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Abstract. It is an important but challenging issue to construct a rea-
sonable seamless image mosaic from images with non-ignorable different
viewpoints or multiple distinct planes. The main limitations of exist-
ing image-stitching approaches lie in two facts: (a) the multiple plane
nature of scenes has not been well considered in the image alignment
step, which usually results in obvious misalignments; (b) the ignored
alignment errors often lead to broken structures in the seam composi-
tion step. To overcome these problems, this paper proposed a smoothly
planar homography model for image stitching, by considering the multi-
plane geometry of natural scene. First, we integrate local warps estimated
in each plane to achieve smoothly plane stitching. Then, we introduce
a novel alignment-guided seam composition to handle parallax. Experi-
mental results on a series of challenging data demonstrate that our model
achieves the state-of-the-art stitching performance.
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1 Introduction

Image stitching has been extensively studied recently and applied in many fields,
such as scene understanding [31], virtue reality [12], photogrammetry and remote
sensing [10]. However, they often perform under the assumptions [22] that the
imaging scene is approximately planar, or that images are taken under simple
camera rotations. Obviously, these conditions are not always conformed with the
real case, especially for photos taking by smart phones or cameras, as demon-
strated in Fig. 1. The main challenges are:

– Global warps [2] or even local warps [28] are difficult to handle the complex
scene with different dominant planes. The former adopts only one transfor-
mation, which lacks the flexibility for complex scenes. The latter often ignores
the different planes in the scene and causes large alignment errors.

G.-S. Xia—This work was supported by the NSFC Grants under the contract No.
41501462 and No. 61771350, and the Outstanding Youth Project of Hubei Province
under the contract No. 2017CFA037.

c© Springer Nature Switzerland AG 2018
J.-H. Lai et al. (Eds.): PRCV 2018, LNCS 11256, pp. 524–536, 2018.
https://doi.org/10.1007/978-3-030-03398-9_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03398-9_45&domain=pdf
https://doi.org/10.1007/978-3-030-03398-9_45


Image Stitching Using Smoothly Planar Homography 525

– The existing methods cannot work well on images with large parallax,
caused by random shooting positions and viewing angles [30]. Thus, they
will inevitably bring noticeable artifacts or objectionable distortions.
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Fig. 1. An illustration of our method. The top row display two input images taken casu-
ally and the scene contains multiple distinct planes. The bottom row shows the detected
planes and transition regions (left) and the final stitching result (right). Planar regions
are warped by planar homography Hi, and the transition regions are transformed by
the local weighted homography

∑5
i=1 αiHi.

Many approaches have been proposed to solve these problems. The main solu-
tion is spatially varying warps, e.g. multiple local warps [7] or the global warp
with mesh optimization [29,30], which provide flexible warps to handle images
with moderate parallax. However, these methods greatly depend on the num-
ber and distribution of point correspondences. In addition, distortions, resulted
by non-linear transformations [9], are commonly obvious, e.g. projective and
structure deformations. Many methods are developed to mitigate distortions,
such as constraint of similarity transformation [4,5,14,25], or geometric struc-
ture cues [24,26,30], however, the reduction is limited under the scene with rich
contents and structures. Besides, large parallax is a challenging task for these
methods [15].

Another solution is seam-assist image stitching, which holds the advantages
of dealing with large parallax. The common way is to perform the seam cutting
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after image alignment to hide the inevitable ghosting or artifacts [7,30]. The
seam line is often selected by the color or gradient difference, image edges, etc.,
while they little consider the influence of alignment [15,30]. The seam cutting
can be also closely integrated with alignment for interaction [8,15,29]. The main
idea of these methods is that images are aligned well only in local area, where the
seam line across. Seam quality assessment are proposed to guide the selection of
homography estimated from a set of point correspondences. In fact, they rely on
the selection of local homography/correspondence set. In some complex scene,
the optimal selection is difficult to find if the local alignment region contains
multiple planes, due to these methods only take one homography to tackle the
whole scene.

To the best of our knowledge, few works consider how to deal with the
scene with strong structural regularities, in the form of multiple distinct planes.
Because one global or local homography cannot fit for the complex scene, dual-
homography warping [7] clustered the match points into two groups to estimate
the dual homographies for the scene containing two predominate planes: a dis-
tant plane and a ground plane. However, the difference between the rough plane
partition and the true plane scene may cause misalignment and structure defor-
mations. It may degrade the performance in the complex scene with more than
two distinct planes.

Therefore, this paper proposes a smoothly planar homography model for
image stitching. To obtain the plane warps, we propose to automatically detect
plane points and segment the scene into piecewise planar regions. Then adaptive
plane-based warps are estimated and integrated to perform local alignment. Once
the images are geometrically aligned, a misalignment-guided seam is calculated
to perform seamless stitching. This model can handle more than two distinct
planes with large parallax. Figure 1 gives an example of the proposed method.
Thus, the contribution of this paper is twofold:

– We propose a multi-plane homography estimation and integration strategy to
handle the complex scene with multiple dominant planes and achieve plausible
stitching.

– We propose a novel seam estimation method guided by alignment error to
deal with parallax, which provides seamless image stitching.

2 Related Works

Numerous works have been devoted to image stitching. A exhaustive review was
proposed in [22]. Here, we give a briefly survey of related works.

Global Parametric Models. Early methods adopt global parametric warps
(e.g. affine, projective warps) to align images. The performance is degraded when
images are taken with different viewpoints or scenes are not roughly planar. To
remedy deficiency of single warp, Gao et al. [7] proposed a dual-homography
warp to stitch images. However, it only fits for simple scene with two planes,
ground and distant planes.
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Spatially Varying Warps. Spatially varying warps are proposed to handle
complex scene. Followed by composition techniques, these methods work well
for images with moderate parallax. They can be roughly classified into two cat-
egories: local warps and mesh optimization-based warps. The former estimates
multiple local transformations to align images locally, such as smoothly varying
affine warps [17], shape-preserving half-projective (SPHP) [4], as-projective-as-
possible (APAP) warps [28] and its variants [5,14,18]. The latter applies mesh
optimization model with a series of feature constraints after general warps, such
as feature alignment [23,27,30] and photometric alignment [16]. These methods
cannot consider the particularity of multi-plane scenes [19], that is the differ-
ence of transformation of different plane regions, thus they may fail to produce
satisfactory stitching results.

Seam-Assist Stitching Methods. To stitch images with large parallax,
some seam-assist methods are proposed. Unlike the method that performs seam
cutting after image alignment [13], Gao et al. [8] proposed a seam-driven image
stitching method. The method evaluates the seam-cut quality to guide the selec-
tion of optimal transformation. Based on it, parallax-tolerant stitching model [29]
and seam-guided local alignment model [15] are proposed to improve the stitch-
ing performance. However, these methods may only align one local regions at
a time, and the applied seam may accidentally pass through the other regions
with large misalignments.

Planar point detection

Planar region estimation Smoothly planar homographyInput images Alignment-guided seamless composition

Weight map

Fig. 2. The workflow of our smoothly planar stitching algorithm.

3 Smoothly Planar Stitching

The proposed stitching algorithm is illustrated in Fig. 2. The planar regions
are estimated based on the detection of planar points, then the multiple pla-
nar homography are integrated by the designed weight strategy for smoothly
stitching. To handle parallax, alignment errors are used to guide the seamline
estimation for seamless composition.

3.1 Planar Region Estimation

For real scenes with multiple planes, we use a robust multi-structure geometric
fitting method, called random cluster models sampler (RCMSA) [20], to detect
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planes from the point correspondences. RCMSA adopts random cluster models
to perform hypothesis generation using subsets larger than minimal. Compared
with random hypothesis generation, RCMSA provides good hypotheses, which
are less affected by the vagaries of fitting on minimal subsets.

For two views of multiple-plane scene, given N point matches P = {pi}Ni=1

across two images, where each pi = (xi,x
′
i) denotes a pair of match points in

homogeneous coordinates. The RCMSA is to partition the match points into
different planes (structures) as well as to remove the false matches. The number
of structures is unknown and must also be estimated.

Basically, RCMSA works in the following way. Random cluster models is first
used as hypothesis sampler to generate clusters for hypotheses Θ = {θc}Kc=1.
Next, an annealing method based on graph cuts is employed to optimize the
fitting of structures. The graph G = (V,N ) is builded on the match points,
where each vertice V = P , and the edge N is constructed from the Delaunay
triangulation of P . The goal is to assign each pair of match points pi to one of the
structures in Θ, denoted by labels L = {li}Ni=1. That is, li = k, k = {1, 2, ...,K}
if pi belongs to the k–th structures, otherwise li = 0 if pi is an outlier. The
energy function is defined as

E(Θ, l) =
N∑

i=1

D(pi, li) +
∑

〈i,j〉∈N
V (li, lj), (1)

where D(pi, li) is the data cost and constructed as

D(pi, li) =
{

r(pi, θli)
2, if li ∈ {1, 2, ..., k}

η, if li = 0 , (2)

where r(pi, θli) is the absolute residual of pi to structure θli , and η is the penalty
if pi is an outlier. The smoothness cost V is defined as

V (li, lj) =
{

0, if li = lj
1, if li �= lj

, (3)

The solution of L = {li} can be obtained based on α–expansion [1].
In our implementation, RCMSA is iteratively adopted on outliers, until out-

liers are small enough or the new detected plane points are small. To refine the
detection of plane points, the projective distance is employed to adjust the plane
labels of points. If the projective distance of one point by k–th planar homogra-
phy Hk is less than δ, the point is reassigned to this plane label li = k, where
Hk is estimated by the correspondences in plane θk. Thus, the points are labeled
to each plane.

One simple way is to warp each plane by its corresponding transformation,
however, there may be gaps between the plane regions, or plane regions may
overlap. In our idea, the images are partitioned into two regions: plane and
transition regions. For plane regions, we adopt the homography estimated by
the point correspondences belong to current plane. For transition regions, they
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are transformed by the local weighted homography, detailed below, so that to
keep the continuity along the boundary of neighboring plane regions. Here, the
neighborhood of each plane points, e.g. less than ε, is regarded as the plane
regions, and the rest is transition region. Figure 3 shows the detection of plane
points by applying RCMSA and the partition of plane regions.

Fig. 3. Plane region estimation. (a) Detection of multiple planar points based on
RCMSA; (b) Estimation of planar and transition regions. Planar regions are high-
lighted red. (Color figure online)

3.2 Smoothly Planar Homography

For transition regions, the local weighted homography is employed to maintain
the continuity and smoothness between neighboring plane regions. Given a pixel
p in transition regions, the warps is estimated as

Hp =
K∑

i=1

αiHi, (4)

where Hi represent the each plane homography, K is the number of plane regions,
and αi denotes weight that adjusts the contribution of each plane homography.
The weight is computed based on spatial proximity with Gaussian kernel,

αi = exp(−di/σ2), (5)

where di denotes the distance to the closest pixel in i–th planar regions, and
σ is set to 4−8. To mitigate the projective distortions, the global similarity
constraint proposed in [24] is employed by integration with local homography.
The procedure of smoothly planar homography is given in Algorithm1.

3.3 Alignment-Guided Seamless Composition

After alignment, seam cutting plays an important role in seamless stitching
mosaic, especially for large parallax cases. To search for optimal seam line
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Algorithm 1. Smoothly planar homography
Input: The plane homography {Hi}Ki=1 of each plane regions
Output: The stitching images by smoothly planar homography
1: for each pixel pj do
2: if pj in planar regions then
3: Estimate its homography Hpj by point correspondences belong to this plane
4: else
5: Compute the weight factor αi (5)
6: Compute the local homography of this pixel Hpj (4)
7: end if
8: end for
9: for each local homography Hp do

10: Integrate Hp with global similarity in [24]
11: end for
12: Warp the images by local homography to produce the stitching image.

between two images, the difference of image color, gradient and edge map [15,29]
in the overlapping region are often adopted to construct smoothness terms in
graph cut seam algorithm [11].

In fact, alignment error has a great influence on the seam finding [30]. The
large misalignment pixels with similar colors will confusion seam cutting and
produce bad seams. A plausible seam should traverse low-texture and inconspic-
uous regions, and avoid passing pixels with large alignment errors or distinct
structures such as edges. Therefore, we propose to integrate alignment error and
edge difference to generate good seams.

For match point, the alignment error is calculated as

ex = ‖xi − Hx
′
i‖, (6)

where (xi,x
′
i) is a pair of match points. H is the corresponding plane homogra-

phy.
According to point alignment error, we can generate a per-pixel error map

by interpolation,
ep =

∑
x wp,xex/

∑
x wp,x

wp,x = exp(−‖p − x‖/ρ2),
(7)

where wp,x is the weight factor calculated by the distance of the pixel p
in overlapping region to match point x. ρ is scale parameter and set to 8. The
interpolation is conducted by the M match points closet to the pixel p. To reduce
the influence of large alignment errors, we define the alignment term as

Ea = 1 − exp(−e2p/(τ)2), (8)

where τ is set to 0.003D, where D denotes the length of image diagonal. The
smoothness cost function is

Ei,j(p) = Ea(Ec + Ee), (9)
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where Ec is the color difference, Ee denotes the image edge probability difference
computed by structured edge detector [6]. The smoothness cost is combined into
graph cut seam finding algorithm [11] to search for a good seam. Then multi-
band blending [3] is applied.

4 Experiments

To verify the effectiveness of the proposed method, we test our algorithm on
a series of challenging data and compared with other stitching methods. The
parameters of the compared methods are set as recommendation in the respective
papers. Given a pair of images, the keypoints are detected and matched by deep
matching algorithm [21] in our implementation.

(a) Global homography

(b) APAP

(c) The proposed warping

Fig. 4. Warp comparison. The image are warped by (a) global homography [2], (b)
APAP [28], and (c) the proposed warping. Then, the alignment-guided seam composi-
tion is applied on these three results. For comparison, we highlight some details in the
blue and green boxes. Errors are shown in red circles. (Color figure online)

4.1 Warping Performance

Figure 4 compares the warp performance with other two common warp model,
that is, global warping and local warping. Here, global homography [2] and APAP
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warps [28] are selected for comparison. After warping, the proposed alignment-
guided seam composition is employed on these stitching results for seamless com-
position. Figure 4(a) shows the result by global method, which applies a global
homography to warp images. On one hand, scene with multiple distinct planes
cannot be represented by only one transformation, result in severe misalign-
ments. On the other hand, even though seam-cutting is applied, the seam-cutting
cannot find well-aligned regions across in some areas. Thus, the seam passes mis-
alignment regions and produces broken structures. APAP adopts multiple local
homographies to align as many point matches as possible, and improves the
stitching performance, e.g. green region in Fig. 4(b). However, due to the adverse
influence of point matches in different planes (blue region) or uneven and insuffi-
cient points (green region), it is hard to provide accurate warping model for well
alignment, result in stitching errors. Our smoothly planar homography adopts
two different warping model to align planar and transition regions, which pro-
vides satisfactory alignment locally. Together with our novel alignment-guided
seam composition, the estimated seam finds locally well-aligned regions, which
can avoid regions with large parallax.

(a) Enblend

(b) Without alignment guidance

(c) The proposed seam composition

Fig. 5. Seam composition. (a) Enblend, (b) The proposed seam composition without
alignment guidance, (c) The proposed seam composition. For comparison, we highlight
some details in the blue and green boxes. Seam errors are shown in red circles. (Color
figure online)
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4.2 Composition Performance

Figure 5 shows the seam composition performance of Enblend1, our method with-
out guidance of alignment, and our method with guidance of alignment. From the
enlarged views, Enblend produces severe seam errors, e.g. the disappeared buoy
and the distortions of construction. In fact, Enblend only considers the color
difference and gradient difference, which may suffer from ghosts or errors. By
adding edge or boundary constraints, our method without alignment guidance
provides a relatively better result, but the seam error is still obvious, mainly
because of the large mis-match on red concrete columns. With the constraint
of alignment error, the proposed seam composition avoids the regions with big
alignment errors and provide satisfactory seam composition.

(a) ICE

(c) SPHP

(b) APAP

(d) The proposed method

Fig. 6. Comparison with spatially varying methods, i.e. (a) ICE, (b) APAP [28], (c)
SPHP [4] and (d) the proposed method. For comparison, we highlight some details in
the green boxes. Errors are shown in red circles. (Color figure online)

4.3 Comparison with Other Methods

Figure 6 gives the comparison with some spatially varying methods, including
image composition editor (ICE2), APAP [28], SPHP [4] and ours method. Some
details are provided in enlarged views for comparison. Although ICE takes global
transformation, it provides good stitching result because of the advanced image
composition. However, the alignment errors remain obvious shown in red circle.
APAP adopts local homographies to align as many correspondences as possi-
ble in the overlapping region. Due to rich correspondences, it provides satis-
factory alignment performance, but it suffers from local distortions (shown in
red circle) caused by feature matches in multiple planes. SPHP produces obvi-
ous stitching errors, because the applied warps cannot well represent the multi-
plane image transformation. The estimated seam may accidentally pass through
1 http://enblend.sourceforge.net/.
2 http://research.microsoft.com/en-us/um/redmond/projects/ice/.

http://enblend.sourceforge.net/
http://research.microsoft.com/en-us/um/redmond/projects/ice/
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(a) ICE

(b) Parallax-tolerant stitching

(c) The proposed method

Fig. 7. Comparison with seam-assist stitching methods, i.e. (a) ICE, (b) parallax-
tolerant stitching [29] and (c) the proposed method. For comparison, we highlight
some details in the green boxes. Errors are highlighted in red circles. (Color figure
online)

regions with misalignments and thus generate broken structures. Our smoothly
planar homography method uses different model to process planar regions and
transition regions and thus aligns different planar regions well. Together with
the alignment-guided seam composition, which finds local well-aligned regions
for composition, our method provides visually appealing stitching results.

Figure 7 provides the comparison with seam-assist stitching methods, includ-
ing ICE and parallax-tolerant stitching [29] method. In ICE results, the seam
cutting does not consider alignment errors and thus causes obvious broken struc-
tures. In parallax-tolerant stitching, the best homography is choosed for good
local alignment. However, the applied seam may still be stumbled by large mis-
alignment. In comparison, the proposed method provides satisfactory stitching
results.
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5 Conclusion

In this paper, we present a smoothly planar homography model for stitching
images with multiple planes and large parallax. The plane and transition regions
are detected based on the multiple plane correspondences, and warped with
respective transformations. The multiple plane homographies are integrated to
perform the smoothly stitching on transition regions. In addition, the alignment-
guided seam composition is adopted to perform seamless stitching. Experiments
prove the effectiveness and robustness of the proposed method and confirm the
state-of-the-art stitching performance. In the future, the advanced plane detec-
tion methods may be beneficial for accurate detection of plane regions.
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