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Abstract. To track objects efficiently and effectively in adverse illu-
mination conditions even in dark environment, this paper presents a
novel soft-consistent correlation filters (SCCF) using RGB and thermal
infrared (RGB-T) data for visual tracking. The proposed SCCF uses soft
consistency to take both collaboration and heterogeneity into account for
joint learning of the correlation filters of RGB and thermal spectra, while
the computational time is reduced significantly by employing the Fast
Fourier Transform (FFT). Moreover, a novel weighted fusion mechanism
is proposed to compute the final response map in the detection phase.
Extensive experiments on the benchmark dataset show that the proposed
approach performs favorably against state-of-the-art methods, while runs
at 50 frames per second.
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1 Introduction

Visual tracking is an active research area in the computer vision community,
since it is an essential and significant task in various applications, such as visual
surveillance, robotics, human-computer interaction, and self-driving systems, to
name a few [8,21,22]. Despite of many breakthroughs recently [16,23,29], the
visual tracking mainly relies on traditional RGB sensors and tracks target objects
in case of cluttered background and low visibility at night and in bad weather,
and is thus still regarded as a challenging problem.

The adoption of thermal infrared sensors has provided new opportunities
to advance the state-of-the-art trackers by handle the aforementioned chal-
lenges [13,15,17–20,26]. However, how to perform efficient and effective fusion
of different modalities for boosting tracking performance is an open issue.

In recent years, many methods [13,18–20,26] have been proposed to fuse
different spectra for improving tracking performance. Some trackers [13,20,26]
focus on the sparse representation in Bayesian filtering framework because of
its capability of suppressing noises and errors. Some trackers [13,19] introduce
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spectral weights to fuse RGB and thermal information. Despite all these signifi-
cant progress, these methods [13,19] still have some limitations. These methods
only consider the collaboration of different source data. However, different spec-
tra are usually heterogeneous (e.g., RGB and thermal), and thus direct fusion
that only employs the collaboration might be ineffective. On the other hand,
the method [13] based on collaborative sparse representation in Bayesian filter-
ing framework is time-consuming. However, most applications demand real-time
tracking.

To deal with these issues, we present a novel multi-spectral approach based
on correlation filters [10] to perform efficient object tracking. Specifically, we pro-
pose a novel scheme to deploy the inter-spectral information by imposing soft
consistency in the correlation filters. Our method take both the collaboration
and the heterogeneity of different spectral information into account for more
effective fusion. For the collaboration, we observe that the learned filters should
select similar circular shifts such that they have similar motion. While for the
heterogeneity, we intend to allow filters have sparse different elements to each
other. Moreover, we design a novel mechanism to fuse RGB and thermal infor-
mation for robust visual tracking. We calculate the spectral weights according to
the response map in the detection phase, and the final response map is obtained
by weighted fusion of each spectral response map.

We validate the effectiveness and efficiency of the proposed method on the
benchmark dataset, i.e., GTOT [13], and the results show that our approach
achieves big superiority in terms of accuracy and comparable performance in
terms of efficiency.

To summarize, the main contributions of this work are three-fold.

– A novel soft-consistent correlation filters for RGB-T object tracking is pro-
posed. In order to take both collaboration and the heterogeneity of RGB
and thermal spectra into account, the correlation filters of multi-spectral are
learned jointly by imposing soft consistency. And the computational time is
reduced significantly by employing the Fast Fourier Transform (FFT).

– A spectral fusion mechanism is designed. The spectral weights are obtained
according to the response map in the detection phase, and the final response
map is obtained by weighted fusion of different spectra.

– It performs favorably against a number of state-of-the-art trackers with the
running speed over 50 frames per second. To facilitate further studies, our
source code will be made available to the public.

2 Related Work

We review the related work to us from two research streams, i.e., RGB-T object
tracking and Correlation filter tracking.

2.1 RGB-T Object Tracking

RGB-T object tracking has drawn a lot of attentions in the computer vision
community with the popularity of thermal infrared sensors [3,13,14,18–20,26].
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Cvejic et al. [3] investigate the impact of pixel-level fusion of videos from RGB-T
surveillance cameras, and accomplish their tracker by means of a particle filter
with the fusion of a color cue and the structural similarity measure. Wu et al.
[26] and Liu and Sun [20] directly employ the sparse representation to calculate
the likelihood score using reconstruction residues or coefficients in Bayesian fil-
tering framework. They ignore modality reliabilities in fusion, which may limit
the tracking performance when facing malfunction or occasional perturbation of
individual sources. Li et al. [13] and Li et al. [19] introduce modality weights to
handle this problem, and propose sparse representation based algorithms to fuse
RGB and thermal information. Different from these methods, we take both col-
laboration and the heterogeneity of RGB and thermal spectrums into account by
imposing soft consistency in the correlation filter tracking framework to perform
efficient and effective multispectral tracking.

2.2 Correlation Filter Tracking

Correlation filters have achieved great breakthroughs in visual tracking due
to its accuracy and computational efficiency [1,4–7,10,11,29]. Bolme et al. [1]
first introduce correlation filters into visual tracking, named MOSSE, and
achieve hundreds of frames per second, and high tracking accuracy. Recently,
many researchers further improve MOSSE from different aspects. For example,
Henriques et al. [10,11] extend MOSSE to non-linear one with kernel trick, and
incorporate multiple channel features efficiently by summing all channels in ker-
nel space. To handle scale variations, Danelljan et al. [4] learn correlation filters
for translation and scale estimation separately by using a scale pyramid repre-
sentation. Dong et al. [7] propose a sparse correlation filter for combining the
robustness of sparse representation and the efficiency of correlation filter. Zhang
et al. [29] integrate multiple parts and multiple features into a unified correlation
particle filter framework to perform effective object tracking.

3 Proposed SCCF Tracker

In this section, we first present the technical details of the proposed algorithm
and then describe the optimization process of the model.

3.1 SCCF Formulation

For a typical correlation filter, many negative samples are used to improve the
discriminability of the track-by-detector scheme. In this work, denote xk as the
feature vector of M × N × D of k-th spectrum, where M , N , and D indicates
the width, height, and the number of channels, respectively. We consider all the
circular shifts of xk along the M and N dimensions as training samples of k-th
spectrum. Each shifted sample xk

m,n, (m,n) ∈ {0, 1, ...,M −1}×{0, 1, ..., N −1},

has a Gaussian function label y(m,n) = e− (m−M/2)2+(n−N/2)2

2σ2 , where σ is the
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kernel width. Let Xk = [x0,0, ...,xm,n, ...xM−1,N−1]T denote all training samples
of the k-th spectrum (k = 1, ...,K). The purpose is to find the optimal correlation
filters wk for K different spectra,

min
wk

K∑

k=1

1
2
||Xkwk − y||22 + λ1||wk||22, (1)

where λ1 is a regularization parameter. The objective function (1) can equiva-
lently be expressed in its dual form,

min
zk

K∑

k=1

1
4λ1

zTk Gkzk +
1
4
zTk zk − zTk y. (2)

Here, the vector zk contains M×N dual optimization variables zk
m,n, and

Gk = XkXT
k . The two solutions are related by wk = XT

k zk

2λ1
. The discrimi-

native training samples xk
m,n are selected by the learned zk

m,n to distinguish
the target object from the background. Obviously, the training samples xk

m,n,
(m,n) ∈ {0, 1, ...,M − 1}×{0, 1, ..., N − 1} are the all possible circular shifts,
which denote the possible locations of the target object.

Most of existing works only consider the collaboration of different source
data [13,19]. However, different spectra are usually heterogeneous (e.g., RGB
and thermal), and thus direct fusion that only employs the collaboration might
be ineffective. Therefore, in this paper, we propose a novel scheme to take both
the collaboration and the heterogeneity of different spectral information into
account for more effective fusion. For the collaboration, we observe that the
learned {zk} should select similar circular shifts such that they have similar
motion. While for the heterogeneity, we intend to allow {zk} have sparse different
elements to each other. Taking the above considerations together, we propose
a soft-consistent constraint on {zk} that makes them consistent while allowing
the sparse inconsistency exists, and formulated as a l1-optimization based sparse
learning problem. Finally, we obtain the soft-consistent correlation filter(SCCF)
for multi-spectral tracking as

min
zk

K∑

k=1

1
4λ1

zTk Gkzk +
1
4
zTk zk − zTk y + λ2

K∑

k=2

||zk − zk−1||1, (3)

where λ1 and λ2 are regularization parameters.

3.2 Optimization Algorithm

In this section, we present algorithmic details on how to efficiently solve the
optimization problem (3). Two auxiliary variables P and qk are introduced to
make Eq. (3) separable:

min
zk,P,qk

K∑

k=1

1
4λ1

qT
k Gkqk +

1
4
qT

k qk − qT
k y + λ2||P||1

s.t.P = CZ, zk = qk,

(4)
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where Z = [z1; z2; ...; zK ], C is the consistency matrix, which is defined as:

C =

⎡

⎢⎢⎣

−I1 I2

−I2 I3

... ...
−IK−1 IK

⎤

⎥⎥⎦. I is the identity matrix.

We use the fast first-order Alternating Direction Method of Multipliers
(ADMM) to efficiently solve the optimization problem (4). By introducing aug-
mented Lagrange multipliers to incorporate the equality constraints into the
objective function, we obtain a Lagrangian function that can be optimized
through a sequence of simple closed form update operations in (5).

min
zk,P,qk

K∑

k=1

1
4λ1

qT
k Gkqk +

1
4
qT

k qk − qT
k y + 〈Y2,k,qk − zk〉 +

μ

2
||qk − zk||22

+ λ2||P||1 + 〈Y1,P − CZ〉 +
μ

2
||P − CZ||2F

=
K∑

k=1

1
4λ1

qT
k Gkqk +

1
4
qT

k qk − qT
k y +

μ

2
||qk − zk +

Y2,k

μ
||22 − 1

2μ
||Y2,k||22

+ λ2||P||1 +
μ

2
||P − CZ +

Y1

μ
||2F − 1

2μ
||Y1||2F

(5)
Here, 〈A,B〉 = Tr(ATB) denotes the matrix inner product. Y1 and Y2,k are
Lagrangian multipliers. We then alternatively update one variable by minimizing
(5) with fixing other variables. Besides the Lagrangian multipliers, there are three
variables, including qk, Z and P, to solve. The solutions of the subproblems are
as follows:

q-subproblem. Given fixed P and Z, qk is updated by solving the optimization
problem (6) with the solution (7)

min
qk

K∑

k=1

1
4λ1

qT
k Gkqk +

1
4
qT

k qk − qT
k y +

μ

2
||qk − zk +

Y2,k

μ
||22, (6)

qk = (
1

2λ1
Gk +

1
2
I + μI)−1(y + μzk − Y2,k). (7)

Here, Gk = XkXT
k . I is an identity matrix. Note that, all circulant matrices

are made diagonal by the Discrete Fourier Transform (DFT), regardless of the
generating vector. If Xk is a circulant matrix, it can be expressed with its base
sample xk as

Xk = Fdiag(x̂k)FH, (8)

where x̂k denotes the DFT of the generating vector, x̂k = F(xk), and F is a
constant matrix that does not depend on xk. The constant matrix F is known
as the DFT matrix. XH

k is the Hermitian transpose, i.e., XH
k = (X∗

k)T, and X∗
k

is the complex-conjugate of Xk. For real numbers, XH
k = XT

k . It (Eq. (7)) can
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Algorithm 1. Optimization Procedure to Eq. (4).
Input: The spectra feature matrix Xk(k = 1, 2..., K) and Gaussian function label y,

the parameters λ1 and λ2;
Set qk = Y2,k = 0,P = Y1 = 0,Z = 0, μ0 = 0.1, μmax = 1010, ρ = 1.2, ε =
10−15, maxIter = 10 and t = 0.

Output: The filter zk.
while not converged do

Update qk,t+1 by Eq. (9);
Update Pt+1 by Eq. (11);
Update Zt+1 by Eq. (13);
Update Lagrange multipliers as follows:

Y1,t+1 = Y1,t + μt(P−CZ);
Y2,k,t+1 = Y2,k,t + μt(qk − zk);

Update μt+1 by μt+1 = min (μmax, ρμt);
Update t by t = t + 1;
Check the convergence condition, i.e. the maximum element changes of qk,P and
Z between two consecutive iterations are less than ε or the maximum number of
iterations reaches maxIter.

end while

be calculated very efficiently in the Fourier domain by considering the circulant
structure property of Xk,

qk = F−1[
2λ1(ŷ + μẑk − Ŷ2,k)
x̂∗

k � x̂k + λ1 + 2λ1μ
]. (9)

Here, F−1 denotes the inverse DFT, while � as well as the fraction denote the
element-wise product and division, respectively. The xk is the base sample of
circulant matrix Xk.

P-subproblem. Given fixed Z and qk, Eq. (5) can be rewritten as

min
P

λ2||P||1 +
μ

2
||P − CZ +

Y1

μ
||2F . (10)

According to (Lin et al. 2009), an efficient closed-form solution can be computed
by the soft-thresholding (or shrinkage) method:

P = Sλ2
μ

(CZ − Y1

μ
), (11)

where the definition of Sλ(a) is Sλ(a) = sign(a)max(0, |a| − λ).

Z-subproblem. Given fixed qk and P, Eq. (5) can be rewritten as

min
Z

μ

2
(||P − CZ +

Y1

μ
||2F + ||Q − Z +

Y2

μ
||2F ). (12)

where Q = [q1;q2; ...;qK ]. The solution of Eq. (12) is:

Z = (μCTC + μI)−1(μCTP + CTY1 + μQ + Y2) (13)
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Fig. 1. Pipeline of the proposed spectral fusion mechanism. The spectral weights are
obtained according to the response map in the detection phase, and the final response
map is obtained by weighted fusion of different spectra response maps.

Since each subproblem of Eq. (4) is convex, we can guarantee that the limit
point by our algorithm satisfies the Nash equilibrium conditions [27]. And the
main steps of the optimization procedure are summarized in Algorithm 1.

3.3 Tracking

Target Position Estimation. After solving this optimization problem, we
obtain the correlation filter zk for each type of spectrum. Given an image patch
in the next frame, the feature vector on the k-th spectrum is denoted by sk and
of size M ×N ×D. We first transform it to the Fourier domain ŝk = F(sk), and
then the k-th correlation response map is computed by

Rk = F−1(̂sk � x̂∗
k � ẑk). (14)

Some existed trackers [13] learn spectral weights in a single unified algorithm.
Actually, this may increase the complexity of the proposed model. In this work,
we use a novel criterion called average peak-to-correlation energy (APCE) mea-
sure, as proposed in [25], to calculate the priori influence factor. The definition
of APCE is

APCE =
|Rmax − Rmin|2

mean(
∑

m,n(Rm,n − Rmin)2)
, (15)

where Rmax, Rmin and Rm,n denote the maximum,minimum and the m-th row
n-th column entry of the response map R, respectively. APCE indicates the
degree of fluctuation of the response maps. For sharper peaks and fewer noise,
i.e., the target apparently appearing in the detection region, APCE will become
larger and the response map will become smooth except for only one sharp peak.
Otherwise, APCE will significantly decrease if the response map is multi-peaks.
Based on the nature of the APCE, we design a new method to calculate the
weights of different spectra as follow:

αk =
APCEk∑K

k=1 APCEk

, (16)
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where APCEk denotes the value of APCE of the k-th spectrum. As illustrated in
Fig. 1, the weight of reliable spectrum is larger than unreliable spectrum because
the APCE of reliable spectrum is much larger than unreliable spectrum. Then
the final correlation response map is computed by

R =
K∑

k=1

αkRk. (17)

The target location then can be estimated by searching for the position of
maximum value of the correlation response map R of size M×N .

Model Update. Similar to other CF trackers [10,23,24,29]. To improve our
robustness to pose, scale and illumination changes, we adopt an incremental
strategy, which only uses new samples xk in the current frame to update models
as shown in (18), where t is the frame index and η is a learning rate parameter.

F(xt
k) = (1 − η)F(xt−1

k ) + ηF(xt
k),

F(zt
k) = (1 − η)F(zt−1

k ) + ηF(zt
k).

(18)

4 Experiments

In this section, we present extensive experimental evaluations on the proposed
soft-consistent correlation filters (SCCF) tracker. We first introduce the exper-
imental setups, and then extensive experiments are conducted to evaluate the
SCCF tracker against plenty of state-of-the-art trackers on GTOT benchmark.

4.1 Experimental Setups

Implementation Details. We set the regularization parameters of (3) to λ1

= 0.038 and λ2 = 0.012, and use a kernel width of 0.1 for generating the Gaus-
sian function labels. Their learning rate η in (18) is set to 0.025. To remove the
boundary discontinuities, the extracted feature are weighted by a cosine win-
dow. In addition, we utilize an adaptive multi-scale strategy to adapt to the
scale variations. We implement our tracker in MATLAB on an Intel I7-6700K
4.00 GHz CPU with 32 GB RAM. Furthermore, all the parameter settings are
available in the source code to be released for accessible reproducible research.

Dataset. Our algorithm is evaluated on a large visual tracking benchmark
dataset: GTOT [13]. GTOT includes 50 aligned RGB-T video pairs with about
12 K frames in total. They are annotated with ground truth bounding boxes and
various visual attributes.

Evaluation Protocol. All trackers are evaluated according to widely used met-
rics, precision rate (PR) and success rate (SR), as defined in GTOT [13]. PR
is the percentage of frames whose output location is within the given threshold
distance of ground truth. SR is the ratio of the number of successful frames
whose overlap is larger than a threshold. By changing the threshold, the SR plot
can be obtained, and we employ the area under curve of SR plot to define the
representative SR.
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Fig. 2. The evaluation results on public GTOT benchmark. The representative score
of PR/SR is presented in the legend.

Fig. 3. Attribute-based evaluation on 50 sequences. We also put the overall perfor-
mance here (the first one) for comparison convenience facing a single challenge and
their combination.
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4.2 Performance Evaluation

We evaluate our SCCF algorithm with 10 trackers on GTOT, including CSR [13],
SGT [19], Struck [9], SCM [30], CN [6], STC [28], KCF [10], L1-PF [26], JSR [20]
and TLD [12].

Quantitative Evaluation. As shown in Fig. 2, we report the PR/SR score
for each tracker in the figure legend. Among all the trackers, our SCCF method
occupies the best one in terms of SR. Compared with CSR, SCCF achieves about
6.5% improvement with SR. Furthermore, compared with SGT, SCCF achieves
much better performance with about 5.3% improvement. Although SGT tracker
performs the best against the other trackers in PR score, its model is more
complex than ours. Moreover, the proposed tracker performs at about 50 FPS
(frames per second) which is much faster than SGT (about 5 FPS).

Attribute-Based Evaluation. We further analyze the robustness of the pro-
posed tracker performance in various scenes (e.g., thermal crossover, low illu-
mination, fast motion) annotated in the benchmark. Our tracker performs well
against other methods in most tracking challenges as shown in Fig. 3. In par-
ticular, SCCF outperforms other methods by a huge margin in handling low
illumination and thermal crossover, which can be attributed to the use of soft
consistency. However, our method does not perform as well in the presence of
occlusion and deformation, as SCCF does not adopt a delayed update strat-
egy [2,25] in order to reduce the computational load.

More qualitative results are given in Fig. 4.

Fig. 4. Sample results of our method against other tracking methods, including L1-PF,
CSR, Struck, and CN.
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5 Conclusion

In this paper, we propose a novel learning soft-consistent correlation filters for
RGB-T object tracking. The proposed tracking algorithm can effectively exploit
collaboration and heterogeneity among different spectra to learn their correla-
tion filters jointly. Moreover, we design a novel mechanism to fuse RGB and
thermal information for robust visual tracking. Experimental results compared
with several state-of-the-art methods on visual tracking benchmark demonstrate
the effectiveness and robustness of the proposed algorithm. In the future, we will
investigate the performance of multi-channel features (such as HOG) and design
a new algorithm based on this work to calculate the correlation filters and spec-
tral weights simultaneously.
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