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Abstract. Object detection algorithms generally search through exten-
sive potential areas without considering spatial correlations. To fully
utilize rich information contained in high-level image features, a hierar-
chical object detection method with parallel search formulated as Markov
Decision Process, is presented. Starting from independent initial loca-
tions, our model generates adequate region proposals by Reinforcement
Learning (RL) method for subsequent refinement of bounding boxes.
An attention-based state initialization algorithm combined with a novel
reward function for RL training are proposed to facilitate the agent’s
control over window transformations. Following a coarse-to-fine detection
strategy, we adopt adjustable action parameters and perform profound
refinement for the generated proposals. Compared with existing detection
algorithms, experiments on PASCAL VOC 2007 & 2012 dataset indicate
the proposed model achieves encouraging object detection performance
with fewer proposals generated.
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1 Introduction

Existing object detection methods typically adopt a region proposal strategy
combined with a classifier to predict the objectness scores of attended areas.
Region proposal algorithms always generate excessive windows to capture mul-
tiple objects in all scales first (using image segmentation, sliding windows or fixed
grids), then utilize image features to reduce the number of potential regions. Low-
level features such as color and texture (Selective Search), edge (Edge Boxes [23]),
gradient (HoG features used by DPM [5]), high-level features such as Fully Con-
volutional Network feature maps prove effective in providing adequate positive
regions for subsequent classifiers. R-CNN [7] generates about 2,000 windows
on raw images through Selective Search method. Fast R-CNN [6] improves the
speed by applying traditional image segmentation algorithms on feature maps,
decreasing overlapping windows and repetitive computation of features. Faster
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Fig. 1. At each step, the agent chooses one specific action from available predefined
transformations based on current state, and gathers the next state deterministically
after action taken.

R-CNN [18] and a similar approach, SSD [13] utilize sliding windows with several
scales named “anchors” on different layers of feature maps. YOLO [17] segments
images into grids of fixed size and detects objects on those grid segments.

Both traditional and deep learning based region proposal methods are capa-
ble of generating massive candidate areas. Nevertheless, these predefined sizes,
fixed grids or time-consuming sliding windows bring in unnecessary regions that
become a burden to consecutive classifiers. The independent generation oper-
ation ignores the sequential location correlations contained in extracted areas,
which is incompatible with human perception procedure. Humans normally rec-
ognize multiple objects across complicated backgrounds quickly and precisely.
Research on biological visual attention suggests that the visual system in humans
uses attention mechanisms to focus on specific areas of the visual input [3].
Further studies [15] suggest that optimal eye movement strategy integrates the
information of the whole visibility map and successively searches for fixation
locations. Similar to this attention-based search procedure, the proposed method
utilizes an attention map to locate salient areas coarsely, and formulates the fol-
lowing search movement as an agent transforming detection windows according
to a RL-optimized policy.

In this paper, an effective object detection pipeline that directs a reinforce-
ment learning agent to explore potential target areas on feature maps from fine
designed initial locations, is disclosed. With less candidate regions proposed, this
hierarchical detection method combines sequential object bounding box search
with attention-based model to detect objects in multiple scales accurately. Under
the guidance of an optimal policy learned in RL, the model utilizes a parallel can-
didate region generation method. This means the entire search procedure starts
at differing initial locations and adopts adaptive exploration strategies. Objec-
tiveness scores of all attended regions are then predicted to generate adequate
positive proposals, which will be fed into classification and regression layers to be
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Fig. 2. Architecture of proposed pipeline. Including three main components: attention-
based state initialization, parallel search with reinforcement learning and all attended
regions (AAR) processing.

better evaluated and refined. The final detection results including the bounding
boxes and classes of target objects are given by the refinement network.

Similar works [1,2,10] that use reinforcement learning to optimize detection
process all adopt fixed search step size and predefined initial location, resulting
in the lack of transformation flexibility. While in our method, an adaptive step
size related to current window scales and attention-based initial search position
improve the performance of an agent. Also, differing from previous method [10],
the proposed reward function reflects the value of an agent’s actions in a more
reasonable way, driving the agent to make more informed judgements on actions
selected. [2] and [1] mask searched regions with settled shapes such as a black
cross, which impedes the agent detecting potentially smaller objects contained
within masked areas. In contrast, by not limiting the accessibility of an agent but
allowing it to exploit all attended regions by feeding them all into subsequent
refinement networks.

Our pipeline is explained in detail in Sect. 2. Experiments on PASCAL
VOC [4] dataset demonstrate that our method achieves competitive performance
compared with similar RL methods. Comparisons with other region generation
algorithms demonstrate there are fewer regions involved in the proposed model.
A more detailed ablation study and an analysis of experimental results are pre-
sented in Sect. 3.

2 Approach

As shown in Fig. 2, the proposed approach includes three main components; (1)
attention-based state initialization, (2) parallel search with reinforcement learn-
ing, and (3) all attended regions (AAR) processing. The method starts from
the global image and local salient areas simultaneously, then performs zoom
in/out exploration to locate large scale targets and local exploitation to find
small objects. Based on image features and previous search path, the agent of
RL balances the exploration of uncovered areas and exploitation among the
discriminative regions. Thus the semantic correlation and relevant spatial infor-
mation contained in feature maps may be fully utilized. All attended regions
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are then classified into positive or negative samples according to their fore-
ground/background scores, with processed positive regions selected as proposals
for subsequent object classification and bounding box regression to refine the
results.

2.1 Attention-Based Initialization Strategy

Two individual schemes are implemented to approximate the initial state; a
predetermined region and an attention-based location. These two initialization
strategies are followed by different action groups described in Sect. 2.2.

In the experiment, this predetermined region in the first stream is designed
as the whole image for better analysis of global information. Corresponding
transformation groups are mainly composed of large scale zoom in/out actions
(Fig. 1). The fixed location is computationally efficient, while it generally takes
more steps to reach targets.

In order to reduce the number of steps needed for reaching ideal destina-
tion, we adopt Grad-CAM [16] method for the second stream to coarsely extract
an attention-based location, which directs the agent to focus on discriminative
regions. Based on CAM [22], Grad-CAM works on the explanation and visu-
alization of deep neural networks, producing heat-map that illustrates salient
areas of an image. Gradients computed, with respect to feature maps, are then
forwarded through Global Average Pooling (GAP) layer to obtain the weights
for the heat-map. A binary map processed from the heat-map is then used to
compute the minimal circumscribed rectangles as initial locations (Fig. 3). The
subsequent action group consists of translations with relatively small step size.

Fig. 3. Preprocessing of attention-based initialization. The image is first fed into a pre-
trained feature extraction network to obtain the heat-map according to Grad-CAM
method. Then the minimal circumscribed rectangles in the binary map of attained
heat-map, are computed.

A more effective localization for Grad-CAM state initialization, involves
training a feature extraction network from scratch based on VGG [19] model.
This is also used to obtain state vectors of RL and feature vectors for later region
proposal classification task. More basic models like ResNet [8] and AlexNet [11]
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are also used in the experiment section to test performance. This extraction net-
work is optimized using a criterion that optimizes a multi-label one-versus-all
loss based on Binary Cross Entropy between the target and the output:

Lcls = −
∑

i

(x[i] ∗ log(y[i]) + (1 − x[i]) ∗ log(1 − y[i])) (1)

where x[i], y[i] denote the ith element of the model output and one-hot-encoded
target.

2.2 Parallel Search with Reinforcement Learning

The process of starting from an attention-based initial location to generally
zoomed-in ROIs could be interpreted as discrete stochastic control task. Figure 1
illustrates a basic RL search path. With decision making involved, the recurrent
searching is modelled as MDP optimized by Deep Q-Network [14] (DQN). The
search procedure directly exploits feature vectors extracted from feature map
to avoid forwarding images repeatedly, (Fig. 2), with the two agents trained to
perform parallel search.

In the hierarchical detecting procedure, series of bounding boxes with
adjustable scales and aspect ratios are generated, which shares the spirits of
Faster R-CNN and SSD. While both of them utilize exhaustive windows fixed
to predefined scales, in our method, these scales are flexible and optimized dur-
ing training, with fewer candidate regions produced and time consumed. The
parallel detection procedure is depicted in Fig. 4. Action, State, Reward and
Q-learning algorithm are illustrated in details as follow:

Action: Similar to human perception procedure, applicable bounding box trans-
formation contains two main branches: translation to move the window horizon-
tally or vertically, scaling to change aspect ratio. In addition, a special action
that indicates the termination of search is defined to prevent the agent from
being trapped in endless detection.

The location of a bounding box is illustrated by the coordinates of its two
diagonal vertices [x1, y1, x2, y2], all the translation moves then could be described
as increasing or decreasing corresponding values without changing aspect ratio,
and scaling moves are formulated as modifying the width or height individually
with centric coordinate fixed to (x2−x1

2 , y2−y1
2 ) and update:

w = (x2 − x1) ∗ αw, h = (y2 − y1) ∗ αh (2)

αw, αh are related to current width and height, αw = β ∗ wc, αh = β ∗ hc.
Larger box moves with bigger scale factor could quickly localize objects in

uncovered areas, then these potential regions are explored more carefully using
smaller scale factors to refine. This zoom-in-out strategy facilitates the search
for objects in various scales.

State: The state is designed to cover local feature vector, global feature vector
and history of actions gathered from the beginning of the search sequence. Global
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Fig. 4. Two searching paths are utilized to focus on both global and discriminative
regions. Blue windows are produced by global search with mainly rescaling actions, and
red windows start from salient areas. Deeper color represents later steps of the whole
search path. The result shows that the jointly search could detect multiple objects with
high precision. (Color figure online)

features related to the whole image provide the agent with rich visual content of
potential areas that may serve as essential guidance for later exploration. Sim-
ilarly, local features corresponding to current observed region utilize high-level
image features to sufficiently exploit the context and spatial correlation infor-
mation. State contains all relevant information from history [20], thus history
vector is consist of one-hot action vectors that have been taken. As depicted in
Fig. 2, feature vectors are directly obtained from an adaptive average pooling
layer that follows the last convolutional layer. Before calculating state vector,
boxes are mapped back to image coordinate to remove tiny and cross-boundary
ones using method proposed by [12].

Reward: Focusing on goal-directed learning, we adopt proportion of intersection
area and union area (IoU) to measure the value of actions and design an intuitive
reward function that directs the agent to pay more attention to those actions
that move current window closer to targets.

Work [1,2,10] both use a binary reward function that gives +1 for actions
improving IoU and −1 for those decreasing it. To quantify the value of actions
more distinctly, the newly developed reward function is proportional to the
improvement of IoU rather than the sign of it. Actions that move current window
towards targets closer are given higher rewards corresponding to the amount of
change. For translation and scaling actions, the value of reward signal R(s, a)
after taking action a under state s can be computed by:

R =
{

k · (IoU(b′, g) − IoU(b, g)), if IoU (b′, g) > IoU(b, g)
sign(IoU(b′, g) − IoU(b, g)), else (3)
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where g, b, b′ denote the ground truth bounding box, current window, next win-
dow after action taken and k represents the scale factor for positive actions.

Terminal action does not transform current window but records its location
and restarts new refinement, which is beneficial to limit the sequential search
within an adaptive number of steps. Reward for terminal action is:

R =
{

+η, if IoU(b, g) > threshold
−η, else (4)

Q-Learning: Q-learning is an off-policy Temporal Difference control algorithm
that learns to optimize the long-term cumulative reward by searching for an
optimal policy function. Q function is trained to predict the value given cur-
rent state s and action a. We use a deep neural network to approximate the Q
function:

Q(s, a) = r + γ max
a′

Q(s′, a′) (5)

The loss function of Deep Q-network is Mean Squared Error Loss (MSE
Loss) of target Q and the output of Q-network. To guarantee the convergence,
experience replay buffer and asynchronous update with target network are also
adopted in our experiment. Since we use two initialization schemes, there are
two corresponding policy models to be trained independently.

2.3 All Attended Regions Processing

The successively explored regions via sequential attention patterns are catego-
rized as positive and negative samples according to their IoU with ground-truth
boxes, the assignment criterion is the same with Faster R-CNN. To avoid degen-
eration of model due to the imbalance between positive and negative samples, we
keep all the positive samples and randomly sample negative regions to restrain
the ratio to 1:3. In case there are insufficient positive samples, additional windows
generated by random combination of current regions are also fed into classifica-
tion network.

All attended regions in various scales are labelled and then scored. The clas-
sification network utilizes Smooth L1 Loss to evaluate the possibility of a region
being foreground. To restrain windows with high overlap, we use nonmaximum
suppression (NMS) based on the first classification score.

Three regressors are trained for regions with different aspect ratios: 1 : 1,
1 : a and a : 1(a > 1). A multi-task loss function for both object classification
and bounding box regression is used at the end of Fig. 2.

3 Experiment

Extensive experiments with different neural networks are performed on PAS-
CAL VOC 2012 dataset which contains about 20k images (train + validation
+ test) of 20 object categories. The detection results are evaluated using mean



Parallel Search by Reinforcement Learning for Object Detection 279

Average Precision (mAP) as this metric reflects both accuracy and generaliza-
tion of model, which is widely applied in object detection task. As a region
proposal method, our model is compared with existing region generation algo-
rithms. Comparative experiments to other RL-based object detection methods
are conducted by analyzing the detection results. To validate the effectiveness of
our parallel strategy, ablation experiments are performed carefully: we analyze
the two branch of initialization and searching policy individually, in addition,
the consumption of action steps to convergence is also evaluated.

Experimental Details: The output size of adaptive average pooling layer is
2×2 to obtain 2048d feature vector. We use 5 composite scaling actions for global
search and 8 translating actions for saliency search agent. 20 steps of actions are
encoded as history vector to be concatenated with two 2048d feature vectors,
accounting for the full state. The maximum step length is set to be 36, with 3
additional window scales h : w,w : w, h : h adopted as alternative regions at
each step of parallel search path. Threshold for terminal action’s reward is set
to be 0.6, and we choose β = 5/6, η = 5.0, k = 10.0.

Policy training strategy is ε−greedy with ε decreasing from 1.0 to 0.1 linearly
during the first 9 epochs, and then fixed to 0.1 in last 41 epochs to ensure that
the agent keeps balance between exploration and exploitation. Experience replay
buffer has the size of 10,000 and the batch size of 64, discount factor γ for Q
function is 0.9. SGD back-propagation method is utilized with momentum value
fixed to 0.9 during training.

Threshold of NMS in background/foreground classification is 0.7, then we
change it to 0.3 when dealing with the final output. Since in attention-based
state initialization, the classification mean Average Precision (mAP) of feature
extractor network has reached 83.7, we directly use the parameters of its classifier
as pre-trained model for object classification.

Detection Results: mAP results evaluated on PASCAL VOC 2007 dataset
are shown in Table 1. Given results by [9], Fast R-CNN models that utilizes
BING [12], EdgeBoxes [23], Selective Search [21] as region proposal methods
respectively, R-CNN, Faster R-CNN, YOLO and SSD models, as well as other
RL-based detection models are presented in the table. We adopt VGG16 with
RoI pooling as basic extraction structure. Our model has achieved relatively
higher mAP score with much more fewer candidate regions generated compared
with other algorithms.

Comparison of the recall rates between other region proposal genera-
tion methods is shown in Fig. 5(a). It’s worth mentioning that though these
approaches are traditional, they are combined with Fast R-CNN structure to
evaluate the results. This experiment demonstrates that our model can achieve
a similar recall rate as current proposal generation algorithms while we exploit
a significantly smaller number of candidate regions. When IoU threshold varies
within [0.5,1], the recall of our model performs relatively promising among other
methods.
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Table 1. Detection mAP of existing methods on VOC07 test set. All methods
use VGG16 structure, and are trained on VOC07 except work [10], it’s trained on
VOC07+12 trainval set and adopts Fast R-CNN(ResNet101) as subsequent network.

Method Data mAP (%) Proposals

Ours(VGG16) 07 69.4 200

FRCNN+Bing [12] 07 49.0 1k

FRCNN+EdgeBoxes [23] 07 60.4 1k

FRCNN+SelectiveSearch [21] 07 59.5 2k

R-CNN [7] 07 54.2 2k

RPN+VGG [18] 07 69.9 300

SSD300 [13] 07+12 68.0 8k

YOLO [17] 07 66.4 49

RL-based [10] 07+12 76.6 Not provided

RL-based [2] 07 46.1 4k

Analysis of Action Steps: As depicted in Fig. 5(b), the saliency search agent
normally requires fewer action steps to detect possible regions. In most cases,
both agents consume all 36 steps, generating about 100 proposals. Though
R-CNN family remains state-of-the-art method, Faster R-CNN produces about
2k proposals generally. We found that the selection of action groups is flexible
because it has a negligible effect on the final result. Specifically, appropriate
combination of these two basic branches could strengthen the agent’s ability
of exploration, and composite actions generally reduce the number of requisite
steps to locate targets.

Ablation Experiment: To investigate the performance of our parallel strategy,
we conduct several ablation experiments including different extraction network
shown in Table 2 and individual test of saliency search and global search.

Table 2. Classification score and detection mAP of different basic extraction networks
on PASCAL VOC 2012 data set.

Method Mean accuracy (%) Val score (%) Test score (%) mAP (%)

VGG16+RoI pooling 69.71 75.1 82.1 69.4

ResNet18 [12]+resize 58.20 54.9 45.0 58.6

AlexNet [23]+resize 39.55 44.36 35.80 46.1

VGG16 [21]+resize 65.55 72.50 71.75 65.5

We adopt different basic feature extraction network to evaluate their perfor-
mance. This basic network is applied to extract feature vectors that can be used
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Fig. 5. (a) is the comparison of recall with other region proposal generation methods
evaluated on PASCAL VOC 2007 test data. (b) shows the distribution of the number
of action steps used in parallel search procedure.

to calculate state and generate grad-cam initial areas, thus we treat it as a typi-
cal classification task using multi-label classification loss function and stochastic
gradient descent to optimize. Different deep neural networks are trained from
scratch under similar training process.

Table 2 shows the classification scores and corresponding detection results
evaluated on both validation and test set, with test scores provided by official
PASCAL VOC evaluation server. The input image of three basic models are
resized to 224 × 224 and augmented with randomly horizontal flip. We further
analyze the performance of model VGG16 by alternating image resize to fea-
ture map adaptive pooling (RoI pooling). Model that adopts adaptive pooling
achieves better classification and detection results than those use image resize,
since image resize would lost more information than adaptive pooling.

Table 3 demonstrates the detection results of the two parts of parallel strategy
separately. Each search is capable of detecting some objects while the combined
parallel search achieves better performance. Given global information at the
beginning, global search can locate more objects than saliency search does since
the latter focuses on relatively smaller areas.

Table 3. Detection mAP of individual saliency search and global search strategies.

Method Data mAP (%) Average steps

Parallel 07 69.4 31

Saliency search 07 30.9 30

Global search 07 48.2 33
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4 Conclusion

A parallel search pipeline using reinforcement learning to generate distinctive
and accurate region proposals for object detection has been disclosed. Under the
framework of parallel policies including global search and saliency search, the
trained RL agents can perform adaptive transformations within limited number
of steps to generate adequate and high-quality candidate regions. The attention-
mechanism-guided search empowers our method to locate salient objects and
explore all possible objects across relatively larger areas. Compared with exist-
ing RL-based detection algorithms and region proposal generation methods, the
method implemented with a refinement network is more effective in locating and
classifying target objects. This is evidenced by the promising detection results
on PASCAL VOC dataset with much fewer generated region proposals.
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