores were drawn from a normal distribution
with a mean of zero and a standard deviation of one. Hence, the population effect size is
δ = 0; there is truly no effect here.

To simulate optional stopping, each sample started with n1 = n2 = 15 scores. A t-test
was run on that data and if a significant result was found, the experiment was stopped and
reported. If the t-test did not find a significant result, one more data point was sampled
for each group and the t-test was repeated. This process continued up to a sample size of
n1 = n2 = 100, where the result was reported.

Since the population effect equals zero, we would expect to get, on average, one
significant outcome from twenty simulated experiments (see Chap. 5). The four bolded
t-values in Table 10.3 indicate statistical significance, which is a much higher rate (20%)
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Table 10.3 Statistics from
twenty simulated experiments
to investigate the effects of
optional stopping

Power from Power from

n1 = n2 t Effect size pooled ES file drawer ES

19 2.393 0.760 0.053 0.227

100 0.774 0.109 0.066

100 1.008 0.142 0.066

63 2.088 0.370 0.060 0.611

100 0.587 0.083 0.066

100 −1.381 −0.195 0.066

100 −0.481 −0.068 0.066

100 0.359 0.051 0.066

100 −1.777 −0.250 0.066

100 −0.563 −0.079 0.066

100 1.013 0.143 0.066

100 −0.012 −0.002 0.066

46 2.084 0.431 0.057 0.480

100 0.973 0.137 0.066

100 −0.954 −0.134 0.066

100 −0.136 −0.019 0.066

78 2.052 0.327 0.062 0.704

100 −0.289 −0.041 0.066

100 1.579 0.222 0.066

100 0.194 0.027 0.066

Bolded t values indicate statistical significance (p < 0.05)

than the intended 5%. A simple computation, using the binomial distribution, shows that
the probability of getting four or more significant experiments in a set of twenty is 0.016
when each experiment has a 5% chance of producing a significant result. All of the non-
significant experiments in Table 10.3 have sample sizes of 100 (the maximum possible
sample size) because that is the nature of the optional stopping procedure.

Computing the pooled effect size across all twenty experiments finds g∗ = 0.052,
which is very close to the population effect size of zero. Contrary to the effect of
publication bias, optional stopping does not bias estimates of the effect size. Likewise, if
we use that estimated effect size to calculate power for each experiment, we get values
ranging from 0.053 to 0.066, which are all just above the 0.05 significance criterion
because the estimated effect size is just larger than zero. Still, the reported results seem
too good to be true. Adding up the power values for all twenty experiments gives just 1.28,
so we would expect to find around one significant experiment among twenty experiments
like these. The probability of experiments like these producing four or more significant
outcomes is calculated from the power values as 0.036. This result (correctly) indicates
some kind of problem in the set of experiments: the rate of success is larger than it
should be.
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The last column of Table 10.3 shows power values based on only the significant
experiments in Table 10.3. Here, we suppose that the non-significant experiments were
not published (publication bias). In that situation the TES analysis has to work with only
the four reported significant experiments. The pooled effect size estimate is g∗ = 0.4,
which is dramatically larger than the true value of zero. As a result of this overestimate of
the effect size, the power values for the four significant experiments are also dramatically
overestimated. Nevertheless, adding up those four power values indicates that four
experiments like these would be expected to produce around two significant outcomes.
The probability of all four experiments producing significant outcomes is the product of
the power values, which is 0.047. Again, this set of studies (correctly) seems problematic
because the success rate is out of line with the estimated effect and the experiment sample
sizes.

10.5 Excess Success and Theoretical Claims

The Test for Excess Success is able to identify situations where the reported rate of success
does not match the experimental effect and sample sizes. An important point of this
analysis is the definition of “success,” which is always relative to some theoretical claim.
As an example, suppose that a researcher runs ten independent experiments that each
investigates a different topic (e.g., the Stroop effect, a memory experiment, differences
in EEG alpha synchrony, epigenetic transfer of learned behavior, precognition, and other
topics). Suppose that the first four experiments find a significant outcome but the other
six experiments do not. Further suppose that the researcher imposes a publication bias
and only publishes the four successful experimental results and does not publish the
six null results found for the other studies. A TES analysis on the four published
studies may (correctly) indicate evidence of publication bias, but this observation is
fairly meaningless. The four experiments are unrelated to each other and are unrelated
to any overarching theoretical claim. As such, all we can conclude is that there were
other unsuccessful experiments that have not been reported, but the existence of such
unsuccessful experiments tells us nothing about the veracity of the reported properties
of the Stroop effect or performance in the memory experiment.

On the other hand, if the same researcher used the results of the very same four
significant experiments to make some theoretical claim (e.g., a unified theory of the
Stroop effect, memory, EEG alpha synchrony, and epigenetic transfer), then publication
bias potentially undermines that theoretical claim. If a TES analysis indicates that the
set of four studies suggests publication bias, then scientists should be skeptical about the
corresponding theoretical claims that have been derived by the researcher.

Oftentimes researchers unintentionally make their theoretical conclusions seem too
good to be true by having their theory be determined by the significance/non-significance
of their tests. In this case the theory becomes nothing more than a coarse summary of what
was measured in the experiment. Such a theory is almost certain to be chasing (some)
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noise in the experimental results and is almost surely not going to be fully supported by a
new set of experiments.

Consistent with Chap. 3, Implication 3a, the conclusion of the TES analysis does not
prove that there is no effect across a set of experiments; rather it indicates that the set of
experiments does not make a convincing scientific argument.

Take Home Messages

1. If many similar experiments with low effect and sample size all lead to significant
results: the data seem too good to be true.

2. Experiments should lead to significant results proportional to their power.
3. Publication bias and optional stopping can lead to strongly inflated Type I error

rates.
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