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Abstract. Semantic segmentation is a fundamental and challenging
task for semantic mapping. Most of the existing approaches focus on
taking advantage of deep learning and conditional random fields (CRFs)
based techniques to acquire pixel-level labeling. One major issue among
these methods is the limited capacity of deep learning techniques on uti-
lizing the obvious relationships among different objects which are speci-
fied as semantic knowledge. For CRFs, their basic low-order forms cannot
bring substantial enhancement for labeling performance. To this end, we
propose a novel approach that employs semantic knowledge to intensify
the image segmentation capability. The semantic constraints are estab-
lished by constructing an ontology-based knowledge network. In partic-
ular, hierarchical conditional random fields fused with semantic knowl-
edge are used to infer and optimize the final segmentation. Experimental
comparison with the state-of-the-art semantic segmentation methods has
been carried out. Results reveal that our method improves the perfor-
mance in terms of pixel and object-level.

Keywords: Image segmentation · Semantic knowledge · Ontology
Conditional random fields

1 Introduction

Mobile robots intended to perform in human environments need to access a
world model that includes the representation of the surroundings. Since most
people concentrate on the accurate geometry of the world, the semantic infor-
mation arises and becomes a vital factor that assists the robot in executing tasks.
Semantic segmentation can just provide this kind of information. Its purpose is
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to divide the image into several groups of pixels with a certain meaning and to
assign the corresponding label to each region. However, image semantic segmen-
tation has become an intractable task due to the varieties of different objects,
unconstrained layouts of indoor environments.

The seemingly complicated living environments for people possess a variety
of repeated specific structures and spatial relations between different objects.
For instance, a monitor is more likely found in a living room than in a kitchen.
Also, a cup is more likely on the table than on the floor. Such kinds of specific
objects and spatial relations can be defined as an alternative semantic knowledge
which improves the quality of image segmentation and helps robots to recognize
the interesting things.

Traditional image segmentation methods [5] take advantage of the low-level
semantic information, including the color, texture, and shape of the image, to
achieve the purpose of segmentation. But the result is not ideal enough in the
case of complex scenes. In recent years, researchers have been committed to
using convolution neural networks to enhance the segmentation of images. How-
ever, the method of deep learning to deal with the pixel tags only draws the
outline of the objects coarsely. There also exists the problem that only local
independent information is accessible and the deficiency of surrounding context
constraints. [6] constructed the Conditional Random Fields model (CRF) [13]
according to the pixel results produced by the neural network. This approach is
designed to enhance the smoothness of the label, maintain the mask consistency
of the adjacent pixels. Although the above-mentioned methods achieve remark-
able pixel-level semantic segmentation, they only make use of the constrained
relations among low-level features.

In this paper, we propose a semantic knowledge based hierarchical CRF
approach to image semantic segmentation. Our method not only achieves bet-
ter segmentation effect at pixel-level but also gets great improvements on the
object-level. Figure 1 shows the overall framework of our method and the main
contributions are summarized as follows:

– We construct an ontology-based knowledge network which is utilized to
express the semantic constraints.

– We first propose an original hierarchical CRF model fused with semantic
knowledge from the ontology.

– We make great progress in error classification at object-level by embedding
the global observation of the image and using the high-level semantic concept
correlation.

2 Related Works

2.1 Image Segmentation Based on CNNs and CRFs

Semantic image segmentation has been always a popular topic in the field of
computer vision. In recent years, the methods of deep convolution neural net-
work have made an unprecedented breakthrough in this field. [8] proposed an
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Fig. 1. Overall framework of our method. Concepts and relations are gathered from
human’s elicitation according to the image database. Global observation is derived
from the semantic ontology network composed of the concepts and relations. FCN [15]
accepts inputting image in any size and generates initial segmentation region which is
utilized in both pixel-level CRF and region-level CRF. A hierarchical CRF model is
constructed to combine two kinds of CRF models and produces the final segmentation.

R-CNN (regions with CNN features) method which combined region proposals
with CNNs. It deals with the problem of object detection and semantic segmen-
tation but needs a lot of storage and has limitation on efficiency. Prominent
work FCN [15] designed a novel end-to-end fully convolutional network which
accepted inputting image for any size and achieved pixel classification. Based
on FCN, Vijay et al. [3] replicated the maximum pooling index and constructed
an original and practical deep fully CNN architecture called SegNet. Although
these methods have made good progress through CNNs, they lack the spatial
consistency because of the neglect of the relationship between pixels.

On the basis of [15], Zheng et al. [22] modeled the conditional random fields as
a recurrent neural network. This network utilized the back propagation algorithm
for end-to-end training directly without the offline training on CNN and CRF
models respectively. Lin et al. [14] introduced the contextual information into
the semantic segmentation, and improved the rough prediction by capturing the
semantic relations of the adjacent image. In contrast to the above methods,
our method pays more attention to improve the segmentation of the region and
object layer, which also help to promote the segmentation accuracy at the pixel
level in a subtle way.

2.2 Semantic Knowledge

Semantics, as the carrier of knowledge information, transform the whole image
content into intuitive and understandable semantic expression. Ontology has
become a standard expressive form of relations between semantic concepts.

Wang et al. [20] constructed ontology network using the OWL DL language.
Ontology network captures the hidden relationships between features in the fea-
ture diagrams precisely and helps to solve the task of feature modeling. An
ontology-based approach to object recognition was presented in [7]. It endowed
the object semantic meaning through the relations between the objects and the
concepts in the ontology. Ruiz et al. [17] utilized the expert knowledge established
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Fig. 2. A part of established ontology on the images of the NUY v2 dataset. The root
concept is Thing. The blue, purple and brown lines represent the relation has subclass,
has individual and hasAppearedwith, respectively. (Color figure online)

manually to extract semantic knowledge and trained probabilistic graph model.
Subsequently, they proposed a hybrid system based on probabilistic graph model
and semantic knowledge in [18]. The system makes full use of the context of the
object in the image and shows excellent recognition effect even in complex or
uncertain scenes. However, this method requires the laboriously manual design
of the training data of the PGM model and only gets performance in the aspect
of object recognition.

A related but very different work to our method is introduced in [21]. This
work facilitated the semantic information to transform the low-level features of
the image into the high-level feature space and assign the corresponding class
labels to each object parts. In our work, we obtain the prediction directly from
the FCN and utilize the combination of hierarchical CRFs and the ontology
network to optimize the regional label. It has great advantages in efficiency
because it does not need to train multiple CRF models.

2.3 Hierarchical CRFs

Primary CRF model only uses the local features of the images, such as pixel
features and cannot utilize the high-level features, such as regional features and
global features. [19] adopted the original potential energy function of CRF to
define the constraint relation between the local feature and the high-level features
and constructed the hierarchical CRF model. Huang et al. [10] established a
hierarchical two-stage CRF model on the basis of the idea of parametric and
nonparametric image labeling. Benjamin et al. [16] paid attention to both the
pixel and object-level performance by merging region-based CRF model with
dense pixel random fields in a hierarchical way. Compared with [16], our approach
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adds the global observation information from the ontology network into the
hierarchical CRF which makes the system more robust in the global segmentation
performance.

3 Approach

3.1 Semantic Knowledge Acquirement

3.1.1 Ontology Definition
Different semantic labels will appear in the same image. An image is usually
labeled with a variety of semantic labels. The ontology is a clear and formal
specification of shared concepts that is applied to define concepts and the rela-
tionships between concepts and concepts. In this work, we utilize the ontology
as the carrier of semantic knowledge to form a reasoning engine for object label-
ing. Ontology is generated by human elicitation. For example, an indoor scene
can be modeled by defining the types of objects that occur in the environment.
E.g. Desk, Table, Bookshelf, etc.. . . In addition, the properties of the object
and the contextual relations that exist between the objects should be formu-
lated. As Fig. 2 illustrates, a multi-layer ontology-based structure is proposed
to give the most understandable semantic representation of the image content.
This graph is generated by using the software Protégé[11] based on the OWL
DL language. The root concept is Thing, and its subordinate concept such as
furniture, equipment, and otherstructures are easy to be found in a typical
indoor environment. The ultimate goal of using ontology is to ensure that the
labels of objects appearing in the image are consistent.

3.1.2 Semantic Constraints
The situation that objects contained in a specific scene owns certain probability
of occurrence from the overall consideration. Therefore, each class that appears
in the ontology should have a propriety which is defined as has Frequency
from the perspective of fuzzy description logics [2]. More importantly, what we
should consider is how to generate the probability that two objects appear in
one scene at the same time. We define the co-occurrence of the two objects by
rule hasAppearedwith in the ontology.

As mentioned above, the context relations between objects are obtained by
fuzzy description logics. The occurrence probability of a concept and the previous
definition has Frequency of each class are defined by the following formula:

has Frequency(Ci) = prob(Ci) =
ni

N
(1)

Where ni refers to numbers of concept Ci appears in the image. N represents the
number of images used in the dataset. Similarly, the probability of two objects
appear in an image at the same time is formulated:

prob(Ci, Cj) =
ni,j

N
(2)
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ni,j refers to the number of images in which concept Ci and Cj appear simulta-
neously in an image. On the basis of equation (2), we compute the Normalized
Pointwise Mutual Information (NPMI) according to [4]:

p(Ci, Cj) = log
prob(Ci, Cj)

prob(Ci) ∗ prob(Cj)
(3)

If Ci and Cj are independent concepts mutually, it is easy to deduce that
prob(Ci, Cj) = 0. In a word, prob(Ci, Cj) measures the the degree of sharing
information between concept Ci and Cj .

To normalize prob(Ci, Cj) to the interval [0, 1], we obtain the fuzzy represen-
tation of hasAppearedwith:

hasAppearedwith(Ci, Cj) =
p(Ci, Cj)

−log[max(prob(Ci), prob(Cj))]
(4)

3.2 Hierarchical Conditional Random Fields

3.2.1 Pixel-Level CRFs
CRFs applied in semantic segmentation is a probabilistic model for the segmenta-
tion of class labels associated with given observation data. In CRF model, obser-
vation variable Y = {y1, y2, ..., yN} indicates the image pixel and the implicit
random variable X = {x1, x2, ..., xN} refers to the labels of pixels. Given a graph
G = (V ,E), V = {1, 2, ..., N}. eij ∈ E means the collection of edges of adjacent
variables xi and xj . Random variable x is defined over the set L = {l1, l2, ...lK}.
Under the premise of the given condition Y , the joint probability y distribution
of the random variable X follows the Gibbs distribution:

P (X|y) =
1
Z

exp(−E(X|y)) (5)

Energy function is defined by:

E(X|y) =
∑

i∈V

Ei(xi) + α
∑

{i,j}∈E

Eij(xi, xj) (6)

Where α is the weight coefficient, Z is the normalization factor. Ei is the unary
potential, which includes the relationship between random variables and the
observed values. Unary potential is usually deduced by some other classifiers
that generate distributions over class labels. The unary potential used in this
paper is produced by the FCN [15]. Eij denotes the pairwise potentials, which
represents the smoothness constraints on adjacent pixels for the same label and
include the relationships between adjacent random variable nodes. According
to [13], we model the pairwise potentials as follows:

Eij(xi, xj) = u(xi, xj)
M∑

a=1

ω(a)k(a)(fi, fj) (7)
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Where k(a) is a Gaussian kernel, ω(a) is a weight parameter for kernel k(a) and
fi is a feature vector for pixel i. Function u(., .) is called the label compatibility
function, which captures the compatibility between connected pairs of nodes that
are assigned different labels. Since the above mentioned two kinds of energy items
contain fewer hidden variables, they are also called low-order energy terms.

The main task of semantic segmentation is to select li from the set L and
assign it to each random variable xi. Thus, an energy expression is constructed
to solve X which meets the maximum of a posteriori probability:

X∗ = arg max
X

P (X|y) = arg min
X

E(X|y) (8)

3.2.2 HCRF
As shown in Fig. 3, HCRF model consists of two layers: the pixel layer and the
region layer. The pixel layer is composed of hidden random variable X, whose
definition is consistent with the CRF model. The region layer is formed by the
segmentation blocks obtained from FCN. r = {x1, x2, ...xm} represents a region
block unit that is a set of the hidden random variables x. R = {r1, r2, ...rp}
denotes a collection of all area blocks. According to the model described above,
the energy expression for HCRF model is defined as follows:

E(X|y) =
∑

i∈V

Ei(xi) + α
∑

{i,j}∈E

Eij(xi, xj)

+ β
∑

m∈R

Em(rm) + γ
∑

{m,n}∈E
′
Emn(rm, rn)

(9)

The pixel layer corresponds to the CRF model uses pixels as the basic pro-
cessing unit, including the low-order energy terms described above. The energy
term reflects the constraints of the local texture feature for the pixel class and
smoothness constraint between pixels. Em depicts the unary potential defined
in the region layer, which is the key to associating the pixel layer and the seg-
mentation layer. It also reflects the constraints of the descriptive feature to the
categories of segmentation region. β and γ are the weights of the corresponding
energy function of the region.

The unary potential is divided into two parts in the regional energy function
model. The one is the local observation part, which relates to the observation of
the image region. The other one is the global observation part, which denotes
the observation of relevant semantic label on the entire image dataset. In order
to combine the pixel layer and the region layer, the region unary potential is
formulated:

Em(rm) = −ln(fr
i (xi)) ∗ occur(xi) (10)

Where fr
i (.) is the normalized region probability distribution of the region i as

the local observation. It is computed from the implicit FCN pixel distribution.
occur(xi) = prob(xi) is the probability that the label of region rm occurs in
the whole image dataset as the global observation, which is calculated by the
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Fig. 3. Illustration of hierarchical con-
ditional random fields. The smaller
ellipses correspond to the unary poten-
tials of the pixel, and the larger circles
represent the unary potential defined in
the region layer. Different colors mean
different object labels.

Fig. 4. Visualization of the occur-
rence probabilities of different classes.
Off-diagonal entries are the proba-
bilities of simultaneous occurrence of
two concepts, while diagonal entries
are the occurrence probabilities of the
individual concepts. The class num-
bers correspond to the 40 different
classes in the image dataset. (Color
figure online)

has Frequency in the last section. The global observation of the image is intro-
duced to the unary potential function so that the unary potential is enhanced
by the knowledge in a higher level. This is an effective complement to the lim-
itations and deficiencies of the local observations and promotes the modeling
ability of the unary potential function.

To take advantage of the context information, we utilize the pairwise poten-
tials between the regions. The pairwise energy term is defined:

Emn(rm, rn) =
{

0 if hasAppearedwith(xm, xn) ≥ τ
T otherwise (11)

Where hasAppearedwith(xm, xn) implies the probability that the labels of
region rm and rn appear simultaneously in a picture. τ is a given threshold.
T means the given penalty. Pairwise energy term of region Emn is quite different
from the pairwise energy term of pixel Eij . Eij encourages adjacent pixels to
obtain the same class label. Emn makes the label of the adjacent region in the
semantic layer constrained and gives the mark of the irrelevant object in the
adjacent area great punishment. Owing to the setting of the above parameters,
our method has achieved excellent results in the experiment of misclassifica-
tion at the object-level, as discussed in Sect. 4.2. As for calculating the weight
parameters in the HCRF, we use the method of layer by layer weight parameter
learning proposed by AHCRF [19].

The final semantic segmentation results are obtained by minimizing the
energy function E(X|y) as described in the formula (8). Because we introduce
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the potential energy function based on global observation, the graph cut based
method proposed by Kahlil et al. [12] is used to complete the model inference.

4 Experiments and Analysis

4.1 Experimental Setup

4.1.1 Dataset
The semantic segmentation method we propose is evaluated by the dataset NYU
v2. It contains 1449 images collected from 28 different indoor scenes. The whole
dataset is divided into 795 training images and 654 test images. We exploit the
40-classes version provided by Gupta et al. [9]. As shown in Fig. 5, we can see
the various objects marked with different colors in the image.

4.1.2 Implementation Details
In our approach, the highly expressive OWL DL language is employed to design
and form the ontology of the dataset. In order to build the ontology model and
obtain the data we need, we use the Protégé as our ontology editor. The semantic
rules are applied on the dataset to construct the ontology. Figure 2 represents
the generated ontology for the semantic classes of the NYU v2 dataset. It can
be clearly seen that the degree of correlation between the two concepts which
is also defined as the fuzzy rule hasAppearedwith. It cannot be ignored that
has Frequency has become the underlying properties of each concept. Figure 4
visualizes the occurrence probabilities of the concepts as a matrix representation.
Element (i, j) of this matrix relates to prob(Ci, Cj) and element (i, i) corresponds
to prob(Ci). There are obvious red areas in the lower left corner and the upper
right corner of the picture, which indicates that these classes are more likely to
appear. In more detail, the class 1 and 2 represent wall and floor respectively
and the class 40 means otherprop. These classes are extremely common and
appear in almost every image of the dataset.

The semantic segmentation maps are generated by the up-to-date FCN net-
work. In addition, the final result gets improvement by the optimization of back-
end hierarchical conditional random fields. Thus, our method will be compared
to the effect of FCN only and the FCN with dense CRF [13]. We utilize the
TensorFlow [1] to construct the deep CNN in Linux operation system. Our app-
roach runs at 14 Hz on the TITAN-X GPU. Image segmentation is the most
computationally intense task, taking 170 ms to segment an image of 480 * 640
pixels.

4.1.3 Evaluation Metrics
The pixel accuracy (PA) is the ratio of correctly labeled pixels in an image to
all pixels. It is specified by

∑
i
Nii∑

i,j
Nij

, where Nij represents the number of pixels

of label i being labeled as j. Mean accuracy is defined as 1
k

∑
i
Nii∑

j
Nij+

∑
j
Nji−

∑
i
Nii

.
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However, the mere use of the above three criteria at the pixel level is not sufficient
to reflect the advantages of the method presented in this paper. Similar to [16],
we calculate the number of object False Positives which represents the number of
prediction regions that do not have any overlap with a ground truth instance of
the same class. It is designed to evaluate the error-classification degree in order
to reflect the excellent performance at the object-level.

4.2 Results and Analysis

For the sake of evaluating our method with existing approaches under the same
circumstances, we conduct two series of experiments with NYU v2 dataset. First,
we train our framework to distinguish between 40 semantic classes and compare
our results to [15] directly. We can observe from the Table 1 that our method
achieves the best results and outperforms the original FCN by more than 4%
in pixel accuracy. Expectedly, we also get progress in Mean IU which achieves
33.4% and outperforms both of the compared methods.

Table 1. Quantitative results on NYU v2 dataset.

Algorithm Performance

Pixel Acc. Mean Acc. Mean IU False Positives

FCN [15] 60.0 42.2 29.2 43726

FCN+ Dense CRF [13] 61.5 43.4 31.5 22350

Benjamin et al. [16] 63.4 - 32.5 17668

Ours 65.5 46.0 33.4 9813

In the aspect of object-level, the number of False Positives defined earlier is
used to evaluate the performance. FCN results in 43726 False Positives which are
much more than any other methods. This is because the initial result of the FCN
is coarse, and it is full of false positive samples that have been misclassified as
described in Fig. 5. Although Benjamin et al. [16] have made a great improvement
on this value, our approach shows a strong dominance in this respect. In our
experiments on the test set, we reduce the False Positives by almost 78% over
FCN and nearly 50% over [16]. Apparently, it is beneficial to utilize the global
observation and hierarchical random fields to optimize the results.

In Fig. 5, we further visually display the qualitative comparison with the
other approaches. It shows that the contours of the objects in FCN results are
not very clear. More importantly, there are more or less different classes with
Ground Truth. From the result of FCN with Dense CRF, we can observe that
the performance does not get significantly improved. In our case, our method
considers the global observation jointly and leverages the benefit from the HCRF.
Therefore, it can achieve more consistent performance with the Ground Truth.
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Fig. 5. Qualitative comparison with the other approaches. Left to right column: Origi-
nal Image, FCN [15], FCN+ Dense CRF [13], Our Method and Ground Truth. Different
colors indicate different classes.

5 Conclusion

We propose a novel approach that utilizes semantic knowledge to enhance the
image segmentation performance. We formulate the problem in a hierarchical
CRF integrated with the global observation. Our method achieves promising
results in both pixel and object-level. However, the whole framework is not an
end-to-end system and time-consuming. Future work includes replacing FCN
with other approach which can achieve better performance on the initial seg-
mentation. We will also improve the method by adding more semantic constrains
rather than only using the pair-wise relation.
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13. Krähenbühl, P., Koltun, V.: Efficient inference in fully connected CRFs with Gaus-
sian edge potentials. In: Advances in Neural Information Processing Systems, pp.
109–117 (2011)

14. Lin, G., Shen, C., Van Den Hengel, A., Reid, I.: Efficient piecewise training of
deep structured models for semantic segmentation. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 3194–3203 (2016)

15. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3431–3440 (2015)

16. Meyer, B.J., Drummond, T.: Improved semantic segmentation for robotic appli-
cations with hierarchical conditional random fields. In: 2017 IEEE International
Conference on Robotics and Automation (ICRA), pp. 5258–5265. IEEE (2017)

17. Ruiz-Sarmiento, J.R., Galindo, C., Gonzalez-Jimenez, J.: Exploiting semantic
knowledge for robot object recognition. Knowl. Based Syst. 86, 131–142 (2015)

18. Ruiz-Sarmiento, J.R., Galindo, C., Gonzalez-Jimenez, J.: Scene object recognition
for mobile robots through semantic knowledge and probabilistic graphical models.
Expert. Syst. Appl. 42(22), 8805–8816 (2015)

19. Russell, C., Kohli, P., Torr, P.H., et al.: Associative hierarchical CRFs for object
class image segmentation. In: 2009 IEEE 12th International Conference on Com-
puter Vision, pp. 739–746. IEEE (2009)

20. Wang, H.H., Li, Y.F., Sun, J., Zhang, H., Pan, J.: Verifying feature models using
owl. Web Semant. Sci., Serv. Agents World Wide Web 5(2), 117–129 (2007)

https://doi.org/10.1007/978-3-540-30475-3_17
https://doi.org/10.1007/978-3-540-30475-3_17


Image Segmentation Based on Semantic Knowledge and Hierarchical CRFs 225

21. Zand, M., Doraisamy, S., Halin, A.A., Mustaffa, M.R.: Ontology-based semantic
image segmentation using mixture models and multiple CRFs. IEEE Trans. Image
Process. 25(7), 3233–3248 (2016)

22. Zheng, S., et al.: Conditional random fields as recurrent neural networks. In: Pro-
ceedings of the IEEE International Conference on Computer Vision, pp. 1529–1537
(2015)


	Image Segmentation Based on Semantic Knowledge and Hierarchical Conditional Random Fields
	1 Introduction
	2 Related Works
	2.1 Image Segmentation Based on CNNs and CRFs
	2.2 Semantic Knowledge
	2.3 Hierarchical CRFs

	3 Approach
	3.1 Semantic Knowledge Acquirement
	3.2 Hierarchical Conditional Random Fields

	4 Experiments and Analysis
	4.1 Experimental Setup
	4.2 Results and Analysis

	5 Conclusion
	References




