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Abstract. Domain generalization methods in object detection aim to
learn a domain-invariant detector for different domains. However, it is
difficult to obtain a domain-invariant detector when there is large dis-
crepancy between different domains. Based on the idea of biasing the
allocation of available processing resources towards the most informa-
tive components of an input, attention models have shown promising
performance on different tasks. In this paper, we provide a framework
for addressing the issue of visual domain generalization with domain
attention. Specifically, we build a domain attention block utilizing the
source domain discrepancy to learn different weights for different source
domains on the input features, so that the input features similar to the
source domains will be enhanced and the features different from all the
source domains will be suppressed. Thus we can obtain a domain-general
representation effective for localization and classification in the proposed
model. In order to demonstrate the merits of the proposed approach, we
put forward a HD-16 dataset for object detection in different scenes.
Extensive experiments on HD-16 dataset verify the effectiveness of the
proposed approach.
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1 Introduction

Object detection, the task that locates specific objects in images, is a funda-
mental problem in computer vision. In recent years, driven by the development
of deep convolutional neural networks (CNNs) [14], many CNN-based object
detection approaches [15,17,23,25] have been proposed and the performance of
object detection was improved drastically. However, detectors trained on bench-
mark datasets would not always obtain satisfactory detection results when being
applied to a new scene in the wild, due to the domain shift between the train-
ing source domains and the unknown testing target domains. In order to over-
come the impact of domain shift, domain adaption (DA) methods [3,18,27] and
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domain generalization (DG) methods [1,3,6,7,20–22] are proposed to improve
the performance in target domains. DA methods require target data to train a
new model when facing a new target scene, and thus their performances depend
largely on the distributions of target domains. Moreover, DA methods are based
on the assumption that the target samples can be commodiously obtained, which
is impractical in some cases. On the other hand, DG methods learn domain-
invariant models without target samples, and can be more conveniently imple-
mented in practice. The basic idea of DG methods is to combine source data
in a way to produce models invariant for the specific target data, so that the
model has satisfactory performance on different target scenes. However, existing
DG methods seem to become degraded when the discrepancy between source
domains and target domains is large, since the models trained on the source
domains may not represent samples from the target scene well.

Based on the idea of biasing the allocation of available processing resources
of an input, attention model [11,12,19,29] can dynamically weight the informa-
tion of a signal. Therefore attention model can increase the ability to represent
samples and has shown promising performances on different tasks. Nonethe-
less, little development is obtained in using the existing attention methods for
domain generalization, because the labeled target samples are unobtainable and
no supervised information is provided for biasing the suitable allocation of target
domains.

In this work, we introduce a domain generalization approach for objection
detection. Different from the previous work that tried to learn a domain-invariant
model, we propose to utilize the discrepancy between different source domains
to build an attention model and let the model put attention on the features that
are similar to the source domains.

Our motivation comes from the observation that though source domains have
different forms of distribution (Fig. 1(a)–(c)) with target domain (Fig. 1(d)), in
which some of them have high similarity with the distribution of target domain
while the others do not. If we treat these source domains all in the same way,
the final distribution (Fig. 1(e)) may have a large gap with the target represen-
tation. However, a satisfactory result (Fig. 1(f)) can be obtained by combining
these domains with different weights. Equivalently, target domain can also be
resolved into sources domains after applying different weights on its domain
specific features, and the output will be represented by the model easier. In
order to achieve this goal, we propose the domain attention block to extract
the domain specific weights of input and then differently weight each channel
of the input, finally output an adaptive representation which is generalized for
the model trained on the source domains. A large-scale human detection dataset
with more than 90k images in 16 scenes is proposed to demonstrate the merits
of proposed approach. The main contributions of this paper can be summarized
as follows:

1. To address the domain generalization problem in object detection, we propose
a novel domain attention model by introducing the domain attention blocks
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to the baseline one-step detection model, which differently weight channels of
the input according to the domain specific weights.

2. Given the images without domain labels in practice, we further present our
method using the effective clustering method to generate pseudo domain
labels.

3. We extensively perform comparative evaluations to show the superiority of
our approach on the proposed dataset.

(a) (b) (c)

(d) (e) (f)

Fig. 1. Illustration of the distributions of different domains, (a)–(c) denotes the dis-
tributions of three source domains, (d) denotes the distribution of the target domain.
The results of combining source representations in equal/unequal weights are shown in
(e)/(f) respectively. Images in left corner of (a)–(d) come from different domains.

2 Related Work

2.1 Object Detection

Object detection has been a classical problem in computer vision, resulting in a
plentitude of approaches. Classical work [4,5] usually formulated object detec-
tion as a sliding-window-based classification problem. Following the rise of deep
convolutional neural networks (CNNs) [14] in computer vision, the performance
of object detection was improved drastically. Among the large number of CNN-
based approaches [8,15–17,23,24], two-step detectors [8,15,24] have received sig-
nificant attention due to their performances. This line of work starts from R-CNN
[8], which extracts region proposals from the image and classifies each region of
interest (ROI) independently. Besides, one-step detectors [16,17,23] were pro-
posed and popularly used in recent years due to their superiority in terms of
speed. One-step detectors begin with YOLO [23], which treats object detection
as a regression problem that jointly predicts the locations and confidence based
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on the output features from convolutional network backbone. Developed from
YOLO, SSD [17] exploits features from multiple convolutional layers to achieve a
multi-scale prediction for object localization and obtain a satisfactory detection
performance. Thus, we use SSD as the baseline detection model, and further
improve its generalization ability for object detection in new target domains.

2.2 Domain Generalization

In the previous works, domain generalization problem is mainly addressed in two
ways. On the one hand, some methods aggregate the information from source
domains to learn a domain-invariant representation [1,20,21]. Specifically, [21]
learns a domain-invariant transformation by minimizing the distance between
domains. [1] simply put all the training data from different domains together to
learn a SVM classifier. On the other hand, there are some works exploiting all
information from the source domains to train a classifier or regulate its weights
[13,30]. Specifically, [13] weights the classifiers to work well on an unknown
dataset, and [30] fuses the scores of classifiers for a test sample. However, those
methods become degraded when the discrepancy between source scenes and the
target scene is large. In this paper, we use the domain attention block to weight
the input features according to the domain specific weights of the current input
features. Actually, the proposed method is similar but inherently different from
the first kind of methods. In our work, we try to resolve the target domain
into source domains by applying different weights on domain specific features
and finally output an adaptive representation which is generalized for the model
trained on the source domains.

2.3 Attention Mechanism

Attention is a tool to bias the allocation of available processing resources towards
the most informative components of an input signal [11,12,19,29]. In recent
years, attention mechanisms have achieved great success in a range of tasks such
as object localization, image classification and sequence-based models [2]. Specif-
ically, [29] introduces a powerful trunk-and-mask attention mechanism using a
hourglass model. [11] proposes SE block, which is a lightweight gating mechanism
specialised to model channel-wise relationships in a computationally efficient
manner and enhance the representational power of basic modules throughout
the network. In this work, we propose domain attention block which is developed
from SE block [11] to solve the domain generalization problem in object detec-
tion. However, the proposed domain attention block has a goal entirely different
from SE block. While SE block try to model channel-wise relationships using the
spatial information, domain attention block models the domain specific weights
of the input features and differently weights the features using these weights.
As a whole, the proposed domain attention block has better performance and
adaptation in domain generalization problem.
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3 Proposed Method

In this section, we firstly introduce the structure of domain attention block in
Sect. 3.1. After that, a framework for the proposed domain attention model will
be described in Sect. 3.2. We further propose a general method in Sect. 3.3 to
deal with the situation that no domain label is available.

3.1 Domain Attention Block

Figure 2 shows the structure of the domain attention block, which consists of two
branches, i.e., the domain specific branch and the domain aggregation branch.
Taking as input the feature maps X, the domain specific branch can extract
the domain specific scores of X, which are the confidence of X belonging to
various source domains. Once the domain scores are obtained, domain aggre-
gation branch will aggregate these scores to generate domain specific weights
and finally output the weighted feature maps. In the following, we present more
details about the domain attention block.

Fig. 2. Illustration of the structure of domain attention block.

Let D = {Di}i=1,2,...,ND
denote the dataset consisting of ND source domains,

i = 1, 2, ..., ND is the domain labels of samples in Di. Given the feature maps
X ∈ RH×W×C , we aim to learn a transformation F (·) : X → X̃, X̃ ∈ RH×W×C

which outputs the feature maps X̃ that are differently weighted for each channel
according to the domain specific weights. We formulate F (X) as

F (X) = Fscale(Wds,X) (1)

where Wds represents the domain specific weights, and Fscale uses Wds to dif-
ferently weight each channel of X. Intuitively, a direct idea is using the domain
scores as Wds since we hope Wds is specific for each domain. However, the num-
ber of domain scores is usually much less than the number of feature channels,
thus it is unreliable to only take the domain scores as Wds due to the imbalance
between the scores and number of feature channels. What’s more, the scores
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can not directly be used as the domain specific weights because of the different
dimensionality. Therefore we design function Fw which takes both the domain
scores and X into account to obtain reasonable weights. Specifically we formulate
the composite function Fw as

Fw = Fscale(Fsq ◦ Fex1, Fs) ◦ Fex2 (2)

where ◦ denotes an operation that composites two functions and Fsq gener-
ates channel-wise statistics using global average pooling. After the channel-wise
statistics are generated, Fex1 processes them using a 1 × 1 convolution with ND

output channels, then Fscale weights these channels by the domain scores which
are provided by a composite function Fs. Finally, Fex2 transforms these weighted
features using 1×1 convolution with the same channel number as X, and applies
a softmax operation to obtain the domain specific weights of X. When it comes
to the generation of domain scores, we firstly extract the discriminative domain
features of X, and hope that the domain score is easily generated based on these
discriminative features. Therefore, we define Fs as

Fs = Fex3 ◦ Fc (3)

where Fex3 extracts the discriminative domain features of input X, then Fc

transforms these discriminative domain into scores for each domain of the current
input X. Specifically, given the input X, we firstly use 1×1 convolution as Fex3,
the output channel number of Fex3 is chosen as C/16 and C is the channel
number of X. Then a fully connected layer with ND outputs followed by the
softmax operation is chosen as Fc. Actually, the above descriptions of Fs just
build a structure for providing the score for each domain. The feasibility mainly
relies on the accuracy of the domain scores output from Fc. Therefore, a softmax
loss is added as the domain classifier loss on the output of Fc to maintain the
accuracy of the domain scores.

3.2 The Overall Framework

We apply the domain attention block on the one-step detection model, resulting
in the proposed domain attention model. An one-step detection model gener-
ally consists of two parts, the backbone convolution network and the unified
classification/localization component. As shown in Fig. 3, we apply the domain
attention block to the last several convolution layers in the backbone. There are
two main reasons why we apply the attention block in such format. Firstly, dis-
crepancy between different domains is more capturable in the high-level semantic
information from top convolution layers [28]. Secondly, though difference between
domains is existed, they still share some common information which are reflected
in bottom layers [18]. As for the number of layers for applying domain attention
block, we regard it as a hyper-parameter in the proposed method.

3.3 General Situation Without Domain Labels

We discuss our method above based on the assumption that the total dataset
D consists of a certain number of source datasets, and there is a priori domain
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Fig. 3. Illustration of domain attention model.

label for each image, which means we know corresponding source dataset for each
image coming from D. Actually, this assumption is not always satisfied because
it is time consuming to identify the relationships between each image and its
corresponding source dataset. In the general condition, the number of source
datasets and the relationships between the images and the source datasets are
unknown.

In this situation, D is represented as {Di}i=1,2,...,N where N ≥ 1 and N is
unknown. We adjust the proposed method by a simple preprocessing for the total
dataset D. Specifically, we firstly assume the certain number n of source datasets,
then we use unsupervised clustering methods to generate the source dataset and
label each image with a pseudo domain label. After the preprocessing above, the
dataset D will conform to the assumption of Sect. 3.1, and the following process
is the same as Sect. 3.1. The experimental results prove that this preprocessing
is effective when there is not much difference between the assumption n and the
ground truth N .

4 Experiments

In this section, we evaluate the proposed domain attention model for domain
generalization in object detection. We construct a human detection dataset with
images from 16 scenes (HD-16) for evaluation. Extensive experiments are con-
ducted in order to demonstrate the merits of the proposed method.

4.1 HD-16 Dataset

HD-16 is a large human detection dataset which has 93, 371 images in total
captured by the top-view cameras in 16 different scenes. The number of images
of each scene various from 1, 362 to 17, 510. Each image in the dataset is in the
top-view and at the scale of 320 × 240 in pixel. HD-16 is challenging due to
the large discrepancy in uncontrolled illumination and background between the
images from different scenes. Figure 4 shows some examples of HD-16.
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Fig. 4. Example images from different scenes in HD-16.

4.2 Experiment Setting

Baseline Detector. In experiment, we choose the SSD [17] as the baseline
detector due to its outstanding performance in multi-scale object detection. In
order to demonstrate the generalization of the proposed method, we respectively
choose VGG-16 network [26] and MobileNet [10] as the backbone of SSD, and
then apply the domain attention model on them for comparison.

Training Strategy. In the training process, we adopt the same data augmen-
tation methods in SSD [17]. Moreover, we set the initial learning rate to 5×10−3

and the max-iteration of the training process is 300, 000.

Dataset Partition and Evaluation Protocol. Following the ordinary exper-
imental protocol [18,28] for domain generalization datasets, we partition the
HD-16 based on scenes. Specially, we randomly choose 12 scenes for training
and the other 4 scenes for testing, resulting in a training set consisting of 65, 534
images and a testing set with 27, 837 images. For simplicity, we simply denote
these 4 testing scenes as T1 − T4 and the combined testing set as C. Following
the general criteria, we adopt mean average precision (mAP) with IoU of 0.5 for
evaluation on HD-16.

4.3 Experiments on VGG-16 Based SSD

We firstly compare the proposed methods with SSD [17] based on VGG-16 net-
work [26]. Because the image in the dataset is 320 × 240 in pixel and a person
covers limited pixels in the image, we remove the conv7-9 layers as these layers
have bigger receptive field than the actual area of a person. Then, we apply
domain attention blocks after fc7, conv6 1, and conv6 2 in VGG-16. Since the
proposed method develops from SENet [11], for fair comparison we further exper-
iment on SSD with backbone of SENet (VGG-16 based), the results are shown
in Table 1. It is evident from Table 1 that our method outperforms both com-
petitors, for example, surpassing all compared methods by 3.7%(62.2%-56.0%),
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Table 1. mAP(%) on VGG-16 based SSD.

T1 T2 T3 T4 C

SSD [17] 56.0 57.0 71.5 72.8 56.4

SSD-SENet [11] 58.5 56.4 73.2 73.2 56.9

Ours 62.2 59.3 75.9 74.7 59.8

2.3%(59.3%-57.0%), 2.7%(75.9%-73.2%), 1.5%(74.7%-73.2%) and 2.9%(59.8%-
56.9%) on T1, T2, T3, T4, and C, respectively. This indicates the advantages of
the proposed method in handling domain generalization. The performance supe-
riority is mainly because the proposed method effectively weights the input fea-
tures and outputs adaptive representations which are generalized for the model
trained on the source domains.

4.4 Experiments on MobileNet Based SSD

We evaluate the benefits of the proposed methods when integrate with other
CNN architectures in addition to VGG-16. Specially, we select MobileNet archi-
tecture [10] for particularly testing the potentials in mobile vision application.
For the same reason stated in Sect. 4.3, we remove conv14-17 and apply domain
attention blocks after conv12 and conv13 in MobileNet. Table 2 shows the generic
capability of the proposed method in weighting the input features and out-
putting adaptive representations for domain generalization when combined with
a smaller MobileNet CNN architecture.

Table 2. mAP(%) on MobileNet based SSD.

T1 T2 T3 T4 C

SSD [17] 55.1 53.3 65.7 72.0 55.9

SSD-SENet [11] 52.2 58.8 67.2 71.0 56.3

Ours 56.2 59.6 66.6 72.3 58.9

4.5 Experiments on General Situation Without Domain Labels

We further evaluate the proposed method in general situation without domain
labels, which was discussed in Sect. 3.3. VGG-16 based SSD [17] is used for the
baseline. Moreover, the result of the proposed method with ground-truth domain
labels is used for comparison. For the training images without domain labels,
we firstly choose n as the domain number. Specially, we choose the k-means
algorithm [9] as the unlabeled cluster method by setting the hyper-parameter
k = n. As for the representation of each image used in k-means algorithm, we
simply resize each image to 40×30 and flatten to a feature vector. For simplicity,
we use gt to denote the ground-truth domain number. We adjust n from 8 to 16,
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Fig. 5(a) shows the clustering results and Fig. 5(b) shows the results on T2. We
can infer from Fig. 5(a) that when n < gt, several domains tend to be merged
into a cluster, and a domain is splited into several clusters when we set n > gt.
It’s the same as we expected that the proposed method has the best result when
n = gt = 12, and the mAP is 0.6% lower (58.7% vs 59.3%) than the situation
without domain labels. Moreover, the proposed method still outperforms the
baseline (57.0%) in most situations, even when we set n = 16 that produces
great deviation between the pre-set domain number and gt. In the situation that
n = 8, the experiment result of the proposed method is worse than the baseline,
we hold the opinion that when n is far less than gt, the model tends to treat
all the samples in the same way and domain specific features are insufficient.
Therefore, the domain attention block will degrade the performance to a small
degree as the domain attention block may provide inaccurate weights.

Fig. 5. (a) Clustering results when n = 8, 12, 16. (b) Evaluation of T2 on the general
situation.

4.6 Model Complexity

Evaluation is also carried out on the proposed model from the aspect of model
complexity. The model complexity of SSD based on VGG-16 and MobileNet will
be used as the baseline for comparison. To further demonstrate the superiority
of the proposed method in terms of model complexity, we also compare with
the SENet-based SSD model, which has an attractive advantage in model com-
plexity. We select the combined testing set C for evaluation. Table 3 shows the
experiment result, the number in bracket denotes the percent of added capacity
compared to the baseline. We can infer from Table 3 that SENet costs larger
model capacity and obtains lower improvement (0.4%–0.5%) compared to the
proposed method. Furthermore, the proposed method greatly improves the mAP
(3%–3.4%) with less than 10% (1.9% in VGG-16) additional model capacity.
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Table 3. Comprehensive evaluation on model complexity and detection performance

Model capacity (MB) mAP (%)

SSD-VGG16 88.0 56.4

SSD-VGG16 + SENet 90.0 (2.3%) 56.9

Ours-VGG16 89.7 (1.9%) 59.8

SSD-MobileNet 12.8 55.9

SSD-MobileNet + SENet 14.6 (12.8%) 56.3

Ours-MobileNet 14.0 (8.5%) 58.9

5 Conclusion

In this paper, we propose a domain attention model to solve the domain general-
ization problem for object detection in novel target domains. Based on the idea
that target domain can be resolved into the sources domains, we propose to build
a domain attention block by utilizing the discrepancy between different source
domains, to weight the input data which contains domain specific features. The
proposed approach is built on the state-of-the-art one-step object detector SSD
and can be trained end-to-end using the standard SGD optimization. Moreover,
we construct a HD-16 dataset for object detection in different scenes to demon-
strate the merits of the proposed approach. Extensive experiments on HD-16
dataset have demonstrated the merits of the proposed approach.
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