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Abstract. Online signature verification is becoming quite attractive due to its
potential applications. In this paper, we present a method using shape context
and function features as well as cascade structure for accurate online signature
verification. Specifically, in the first stage features of shape context are extracted
and classification is made based on distance metric. Only the input passing by
the first stage will be further verified using a set of function features and
Dynamic Time Warping (DTW). We also incorporate shape context into DTW
get a more accurate matching. The proposed method is tested on SVC2004
database comprising a total of 80 individuals and 3,200 signatures. Experiment
result achieves an Equal Error Rate of 2.45% demonstrating the effectiveness of
the proposed method.
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1 Introduction

Verifying personal identity through the inherent characteristics of individuals, bio-
metric verification technology is attracting great attention as a more trustable alternative
to token/knowledge-based security system. Some physiological biometric attributes
like fingerprint or face are already familiar to the public. There is another biometric
type called behavioral biometric attributes which are related to the pattern of behavior
of a person, such as voice or signature [1]. Compared to physiological ones, they are
more accessible and less intrusive. Among them, signature remains the most wide-
spread and recognized socially and legally individual verification approach. Moreover,
signing is a rapid movement driven by long-term writing habit, which will lead to the
differences in both the signing process and the appearance of a signature. Therefore, it’s
not possible that a forgery is exactly the same as the genuine signatures. That is,
verification based on signature is feasible theoretically. Practically, affected by either
environment condition or mental state variations among the signatures from a user
occur inevitably, making it a challenging task.

Signature verification technique may be split into two categories: offline and online
[20]. Offline signature verification works on the static digital signature images acquired
after the signing process. The input of online signature verification is temporal signals
captured by electronic devices like tablets, smart phones during the signing process.
Usually, online signature verification system ensures a higher accuracy and security
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owing to dynamic information collected in the writing process. It makes the signature
more unique and more difficult to forge.

Based on employed features, online signature verification techniques can broadly
be divided into two groups: global features based and function features based
approaches. In the framework of global features based methods, a signature is char-
acterized as a vector of elements, each one representative of the value of a feature [1].
Examples of such attributes include width, height, etc. As for function features based
methods, a signature is described in terms of a set of time function whose values
constitute the feature set. Examples are position trajectory, velocity, pressure, etc. With
regards to the classifiers, approaches like neural network (NN), support vector machine
(SVM), dynamic time warping (DTW), hidden Markov Model (HMM) are adopted.
Among them, DTW is considered as the most common technique. Sharma and Sun-
daram [3] explore the utility of information derived from DTW cost matrix and devise a
novel score that describes the characteristic of the warping paths. Then they incorporate
the derived warping path score with DTW score to make decision. Yanikoglu and
Kholmatov [4] present a novel system based on the fusion of the Fast Fourier Trans-
form and DTW. Kholmatov and Yanikoglu [8] match the test signatures against a set of
reference signatures using DTW. Then, using the alignment scores, the test signatures
are classified by standard pattern classification techniques.

Regardless of the method mentioned, the focus of them is mainly the dynamics of
the signatures instead of shape. In online system, the shape of a signature is represented
by its x-y coordinate. Gupta and Joyce [6] capture the shape using the position extrema
points of a signature and propose the edit-distance-based string matching algorithm for
comparing the sequence of two signatures. Shape context proposed by Belogie and
Malik [16] offers a globally characterization to shape, making it a robust, compact and
highly discriminative descriptor. That inspires us to exploit shape context based sig-
nature characterization. Besides, more distinguish characteristics usually exist in the
signing process. In order to improve the accuracy further, function features based
approach is utilized subsequently to form a cascade framework.

The rest of this paper is organized as follows: Sect. 2 gives our proposed method in
detail. Section 3 shows the database used in our experiment and experimental results.
Section 4 offers the conclusion.

2 Proposed Method

The proposed method for online signature verification is detailed in the following
subsections. Figure 1 shows the diagram representation of the proposed system. The
input signature is first passed through preprocessing model. After that, we use shape
context to capture its shape feature and the calculated shape distance is fed into a
classifier. Only after passing the first stage test will it enter the second stage. In this
stage, its function features are extracted and SC-DTW is employed to get a distance.
Then the distance is used to verify the authenticity of the signature.
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Fig. 1. Diagram of proposed verification system

2.1 Signature Preprocessing

Because signatures are captured by electronic devices, noises and fluctuations are
interrupted unavoidably. And there’s no guarantee that signatures acquired at different
time or places of one individual will always be the same. Those variations will decrease
the similarities between test and reference signatures. In order to address those issues,
preprocessing comprising of smoothing and normalization is adopted as the first step.
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Fig. 2. Examples for signature preprocessing. (a) Original signatures in SVC 2004. (b) Window
calculated by moment of corresponding signatures. (c) Corresponding preprocessed signatures.
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Gaussian smoothing can be employed to reduce those artifacts. The normalization
step standardizes the size and location of signature at different inputs. The commonly
used method of size normalization is the utilization of maxi-min normalization. The
size depends on the maximum and minimum in the horizontal and vertical directions.
Despite relative simplicity, it cannot represent the exact size as is attested by Fig. 2.
Figure 2(a) shows the genuine signatures and skilled forgery from two user. As we can
see, some people tend to write longer strokes at times, for example, some downward
and upward strokes. Our solution is the introduction of moment-based normalization
[9]. The size of a signature depends on the width and height of the window calculated
by its moment, and Fig. 2(b) shows the window. Some research shows that y coor-
dinate provides more distinctive information. Therefore, the height of the signature is
normalized to a predefined value and the width is adjusted accordingly in order to keep
the aspect ratio. For location normalization, the signature is centered at (0, 0). Figure 2
shows the original signatures and corresponding preprocessed signature. After pre-
processing, the signatures have the same size and location.

2.2 Shape Context Based Signature Characterization

The shape context captures the distribution over relative positions of other shape points
and thus summarizes global shape in a rich, local descriptor. The shape is represented
by a set of points sampled from the shape contours which in this work is (x;, y;), i = 1,
2,..., N, N is the number of points. Different people writes at different speed and the
data acquisition equipment samples the signature at fixed interval, which means the
number and the distribution of sample points acquired varies with person. The speed
information that is proved to be one of the most discriminative feature is implicit in the
(x;, y;). Shape Context is capable of extract those differences.

As we can see from Fig. 3(a—c), the number and the distribution of the sample
points from two genuine signatures are more similar. Taking one point as the origin of
polar coordinate, the shape context of this point is calculated as illustrated. Log-polar
histogram bins are used to represent the shape contexts and we choose five bins for
log r and twelve bins for 6. The number of neighboring points that fall into the very bin
is just the histogram value.

Consider a point p; on the first shape and a point g; on the second shape. Denote
C;j = C(p;, q;) as the matching cost of these two points, given by

Cy=Clpng) =2 3F [ilk] = Iy K] 0

where h;[k] and h;[k] denote the K-bin histogram at p; and g; respectively.

Given the set of costs C;; between all pairs of points p; on the first shape and g; on
the second shape, the Hungarian method is implemented to find the optimal alignment.
The cost between shape contexts is based on the chi-square test statistic, so thin plate
spline (TPS) model is adopted for transformation. After that, the distance between two
shapes can be measured generally.
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Fig. 3. Shape contexts computation and matching. (a—b) Two genuine signatures. (c) A skilled
forgery. They are all from the same person. Note that the square marker points represents trend-
transition-points (TTPs) extracted. (d) Diagram of log-polar histogram bins used in computing
the shape contexts. (e-g) Example shape contexts histograms for certain trend-transition-point
marked in (a—c).

2.3 Trend-Transition-Point (TTP) Extraction

The presentation for signature shape should not only captures the essentials of the
shape but allows considerable variation. Besides, the more points, the greater the
computational load. There’s no need to use all points to represent the shape, and just a
few selected points could do it. Based on the above, we propose a trend-transition-point
(TTP) extraction method and note that the shape context is calculated on every point,
but only extracted points are involved in computing the shape distance.

TTPs include local extrema points and corner points. The trends before and after
the TTPs are completely different while between two successive TTPs, its shape
approximates to a straight line. So TTPs keep its shape thus the signature could be
reconstructed with these selected points. The method of corner point detection we
adopted is proposed in [7], which makes use of eigenvalues of covariance matrices of
different support regions.

Let Si(s;) denotes the region of support (ROS) of point s;, which contains itself and
k points in its left and right neighborhoods. That is Si(s) = {s; | j=i1 -k, i — k + 1,

i+ k—1,i+k}, s;={x;,y;}. AL and Ag are the eigenvalues obtained from the

covariance matrix of S;(s;). Sharper the corner is, larger Ag is. When the shape in an
ROS is close to a straight line, its Ag will approaches to zero. So corners can be
determined according to Ag exceeding a threshold.

As a summary, the algorithm is implemented as follows. The start and end points as
extrema points are chosen. As to the others, if its corresponding x or y coordinate value
is higher or lower than both the left and right one, it is an extreme point. If not, its Ag
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would be calculated. In order to avoid the determination of threshold, whether the point
is a TTP is decided by its neighborhood. That is, unless the g of this point is greater
than the left and right points, it can be categorized as a TTP. After the rough extraction
mentioned, one of the two successive points whose distance is lower than a threshold

will be deleted depending on its Ag.

2.4 Function Features Based Signature Characterization

The signature is considered as a ballistic movement. The dissimilarity of shape can be
helpful to tell the genuine signature from random and minor skilled forgeries while not
that discriminative to well-skilled forgeries. A set of function features are shown in

Table 1.
Table 1. Function features of online signature verification
No. |Symbols Description
1 Change of x coordinate Ax(n) = x(n+4) — x(n)
2 Change of y coordinate Ay(n) = y(n+4) — y(n)
3 Pressure p(n)
4 Change of pressure Ap(n) =p(n+4) —p(n)
5 Change of displacement AS(n) = \/(Ax(n))2 + (Ay(n))2
6 x velocity Vin)=[x(n+ 1) — x(n — 1)]/2
7 y velocity Vi) = [y(n + 1) — y(n — 1)1/2
8 Total velocity V(n) = \/m
9 x acceleration an)=[Viin+1)—V(n— 1]2
10 y acceleration ay(n)=[Vy(n+1) = V,(n — 1)]2
11 Total acceleration a(n) = \Ja2(n) + a% (n)
12 Cosine of the angle between x-axis and CoS o — Xt 1) —x(n)
signature curve V- D=x(m) + n+ 1) —y(n)]
13 Sine of the angle between x-axis and signature | gip 5 — yin+ D—y(n)
curve VI D =x(n) + [+ D=y(n)
14 Cosine of the angle between x velocity and cos = V. (n)/V(n)
total velocity
15 Sine of the angle between y velocity and total | sin = Vy(n)/V(n)
velocity
16 Angle between x-axis and signature curve 0(n) = tan~! y(n+1=y(n)

x(n+1)—x(n)

2.5 DTW Based Matching

In general, dynamic time warping or DTW is a method that calculate an optimal match
between two given sequences based on the dynamic programming (DP) algorithm such
that the overall distance between them is minimized.
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Classical DTW. For the past a few years, DTW has become a major technique in
signature verification. It is employed extensively along with function features, since it
enables the time axis of two temporal functions to be compressed or expanded locally,
in order to obtain the minimum of a given distance measure [3].

More specifically, denote T = {t1,1,...,ty} and S={s1,s2,...,51} as two time
series of different length N and M respectively. A matrix termed “cost matrix” denoted
by d(n, m) is constructed whose (n, m)th cell represents the dissimilarity between the
nth point of T and the mth point of S. The cost matrix is defined as:

d(n,m) = ||ty — su| (2)
The overall distance is calculated as shown in the following equation:

C(n,m—1)
D(n,m) =d(n,m)+min{ C(n—1,m—1) (3)
C(n—1,m)

where D(n, m) is the cumulative distance up-to the current element.

SC-DTW. DTW has been an effective method of finding the alignment between two
signatures with different length. However, DTW usually warps time series according to
their numerical characteristics as Eq. (2) but ignores their shape nature, and can lead to
abnormal alignment sometimes. Inspired by Zhang and Tang’s idea [5], we apply shape
context to DTW in order to obtain a more feature to feature alignment. In this method,
time series is considered as a 1-D array and a 2-D shape.

ieta

(@) (b)

Fig. 4. SC-DTW. (a) The time series of total velocity v from two signature and a pair of
corresponding points found by shape context. (b) The shape context histograms of the points
marked in (a).
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When finding the alignment between two time series, the cost matrix is replaced by
the cost between shape contexts, which means

d(n,m) = C; )

where Cj; is defined in Eq. (1).

It is worth noting that shape context is merely used to find the alignment between
two time series and the cumulative distance is still obtained by the original cost matrix.
The SC-DTW is computed on each signature segments divided by TTPs. The final
dissimilarity of two signatures is the average of distances computed on each function
features (Fig. 4).

2.6 Verification

Due to a limited number of genuine signatures and rare well-skilled forgeries available
in practical applications, we, in this paper, propose a cascade verification system. In the
first stage, the test signature is verified on account of the dissimilarity in shape. Ran-
dom forgeries and minor skilled forgeries can be distinguished easily while well skilled
forgeries not. That promotes a second stage for further verification. Dynamic features
symbolize the information during the signing process, even though an adept forger
couldn’t imitate them completely. Hence, they could be helpful when verifying skilled
forgeries.

During enrolment, the user supplies several signatures as reference signatures. They
are pairwise coupled to get the distances between shape context and function features.
When verifying a test signature, the signature is compared with all the reference
signatures belonging to the claimed ID in terms of shape context firstly. After nor-
malized by the corresponding averages of the reference signatures, the shape distances’
average is used in classification. Unless classified as a genuine signature, this test
signature steps into next stage. At the second stage, the difference is that test signature
is compared with regards to function features distances through SC-DTW and others
are alike. The average DTW distances is the basis of classification.

3 Experiments and Evaluation

In this section, we present the database we used and then analyze the experimental
results we get. The performance is evaluated with Equal Error Rate (EER), which is
calculated as the point at which the False Rejection Rate (FRR) of genuine signatures
equals the False Acceptance Rate (FAR) of forgery signatures. We average the EERs
obtained across all users enrolled.

And the writing pressure has been recognized as one of the most effective and dis-
criminative feature and is quite helpful to make decision. However, some small pen-based
input devices such as personal digital assistants (PDA) cannot collect the pressure
information, and in the mobile scenario where finger is used as writing-tool, pressure is
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hard to obtain. The study of interoperability between devices and the effects of mobile
conditions has been a hot topic in the field of online signature verification. So we test our
proposed method in the case of with and without pressure information being used.

3.1 Database

The database we use is publicly available SVC 2004, which contains two tasks—task1
and task2. The signature data for taskl contain coordinate information only, but the
signature data for task2 also contain additional information including pressure. Every
task has 40 users respectively and for each user, 20 genuine and 20 skilled forgeries
were collected using a graphic tablet (WACOM Intuos). And the genuine signatures are
collected in two sessions, spaced apart by at least one week. The signatures are mostly
in either English or Chinese.

3.2 Verification Results

In our experiment, we randomly select 5 genuine signatures for enrolment as reference
signatures from each user. The resting 15 genuine signatures and 20 skilled forgeries of
the users are employed for testing. For the random forgeries scenario, 20 signatures
from other users are randomly selected. The trial is conducted for ten times for each
user and the average EER is computed as the measure of performance. And we evaluate
the method on the condition of common threshold and user-dependent threshold. In the
common threshold set-up, the matching scores from all users are compared with a
predefined threshold. While in user-dependent threshold case, the threshold is taken
from 1.0 to 2.0 with a step size 0.1. We also test the system both with and without
pressure information. Taskl and task2 are all usable in the absence of pressure
information, while in the case of considering pressure information, only task?2 is used.
In the first stage, shape distance is fed into a distance-based classifier. It is not a
discriminative enough feature to tell the skilled signatures. However, it is good at
distinguishing the random forgeries from genuine signatures. As we can see from
Table 2, the EER between genuine signature and random forgeries is lower and
approaches to zero in the user threshold set-up. It can classify the signatures roughly in
this stage. Because the damage brought by rejecting a genuine signature is higher than
by accepting a forgery, the test signature judged as a genuine one will be fed into next
stage. In the second stage, the test signature is classified on the ground of DTW
distance which is more reliable. In Table 3, we compare the results from classical DTW
and our proposed SC-DTW, showing that SC-DTW could get lower EER. The test
signature is classified again and it is a determinate genuine signature unless it is
accepted. The final EER we get is 2.85% when the threshold is user-dependent. In
Table 4, we list the SC-DTW and cascade structure verification results in the presence
and absence of pressure information in the condition of user threshold. The pressure is
an enough effective dynamic feature and the EER could be significantly decreased.
Given the circumstances of user threshold and cascade structure, the EER is 2.45%.
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Table 2. Verification results (%) based on shape distance for SVC2004

Method Common threshold User threshold
Shape distance | EER(SF)' | EER(RF)* | EER(SF)! | EER(RF)?
17.4 45 10.45 0.05

'Skilled forgeries
2Random forgeries

Table 3. Verification results (%) of different stages with common threshold and user threshold
for SVC2004

Method Common threshold | User threshold
Shape distance 17.4 10.45
Classical DTW | 12.0 5.37
SC-DTW 10.27 4.28
Cascade structure | 8.4 2.85

Table 4. Verification results (%) in the presence and absence of pressure information with user
threshold for SVC2004

Method Without pressure | With pressure
SC-DTW 4.28 3.63
Cascade structure | 2.85 245

3.3 Comparisons

In this subsection, we give the results of prior works tested on SVC2004 as is showed
in Table 5. The number of reference signatures is all five in the listed works. And their
results are obtained based on SVC2004 task2. With pressure information help, the EER
of our proposed method is slightly lower than the state-of-the-art, demonstrating its
effectiveness and competitiveness. But without pressure information, the result is not
the best but still can be acceptable.

Table 5. Comparisons between proposed and prior works on the SVC 2004

Works Method EER (%)
Sharma et al. [3] | DTW + VQ 2.53
Rashidi et al. [10] | DTW 3.37
Song et al. [12] DTW with SCC 2.89
Liu et al. [13] Spare representation 3.98
Xia et al. [20] GMM + DTW with SCC | 2.63
Proposed method | Shape context + SC-DTW | 2.45
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4 Conclusion

In this paper, we present a novel online signature verification technique based on shape
context and function features. When only x and y coordinates are considered, shape
context is a robust descriptor to capture the shape of signature. The shape distance is
computed accordingly. In order to reduce the computational complexity, we propose a
trend-transition-point (TTP) extraction algorithm and only these point is participated in
the calculation of shape distance. In order to improve the performance further, a set of
dynamic function features are derived and we use SC-DTW to get the similarity. We
incorporate shape context into DTW to measure the dissimilarity between two points,
thus getting a more feature-to-feature alignment. And the process takes place in the
segments divided by TTPs. Then we talk about the effect of pressure information. The
results we get is competitive given the absence of pressure and pen inclination and the
like which are not available in certain scenario. It provide a possibility of the usability
of shape in online system and a prospect for the study of interoperability between
devices and the effects of mobile conditions, which will be our future work.
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