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Abstract. Robust crack defect detection in solar cells has been challenging
because of the inhomogeneously textured surface, low contrast between crack
defect and background, the diversity of crack types, and so on. To overcome
these challenges, this paper presents a new robust crack defect detection scheme
for multicrystalline solar cells. Firstly, a steerable evidence filter is designed to
process EL image to obtain the response map, which enhances the contrast
between crack and background and provides evidence for the presence of crack
defect. Secondly, complete crack extraction from the response map is employed.
Finally, the complete crack can be located in the inspection image by the crack
skeleton extraction. Experimental results on defective and defect-free EL images
show that the proposed scheme is robust, and various cracks can be effectively
detected, which outperforms the previous methods.
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1 Introduction

Solar cells are the critical component of solar power system, which can convert solar
energy into electricity. However, the crystal structure of multicrystalline solar cells is
fragile, so crack defects are inevitably generated in many fabrication and installation
links such as wire sawing, pick and place, transmission, collision, etc. [1]. The presence
of crack defect will greatly reduce the power generation efficiency of solar cells and
usable lifetime of photovoltaic modules [2]. Thus, the quality control of solar cells is a
crucial aspect for solar power system. In the past, crack defects inspection relied on
experienced technicians to identify the presence of crack from collected solar cells
images. However, human inspection fails to meet the requirement of rapidity, relia-
bility, and robustness for mass production of solar cells in industrial scenes. Hence, the
requirement of automatic crack detection of solar cells is demanding.
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To capture efficacious crack information inside the wafer surface, we obtain the
near infrared images of solar cells with a wavelength of 950 nm–1250 nm using the
electroluminescence (EL) imaging technique [3, 4]. Compared with the defect-free
regions, crack defects appear as dark characteristic with curvilinear and complicated
geometry structures in the EL images. The difficulties of crack detection in EL images
mainly are (1) the inhomogeneously textured surface of near infrared images; (2) low
contrast between crack defect and surrounding background including random crystal
grains; and (3) the diversity of crack types.

Figure 1(a) is a defect-free EL image and there are crystal grains with random
shapes, sizes, positions and orientations forming the inhomogeneously textured sur-
face. Specially, as shown in the red label frames of Fig. 1(b)–(c), the cracks are
submerged by the randomly distributed crystal grains. Moreover, the crystal grains
appearing as curvilinear shapes in the green dotted label frames are easy to be mistaken
as crack. Therefore, robust crack defect detection has always been a challenging task in
the field of defect detection.

Many computer vision-based methods have focused on the crack defect detection in
road, bridge, and solar cells surfaces. Most of spatial methods were used by comparing
the pixel intensities difference between crack defect and background. [5, 6] used
intensity information for pavement crack detection, but the illumination and texture
would affect the crack segmentation performance. For crack detection in solar cells,
Tsai et al. [7] applied an anisotropic diffusion scheme and took the gray level and
gradient features to adjust the diffusion coefficient. Chiou et al. [8] proposed a local
thresholding-based crack extraction method. However, for these methods, the intensity
information is the major consideration, but the intensity of crystal grains is very similar
to crack. So, the crack defects cannot be correctly detected.

Spectral methods mainly use a set of filters to process the images and obtain the
features that can distinguish the defect from background based the filter response. [9–
11] used the Gabor filter to detect pavement cracks. Tsai [12] described crack defects as
line-shaped and removed them by setting the corresponding frequency components to
zero. However, these methods are applied to detect longitudinal or transverse cracks
and the cracks with complicated geometry do not get involved.

Fig. 1. Challenges of crack defect detection in solar cells. (a) Defect-free EL image. (b)–(c)
Crack defective EL images with randomly distributed crystal grains.
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Although the current research methods have achieved certain results, robust crack
defect detection in solar cells is still challenging for the following reasons. (1) current
methods fail to extract crack defect from the inhomogeneously textured surface,
leading to the misdetection of some crystal grains as crack defect; and (2) most of
current methods are proposed to detect line-shape cracks, so dendritic cracks with
bends and bifurcations are not well solved. In this paper, we try to propose a robust
crack detection scheme that can solve the above challenging problems.

The remaining part of this paper is organized as follows. In Sect. 2, a novel robust
crack defect detection scheme in solar cells is described concretely. Section 3 presents
the experimental results on defective and defect-free EL images. Finally, Sect. 4 gives
the conclusion.

2 Crack Defect Detection Scheme

The overall scheme of the proposed crack defect detection method is shown in Fig. 2.
The steerable evidence filter is designed, which contains a basic steerable filter and two
additional oriented filters including a certain offset in angle and space distance. Firstly,
a steerable evidence filter is used to process EL image to obtain the response map,
which enhances the contrast between crack and background and provides evidence for
the presence of crack defect. Secondly, complete crack extraction from the response
map is employed. In this procedure, a local threshold based on sliding sub-image is
applied to segment crack defect. Then, the morphology operation is used to remove
some isolated non-crack pixels and minimum spanning tree is used to connect crack
fragments. Finally, the complete crack can be located in the inspection image by using
the skeleton extraction.

Fig. 2. Overall scheme of the proposed method.
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2.1 Steerable Evidence Filter Design and Its Response Map

The steerable filters derived from a linear combination of basic filter with arbitrary
orientations [13]. In this study, the basic filter generates from the Hessian matrix
represents as H pð Þ, which is a square matrix and describes the local curvature of the
function. For a 2-D image f pð Þ, at a position p0 ¼ x; yð Þ, the hessian function can be
obtained by Eq. (1).

H p0ð Þ ¼ gxx p0ð Þ gxy p0ð Þ
gxy p0ð Þ gyy p0ð Þ

� �
� f p0ð Þ ð1Þ

Equation (2) gives the Gaussian kernel with variance r and its corresponding
second derivatives form part of the hessian function.

g p0; rð Þ ¼ 1ffiffiffiffiffiffi
2p

p
r
e�

x2 þ y2

2r2 ð2Þ

Considering the orientation uh ¼ cos h; sin hð ÞT , the basic steerable filter with h 2
�p=2; p=2½ � can be obtained by Eq. (3). To put it in another way, its detailed
expression is shown in Eq. (4).

e p0; h; rð Þ ¼ uThH p0ð Þuh ð3Þ

e p0; h; rð Þ ¼ gxxcos
2hþ gyysin

2hþ gxy sin 2h ð4Þ

After the basic steerable filter e convolutes an image f pð Þ, the filter response E at a
position p0 can be calculated by Eq. (5). In addition, the parameter r in the steerable
basic filter can be fixed to adapt different widths. As shown in Fig. 3(a), the first row
shows three basic steerable filters with h ¼ 0;�p=4; p=3, respectively.

E p0; h; rð Þ ¼ e p0; h; rð Þ � f p0ð Þ ð5Þ

However, the single basic steerable filter is incapable of detecting sharp bends,
intensity variations, and completed crack morphology. Thus, inspired by the local
directional evidence filtering [14], we design two additional oriented filters that include
a certain offset in the angle and space distance of the detection point. Equations (6)–(7)
are the corresponding two offset point p1 and p2.

Figure 3(b) is the demonstration of the local search region around the detection
point p0 x; yð Þ ¼ 1; 1ð Þ, and the parameter settings are d ¼ 1, h 2 �p=2; p=2½ � and
u 2 �p=6; p=6½ � with step of p=18. The yellow point represents the detection point p0,
and the red points represent the p1, and p2 are displayed with green points, all of which
appear as a circular search region with the center of detection point p0 and the radius of
d. Specially, the partial overlap of the red points and green points, which ensures the
detection of crack defect at the entire circular region of the detection point, is caused by
the offset angle u and the offset distance d.
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p1 ¼ x� d cos hþuð Þ; yþ sin hþuð Þ½ � ð6Þ
p2 ¼ xþ d cos hþuð Þ; y� sin hþuð Þ½ � ð7Þ

e� p; r; h;uð Þ ¼ e p0; r; hð Þþ e p1;r; hþuð Þþ e p1; r; hþuð Þ ð8Þ

Thus, a linear superposition of the basic steerable filter and two additional oriented
filters form the steerable evidence filter e� in Eq. (8), which provide evidence for the
presence of crack defect. As shown in Fig. 3(a), the second row shows three sets
steerable evidence filter with different orientations. It shows the steerable evidence filter
is consistent with the geometric characteristics of the crack defect fragments including
line and curve, so the problem of crack defect bending, bifurcation and complicated
geometry can be addressed.

In our application, we aim at finding the crack that lies in some uncertain position
and orientation in an EL image. When convoluting an image with the steerable evi-
dence filter in Eq. (9), a higher magnitude will be obtained if there is a crack in the EL
image. To better highlight the crack information, the maximum response magnitudes

Fig. 3. (a) Examples of the basic steerable filters in the first row and steerable evidence filters in
the second row. (b) The local search region of steerable evidence filter.

Fig. 4. Example of the response maps. (a) Defective images. (b) The response maps obtained by
the steerable evidence filter.
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R� are calculated by Eq. (10). Figure 4(a) presents two defective images and Fig. 4(b)
shows the response maps obtained by the steerable evidence filter. The response maps
show the response magnitudes can be approximately treated as zero in the defect-free
region. In contrast, the crack region has higher response magnitudes, which contributes
to the further crack defect acquirement.

R p; r; h;uð Þ ¼ e� p; r; h;uð Þ � f pð Þ ð9Þ

R� p; rð Þ ¼ maxh;uR p; r; h;uð Þ ð10Þ

2.2 Complete Crack Extraction from the Response Map

In this section, we mainly extract the complete crack defect from the response map,
which is implemented by local threshold segmentation, connecting crack fragments by
minimum spanning tree and locating complete crack defect by crack skeleton
extraction.

2.2.1 Local Threshold Segmentation
Owing to the random crystal grains, the defect-free region also represents certain
response magnitudes in the response map. In order to obtain the crack defect structure,
we first apply a local threshold by sliding sub-image to segment crack from the
response map. Then, the threshold for the response map is given by

T x; yð Þ ¼ uR x; yð Þþ krR x; yð Þ ð11Þ

where uR x; yð Þ and rR x; yð Þ are the mean and standard deviation of each sliding sub-
image of size N � N in the response map, and the size of mask is set 9� 9 in our
application. k is a predetermined constant.

We still select this EL images with crystal grains around the crack, and the cor-
responding segmentation results are given by Eq. (12). Although some background
pixels are removed after the threshold, there are still some crystal grains structures in
the threshold segmentation results, so morphological operation is adopted to remove
some small non-crack pixels and the final crack defect fragments are shown in
Fig. 5(a). For these EL images with crystal grains interference, the segmented crack is
disconnected near the crystal grains, which makes crack defect incomplete and is
unfavorable to detection performance.

B x; yð Þ ¼ 1; if R x; yð Þ[ T x; yð Þ
0; otherwise

�
ð12Þ
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2.2.2 Connecting Crack Fragments and Locating Complete Crack Defect
To get the complete crack defect, minimum spanning tree (MST) based on Kruskal’s
algorithm is applied. Minimum spanning tree is an important model in graph theory and
it is used to solve the problem of minimum path cost. In this procedure, minimum
spanning tree can minimize the sum of the weights of corresponding edges and connect
these nodes. According to this function, we use minimum spanning tree to connect
crack fragments. Figure 5(a) shows the nodes of a1 and b1, c1 and d1 belonging to the
vertexes of crack fragments to be connected, and Fig. 5(b) shows the complete crack.
In order to mark the crack defects, we compute the crack skeleton and locate them in
the inspection images. As shown in Fig. 5(c), the complete crack defects are correctly
located as red points.

3 Experimental Results and Analysis

3.1 Data Set and Parameter Setting

In order to verify the performance of the proposed method, we collect the defective and
defect-free EL images from the actual production line in. The defect-free EL images
have no crack defect but crystal grains randomly distributed in the background. The
defective EL images can be divided into five types according to the texture background
and geometric property of crack defect. Some representative defective and defect-free
EL images are shown in Fig. 6. Here, 300 defective EL images including different
types of cracks and 200 defect-free EL images of size 125� 125 are used to verify the
proposed method.

Although there are several parameters in the proposed method, not all of them play
important roles in crack detection performance. Three parameter are essential: scale
size r, offset d of the steerable evidence filter and threshold coefficient k. So, we select
a certain number of defective and defect-free EL images to determine the optimal
parameter values. The detailed characterizations of the data set used in the experiment
are presented in Table 1.

Fig. 5. Complete crack extraction by minimum spanning tree. (a) Crack fragments. (b) Complete
crack. (c) Located crack. (Color figure online)
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In the designed steerable evidence filtering procedure, we have to determine two
parameter for better performance: the scale size r and the offset d. The parameter r fits
different widths of crack defects. If r is set too small, the crack cannot be well highlight
and it is easy to be missed. Conversely, if r is set too large, the crystal grains near the
crack will be treated as crack, and affect the detection performance. As shown in
Fig. 7(a), for different types of defective and defect-free images, a better detection
results can be obtained when the scale size r is 1. Similarly, the offset d controls the
locality of the steerable evidence filter. While a small value of d does not contribute
enough, a large value will introduce false pixels that do not belong to the same crack
structure. According to Fig. 7(b), the optimal performance is achieved when d is 1.

Besides, the threshold coefficient k will affect the detection results in the seg-
mentation procedure. Too small a control value of k gives a tight threshold and may
identify the background pixels as crack defects.

However, too large a control value gives a loose threshold and may miss some true
crack defect pixels. As shown in Fig. 7(c), although the same detection results can be
obtained for dendritic crack images and defect-free images when k is 1 or 1.5, the
threshold coefficient k is set to 1 for all the whole types of EL images. The detection
results show the optimal parameters are adapted for defective and defect-free images.

Fig. 6. Representative defective images and defect-free images. (a1)–(a2) Pure-type cracks.
(b1)–(b2) Submerged-type cracks. (c1)–(c2) Dendritic-type cracks. (d1)–(d2) Break. (e1)–(e2)
Dark-type cracks. (f1)–(f2) Defect-free.

Table 1. Details of data set used in the experiment

Types Number Number of test images for optical parameters

Pure 90 20
Submerged 150 20
Dendritic 10 10
Break 30 10
Dark 20 10
Defect-free 200 20
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3.2 Robustness Analysis in Brightness Levels

In this study, we also test some dim defective images that present much low contrast
between crack and background and dim defect-free images, and the proposed method
still achieve satisfactory performance. As shown in Fig. 8(a), there is a horizontal line
labeled as red, which passes through both crack defect and background. The corre-
sponding gray level intensity is shown in Fig. 8(b). It shows the low contrast between
crack defect and background, which greatly increases the difficulty of crack defect
detection in the dim EL images. Figure 8(c1)–(d1) are two typical low-efficiency solar
cells that show weak differences between crack and background, and Fig. 8(e1) is a
dim defect-free EL image. The detection result of Fig. 8(e2) shows that no crack defect
is detected in the defect-free EL image. At the same time, the crack defects can be
completely located in the dim defective EL images. Thus, the conclusion is that the
proposed method is robust to the inhomogeneously textured background and different
brightness levels.

Fig. 7. Optimal parameter selection. (a) Effect of scale size. (b) Effect of offset. (c) Effect of
threshold coefficient.
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3.3 Performance Evaluation

In this paper, our method is compared with some representative crack defect detection
methods to prove the effectiveness of the proposed method. Specifically, the Aniso-
tropic diffusion (AD) [7], the Local thresholding (LT) [8] and the basic steerable filter
(BSF) [13] methods are used on the given image data set. As an illustration, Fig. 9
shows representative five types of defective EL images and a defect-free EL image and
the corresponding detection results. Figure 9(a6)–(f6) show the crack defect ground
truth by human labeled.

The AD method assumes that crack defect presents low level and high gradient, and
applies anisotropic diffusion model to smooth crack defect and preserve background,
simultaneously. The detection results in Fig. 9(a2)–(f2) show that some crystal grains
are mistaken as crack defect because random crystal grains also exhibit the features of
low gray level and high gradient. Moreover, the crack detection results are intermittent
and this method is less adept at detecting crack defect in dim EL images, such as in
Fig. 9(a2) and (e2). As shown in Fig. 9(f2), for defect-free image, this method easily
generates false detections.

The LT method uses a local thresholding-based method to segment crack defect by
calculating each sub-image’s gray level mean and standard deviation. The detection
results in Fig. 9(a3)–(f3) show the crystal grains are detected as crack defect due to
taking gray level information into account only, and crack defect in dim EL image
cannot be detected, such as in Fig. 9(e3). For Fig. 9(f3), this method is similar to the
AD method and it is not robust to defect-free image.

The BSF method uses the single basic steerable filter to process the EL images.
Figure 9(a4) shows that the BSF is less adept at solving intensity variations, making
crack defect incomplete. Moreover, as shown in Fig. 9(c4), this method cannot well
address the bifurcations due to the lack of consideration of local neighborhood infor-
mation. In particular, the vertical dark region is not crack defect but finger interruption
defect. Fortunately, the BSF method is robust to the dim and defect-free images, as
shown in Fig. 9(e4)–(f4).

Fig. 8. Robustness to brightness levels of the proposed method. (a) A dim defective image.
(b) Gray level intensity of red horizontal line in (a). (c1)–(e1) Two dim defective images and one
defect-free image, respectively. (c2)–(e2) The corresponding response maps. (c3)–(e3) The
detection results. (Color figure online)
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The detection results based on our method are shown in Fig. 9(a5)–(f5). Although
the inhomogeneously textured background caused by random crystal grains, even
crystal grains distributed around the crack, the proposed method can detect various type
crack defects and completely locate them on the inspection images. Moreover, all the
false detections of crystal grains by the AD and LT methods are well addressed.
Furthermore, the proposed method can well detect crack defect in dim EL image and it
is robust to defect-free image. Overall, it preforms better than other three methods.

Furthermore, a quantitative evaluation is also given to compare our method with the
above three representative methods. In this study, three performance indices including
Precision (Pr), Recall (Re), and F-measure (Fm) are defined as follows:

Pr ¼ TP
TPþFP

ð13Þ

Re ¼ TP
TPþFN

ð14Þ

Fig. 9. Comparison of the proposed method with previous method. The first row is five different
types of defective images and one defect-free image. The second to fifth row are the detection
results of AD method [7], LT method [8], BSF method [13] and our method, respectively. The
defective regions are labeled as red. The sixth shows crack defect ground truth.
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Fm ¼ 2� Pr � Re
PrþRe

ð15Þ

where TP, FP, and FN represent true positives, false positives, and false negatives,
respectively. The Fm can evaluate the overall performance of crack defect detection
methods. The quantitative evaluation results are shown in Table 2. It shows the pro-
posed method outperforms other methods.

4 Conclusion

In this paper, we proposed a robust crack defect detection scheme in inhomogeneously
textured surface of near infrared images for multicrystalline solar cells. A steerable
evidence filter is designed to provide evidence for the presence of crack defect.
Moreover, the performance was evaluated on the challenging data set collected from
solar cells production line. The experimental results show the proposed scheme is
robust to the inhomogeneously textured background, crack defect types and brightness
levels change, which can achieve satisfactory detection results.
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