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Abstract. In order to improve the real-time and accuracy of Faster R-
CNN (Region based Convolutional Neural Networks) for detecting small
object, a novel object detection model is proposed in this paper. Our
model not only keeps the detection accuracy for big object, but also
improves significantly the accuracy for small object, and with very little
reduction in term of detection speed. Firstly, a shallow CNN is designed
and connected with an improved deep CNN by using skip-layers connec-
tion method, which makes full use of the convolution characteristics with
different layers to improve the detection ability for small object; Secondly,
the detection accuracy of our model is improved further by incorporat-
ing the region proposal mechanism in Faster R-CNN, and using 12 kinds
of anchors to generate object candidates; Finally, a dimensional reducer
is designed by connecting ROI-Pool layer and 1× 1 convolutional layer,
which accelerates the detection of overall network. The test results on
image datasets PASCAL VOC and MS COCO show that the detection
accuracy of our model is higher than some current advanced models, and
small objects is significantly improved.
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1 Introduction

Object detection technology has been widely used in intelligent transportation,
road detection and military target detection. With the advent of deep learn-
ing and large-scale visual identification datasets, object detection has developed
rapidly, among which the two-step object detection framework based on R-CNN
[1–4] and one-step object detection framework based on regression [5–7] are the
most representative.

Object detection framework based on R-CNN mainly consists of image con-
volution, region proposal, classification and regression of the region. In 2014,
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Girshick et al. [1] proposed the object detection framework based R-CNN by
combining region proposal with CNN, which opened a new era for object detec-
tion with deep learning. After that, around the detection accuracy and speed,
many improved versions of the R-CNN model have been proposed, such as, the
Fast R-CNN [2] incorporating the ROI-Pool layer and multi-task loss function,
the Faster R-CNN [3] incorporating Region Proposal Network (RPN), and the
Mask R-CNN [4] cooperating instance segmentation for multitask collaboration.
Compared with the traditional method of target detection, the R-CNN methods
avoid the subjectivity of the manual feature extraction, and realize the end-to-
end object feature extraction and classification.

In view of the two-step object detection be very slow, the one-step object
detection method avoids the process of region proposal, and performs the object
detection by using regression method directly to output category and bounding
box of each regions in the image. The YOLO [5] divides the image into grids, and
performs regression computation on those grids to gain category and bounding
box of the objects, which boosts the detection speed to 45 fps. The SSD [6]
introduces the anchor representation of Faster R-CNN into YOLO to general
multi-scale regions at each location in the image, which not only improves greatly
the accuracy of detector but also makes the detection speed be up to 58 fps.
DSSD [7] fuses the deep convolution layers and the shallow convolution layers by
using encode-decode network, which can leverage high-level semantic and low-
level image feature, so boosts the detection performance on small object and
dense object. Above methods do not require region proposal, so compared to
the methods based on R-CNN, their detection speed are faster but the accuracy
be lower.

The shortage of above two methods is that the detection accuracy of small
objects is poor. Therefore, in this paper, an object detection model based on
parallel connection of Deep and Shallow CNN (DS-CNN) is designed via innova-
tive use of skip-layers connection, region proposal and anchors. This model not
only keeps the detection accuracy for big object, but also improves significantly
the accuracy for small object, and with very little reduction in term of detection
speed.

2 DS-CNN

The framework of our detection model is shown in Fig. 1, and it consists of four
parts: the first part is the feature extraction network, including deep CNN and
shallow CNN; the second part is the region proposal network, which is used
to generate object candidates; the third part is dimensional reducer, which is
used to reduce the dimension of feature of object candidate; the fourth part is
fully-connected (FC) layer, classification and regression network.

2.1 The Design of Deep and Shallow CNN

In general, the deeper the level of convolution is, the more obvious the seman-
tic characteristic is, and the easier it is to classify the object, but the more
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Fig. 1. The framework of DS-CNN. Given an input image, after dealing with two layers
of convolutional layers, we use shallow network and deep network to process the feature
map into the same size and combine them in the concat layer. The RPN generates 500
region proposals, and then the feature map is processed by the dimensional reducer
and fully-connected layer. Finally, we use softmax for classification and multi-task loss
function for regression.

information lost. For large-scale objects, this loss is not enough to affect their
classification and identification, but it is not the same for small objects. Tak-
ing Fast R-CNN [2] as an example, the feature map of last convolutional layer
conv5-3 has been reduced by 16 times. For a 500× 300 image, the size of the
small object is about 32 × 32, and it becomes 2 × 2 after conv5-3. Although the
upsampling can expand the image to 7× 7, the loss of information is irreversible.
This is the reason why the series method of R-CNN model has a relatively poor
detection accuracy on small objects.

For this purpose, we designed deep CNN and shallow CNN based on the
VGG16 network. The deep network is used to capture the high-level semantics
of large objects, while the shallow network is used to hold the low-level image
features of small objects. In the deep network, the parameters of conv1-1 to
pool4 are the same as those of VGG16, but the conv5-1 to conv5-3 layers are all
modified using dilated convolution with a pad of 2, a kernel size of 3× 3, a stride
of 1, and a dilation of 2. Dilated convolution [8] is a common method in the
image segmentation, it can expand the receptive field without changing the size
of the feature map, and thus contains more global information. The principle
is shown in Fig. 2, where (a) is the normal feature map, and (b) is a dilated
convolutional map with a dilatation factor of 2. For the 7× 7 feature area, the
actual convolution kernel size is 3× 3 and the hole is 1, that is, the weights of
other points except 9 black points are 0. Although there is no change in kernel
size compared to (a), the receptive field of this convolution has increased to
7 × 7, which allows each convolution output to contain more global information.

In the shallow network, it is no longer necessary to capture high-level seman-
tic features of the image, but rather to obtain the low-level image features, so we
don’t need a very deep network, that is, we don’t need to use a large number of
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(a) 3×3 convolution (b) 2-dilated convolu-
tion

Fig. 2. Principle of dilated convolution.

convolutional layers. In order to achieve better results for the parallel structure,
we use the skip-layers connection method to share the parameters of conv1-1
and conv1-2. Starting from conv2-1, only 4 convolutional layers are used, each
of these layers has 24 filters with a kernel size of 5 × 5. In order to make the
final deep network and shallow network have the same spatial resolution, we
design an average pooling layer with a kernel size of 4× 4 and a stride of 2 after
each convolutional layer in the shallow network. Using average pooling instead
of maximum pooling in this model ensures that no excessive image information
is lost.

After extracting image features, we need to combine the feature maps of the
deep network and the shallow network, and to integrate them into a unified
space. In this paper, we employ the concat layer to do it, and the dimension of
joint features is 536-d.

2.2 Object Candidate Generation

The number and quality of object candidate region proposals affects directly the
speed and accuracy of the object detection. RPN [3] directly generates candidate
regions on the convolutional map by using the “anchor”. Although RPN is still
in the way of window sliding in essence, the detection speed of the whole network
is greatly improved because of its regional recommendation, classification and
regression sharing the feature of convolution map, so we refer the RPN in the
proposed DS-CNN.

RPN scans and convolves the feature maps by using a 3× 3 sliding window.
At the center of 3 × 3 sliding window, we give 4 scales(64, 128, 256, 512) and 3
aspect ratios(1:1, 1:2, 2:1), which can generate 12 different region proposal boxes,
i.e., 12 kind of anchor. Thus, for the 14× 14 feature map, there are about 2300
(14 × 14 × 12) region proposal boxes. After that, all region proposal boxes are
sent to the fully connection classification layer and regression layer to classify and
refine the region. The classification layer contains two elements for calculating
the probability of the target or non-target. The regression layer contains four
coordinate elements (x, y, w, h) for determining the target position. In order to
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obtain valid region proposals, we adjusted some of the parameters and using
the non-maximum suppression method to preserve the candidate region whose
overlap rate with truth region is greater than or equal to 0.5 as a positive sample,
and less than 0.3 as a negative sample. Finally, the first 500 positive samples
with highest overlap rate are selected as the final region proposals for object
detection.

In RPN, the input image can scale up to 1000× 600, but the maximum scale
in 12 kinds of anchors is 1024× 512, resulting to the 1024 be beyond 1000, so
the parts beyond the border will be cut out. As a result, the maximum size of
the anchor is 1000 × 512, and this size is large enough to cover the big object
in image. Similarly, 256 and 128 scales can be used to deal with medium-size
objects. Because each anchor is single-label detection, large object with obvious
feature will cover small object with obscure feature. However, by using the mini-
mum scale 64, we can avoid the small objects to be covered by large objects when
detecting small objects, so improve the detection accuracy of small objects.

2.3 Dimensional Reducer

The FC layer can integrate the extracted image features, and plays the role of
classification in CNN. Because the FC layer is easy to cause parameter redun-
dancy, many classical methods choose to use other types of layers instead of the
FC layer. For example, fully convolutional network uses a convolutional layer
instead of FC layer, and ResNet [9] and GoogLeNet [10] all use the global aver-
age pooling instead of FC layer. Because our model draws on the classification
and regression layer of Fast R-CNN, it cannot completely remove the FC layer.
Therefore, in our model, a dimensional reducer is designed to replace one FC
layer of VGG16 to reduce parameter redundancy. The dimensional reducer con-
sists of a ROI-Pool layer and a 1× 1 convolutional layer. The ROI-Pool layer is
able to output a fixed size feature map after the RPN, which is used to compress
feature maps in this paper. The convolutional layer with a kernel size of 1× 1
and a step size of 1 is behind the ROI-Pool layer, which can not only make the
structure more compact, but also reduce the dimension of the feature map. We
use dimensional reducer to fix the size of feature maps to 7× 7, and to reduce
dimension of features from 536 to 512. The compressed features are then input
the FC layer. The experimental results show that our structure of dimensional
reducer+FC6+Loss is faster than the one of FC6+FC7+Loss in VGG16, and
the detection accuracy is also slightly improved.

Similar to the series method of R-CNN, in FC layer, we uses SoftmaxWith-
Loss for classification and SmoothL1Loss for regression when training, and uses
Softmax for classification when testing.

2.4 Joint Training

Like some advanced models, the DS-CNN can also accept end-to-end training
and testing. However, by comparison, we find that the alternate training method
can obtain better mAP than end-to-end training method on our model. The main
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steps of the alternate optimization training are as follows: Firstly, we initialize
the feature extraction network with the pre-trained model of ImageNet [11], and
gain candidate regions by training the RPN alone on PASCAL VOC. Secondly,
we reinitialize the feature extraction network with the pre-trained model of Ima-
geNet, and add the candidate regions generated in the first step. Meanwhile, a
separate detection network is trained on the PASCAL VOC dataset using DS-
CNN so as to obtain the parameters of convolutional layer through the loss values
of the fully-connected layer and the candidate regions of the RPN. Thirdly, we
retrain DS-CNN, and use the model obtainded in the second step to initialize
and fix the parameters of the convolutional layer so that the convolutional layer
does not participate the back propagation, and using the RPN model trained in
the first step to initialize and fix the parameters of the RPN in the DS-CNN so
that the RPN isn’t involved in the back propagation. The total purpose of this
step is to connect the feature extraction network with the RPN. Finally, we use
the parameters of both convolutional layer and RPN obtained in the third step
to reinitialize and fix the DS-CNN model so that both the convolutional layer
and the RPN isn’t involved in the back propagation. The purpose of training
in this step is to fine-tune the fully-connected layer and get the most optimized
results.

3 Experimental Evaluation

PASCAL VOC [12] and MS COCO [17] are two used widely datasets in the
object detection field, and are used to evaluate our DS-CNN. The mAP is used
as the main evaluation criterion, and the convergence and detect speed of model
are used as two auxiliary evaluation criteria. We also compare our model with
state-of-the-art models, and they all use VGG16. All experimental results are
obtained by running these models on a PC with Intel Core i7-7700K 4.20 GHz
CPU, GeForce GTX 1080Ti GPU, and 16 GB RAM.

3.1 Experiments on PASCAL VOC

The PASCAL VOC 2007 dataset includes 20 object categories, about 5k training
images and 5k testing images, and the PASCAL VOC 2012 dataset is similar
to PASCAL VOC 2007, but the volume of data has doubled. Small objects of
PASCAL VOC dataset are mostly indoor, including bottle, chair, dining table,
potted plant, sofa, and tv.

In the first experiment, we use alternate training method to train our DS-
CNN on the training dataset of PASCAL VOC 2007, and test the model on
the testing dataset of PASCAL VOC 2007. Experimental results are shown in
Table 1, where the bold fonts, such as bottle, chair, are small objects. From
the table, we can observe that the mAP of DS-CNN is 72.1%, which is higher
than other models. For small objects, the detection accuracy of our model is
significantly improved, where the bottle and plant is the most obvious. Although
the accuracy of tv is lower than OHEM+FRCN [14], it is also 3.2% better



84 C. Zhang et al.

than Faster R-CNN. However, the detection results on larger objects seem to
be unstable, but we notice that most of them can maintain a high accuracy.
In order to express object detection results more intuitively, Fig. 3 shows some
examples of results on the PASCAL VOC 2007 dataset.

Table 1. The average detection precision (%) of all models on PASCAL VOC 2007,
where the training dataset is from PASCAL VOC 2007, and the best score is highlighted
in red color.

mAP areo bike bird boat bottle bus car cat chair cow

FRCN [2] 66.9 74.5 78.3 69.2 53.2 36.6 77.3 78.2 82.0 40.7 72.7

Faster R-CNN 69.9 70.0 80.6 70.1 57.3 49.9 78.2 80.4 82.0 52.2 75.3

locNET [13] 65.4 70.7 74.2 62.2 48.1 45.2 84.0 74.7 78.6 42.9 73.0

OHEM+FRCN 69.9 71.2 78.3 69.2 57.9 46.5 81.8 79.1 83.2 47.9 76.2

DS-CNN 72.1 71.8 82.3 71.2 58.4 51.3 80.1 82.8 82.5 53.1 78.8

table dog horse motor person plant sheep sofa train tv

FRCN [2] 67.9 79.6 79.2 73.0 69.0 30.1 65.4 70.2 75.8 65.8

Faster R-CNN 67.2 80.3 79.8 75.0 76.3 39.1 68.3 67.3 81.1 67.6

locNET [13] 67.0 75.4 77.9 66.9 58.1 30.9 65.5 69.3 73.6 69.0

OHEM+FRCN 68.9 83.2 80.8 75.8 72.7 39.9 67.5 66.2 75.6 75.9

DS-CNN 69.1 80.5 82.2 79.9 81.5 45.1 71.2 70.2 79.9 70.8

In order to eliminate the interference caused by the insufficiency of the
dataset, we designed the second experiment. Similarly to the first experiment, we
still used the testing dataset of PASCAL VOC 2007 for testing, but the training
dataset were from PASCAL VOC 2007+2012, by which the volume of training
dataset was expanded to three times of the first experiment. The experimental
results are shown in Table 2. It is easy to see that the mAP of DS-CNN is 75.8%.
Similar to our method, SSD500 also parallel connects the convolution features
from different layers. However, its features all are from high-level instead of low-
level layers, so the features of small objects cannot be effectively extracted and
trained. On the contrary, in our model, the shallow network and the average
pooling layer are used to preserve the information of small objects, and the scale
64 is used to enhance the detection of small objects in the RPN, so the DS-
CNN performs better than SSD on the detection of small objects. However, SSD
enhances the combination of different convolutional layers, uses data augments,
and abandons the fully-connected layers and candidate region generating, so the
overall performance of object detection is better than DS-CNN. In structure,
DS-CNN is similar to Faster R-CNN, and also draws on RPN of Faster R-CNN,
so there is a high comparability between them. The accuracy of DS-CNN is
higher than that of Faster R-CNN on all objects except boat, where the detec-
tion accuracy on small objects is increased significantly, which demonstrates the
effectiveness of DS-CNN.

In order to illustrate that our model can also achieve good results in different
datasets, we design the third experiment. In this experiment, the training dataset



Parallel Connecting Deep and Shallow CNNs 85

Fig. 3. Some elected examples of object detection results on the PASCAL VOC 2007

Table 2. The average detection precision (%) of all models on testing dataset of
PASCAL VOC 2007, where the training dataset is from PASCAL VOC 2007+2012,
and the best score is highlighted in red color.

mAP areo bike bird boat bottle bus car cat chair cow

FRCN 70.0 77.0 78.1 69.3 59.4 38.3 81.6 78.6 86.7 42.8 78.8

Faster R-CNN 73.2 76.5 79.0 70.9 65.5 52.1 83.1 84.7 86.4 52.0 81.9

Noc [15] 73.3 76.3 81.4 74.4 61.7 60.8 84.7 78.2 82.9 53.0 79.2

SSD500 75.1 79.8 79.5 74.5 63.4 51.9 84.9 85.6 87.2 56.6 80.1

DS-CNN 75.8 76.9 80.4 75.3 65.3 60.8 85.4 85.7 88.2 60.4 82.7

table dog horse motor person plant sheep sofa train tv

FRCN 68.9 84.7 82.0 76.6 69.9 31.8 70.1 74.8 80.4 70.4

Faster R-CNN 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83.0 72.6

Noc [15] 69.2 83.2 83.2 78.5 68.0 45.0 71.6 76.7 82.2 75.7

SSD500 70.0 85.4 84.9 80.9 78.2 49.0 78.4 72.4 84.6 75.5

DS-CNN 70.3 85.1 85.8 78.8 79.2 45.6 76.1 76.8 84.2 74.3

consists of training dataset of PASCAL VOC 2007+2012 and testing dataset of
PASCAL VOC 2007, and testing dataset is from testing dataset of PASCAL
VOC 2012. We also compare DS-CNN with FRCN+YOLO [5] and HyperNet
[16], and the experimental results are illustrated in Table 3. It is easy to see that
our model not only keeps the high detection accuracy for big object, but also
improves significantly the detection accuracy for small object, and with very
little reduction in detection speed.
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Table 3. The average detection precision (%) of all models on testing dataset of
PASCAL VOC 2012, where the training dataset is from PASCAL VOC 2007+2012,
and the best score is highlighted in red color.

mAP areo bike bird boat bottle bus car cat chair cow

Faster R-CNN 70.4 84.9 79.8 74.3 53.9 49.8 77.5 75.9 88.5 45.6 77.1

FRCN+YOLO 70.4 83.0 78.5 73.7 55.8 43.1 78.3 73.0 89.2 49.1 74.3

HyperNet 71.4 84.2 78.5 73.6 55.6 53.7 78.7 79.8 87.7 49.6 74.9

OHEM+FRCN 71.9 83.0 81.3 72.5 55.6 49.0 78.9 74.7 89.5 52.3 75.0

DS-CNN 73.1 82.7 81.1 73.9 55.9 53.7 80.0 76.1 89.8 54.9 76.6

table dog horse motor person plant sheep sofa train tv

Faster R-CNN 55.3 86.9 81.7 80.9 79.6 40.1 72.6 60.9 81.2 61.5

FRCN+YOLO 56.6 87.2 80.5 80.5 74.7 42.1 70.8 68.3 81.5 67.0

HyperNet 52.1 86.0 81.7 83.3 81.8 48.6 73.5 59.4 79.9 65.7

OHEM+FRCN 61.0 87.9 80.9 82.4 76.3 47.1 72.5 67.3 80.6 71.2

DS-CNN 62.2 89.5 81.8 83.9 79.8 48.6 73.6 68.5 81.5 69.4

3.2 Experiments on MS COCO

The MS COCO dataset is more complex than PASCAL VOC, and contains 80
object categories, about 80k images on the training set and 40k images on the
validation set. Especially, the dataset has many small objects, so is very suit-
able for evaluating DS-CNN. We use the end-to-end training method, and set
the basic learning rate be 0.001 and the learning strategy be ‘step’. The total
iteration step is 490k, and the learning rate is reduced to 0.0001 after 350k iter-
ations. We calculate the mAP@IoU∈[0.5:0.05:0.95] (COCO’s standard metric)
and mAP@0.50 (PASCAL VOC’s metric). Experimental results are shown in
Table 4. It can be seen that our model has 23.1% mAP on the COCO met-
ric and 43.6% mAP on the VOC metric. It is also interesting to notice that
our model performs well on the detection of small and medium objects, and
its mAP reaches 6.3% and 25.4% respectively. However, its performance on the
large objects seem to be mediocre.

Table 4. MS COCO 2015 test-dev detection average precision (%). All methods use
VGG16, and area infers to the size of object.

Area FRCN OHEM DS-CNN

mAP@[0.50:0.95] All 19.7 22.6 23.1

mAP@0.50 All 35.9 42.5 43.6

mAP@[0.50:0.95] Small 3.5 5.0 6.3

mAP@[0.50:0.95] Medium 18.8 23.7 25.4

mAP@[0.50:0.95] Large 34.9 37.9 36.3
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3.3 Combine from Which Layers?

When using the skip-layers connection method, we need to consider which lay-
ers be combined can get the best detection result. For example, the combina-
tion of conv3+conv4 +conv5 is the best in ION [18], while the combination of
conv1+conv3+conv5 is the best in HyperNet [16]. We give different combina-
tions of cov1, cov2, cov3 and cov5, and use the end-to-end method to train and
test each combination on the PASCAL VOC 2007 dataset. The experimental
results are shown in Table 5. We found it is no true that the more the number of
layers is, the higher the accuracy is, and the best combination is conv1+conv5.

Table 5. The detection accuracy of different combinations of multiple layers.

layers data+5 1 + 5 2+5 3+5 1+2+5 1+3+5

mAP 69.7% 71.4% 70.8% 69.4% 70.2% 68.6%

3.4 The Evaluation of Speed

Detection speed and convergence speed are two important indexes for evaluating
the performance of an object detection model. We compare the DS-CNN with
Faster R-CNN on PASCAL VOC 2007. For fair comparison, we also set the
number of final candidate regions in Faster R-CNN to 500, and run two models
on our PC. We collected each detection time of the model, and averaged all
detection times. The detection speed of DS-CNN was about 12 fps, while Faster
R-CNN was about 14 fps. In fact, this is an expected result, because DS-CNN
consumes more time than Faster R-CNN in feature extraction. However, the
difference between 12 and 14 is very little, so the speed has also met our standard:
the detection speed has little reduction.

Fig. 4. The mAP at different iterations.

We also used the end-to-end training and testing method to evaluate the
convergence speeds of two models on PASCAL VOC 2007 dataset, and recorded
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the mAPs of intermediate models with different iterations before generating the
final models. The comparison result is shown in Fig. 4. It is easy to see that the
two models all had converged when iterating 70k times, and the mAP of DS-
CNN is 71.4% while Faster R-CNN is 69.5%. DS-CNN has a faster convergence
speed than Faster R-CNN, because it is about 6% higher than Faster R-CNN
when iterating 2k times, and it starts to converge after 50k iterations.

4 Conclusions

We designed a new object detection model based on R-CNN. Firstly, we used
dilated convolution to design deep neural networks and shallow neural networks,
and used skip-layers connection method to connect the two networks. Secondly,
we used the RPN to generate object candidates. Thirdly, we designed a dimen-
sional reducer to reduce the dimension of feature maps. Finally, the model output
the results of classification and regression. The experimental results illustrated
that our model not only keeps the detection accuracy for big object, but also
improves significantly the detection accuracy for small object, and with very
little reduction in detection speed. However, many more advanced structures
cannot be applied to our model due to the limitations of the VGG16 and Fast
R-CNN frameworks. In the future, we will research more advanced image fea-
ture extraction methods to further improve the accuracy and speed of object
detection.
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