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Abstract. Currently, most methods of object detection are monocular-
based. However, due to the sensitivity to color, these methods can not
handle many hard samples. With the depth information, disparity maps
are helpful to get over this problem. In this paper, we propose the asym-
metric two-stream networks for RGB-Disparity based object detection.
Our method consists of two networks, Disparity Representations Min-
ing Network (DRMN) and Muti-Modal Detection Network (MMDN), to
combine RGB and disparity data for more accurate detection. Unlike
normal two-stream networks, our model is asymmetric because of the
different capacity of RGB and disparity data. We are the first to propose
a deep learning based framework utilizing only binocular information for
object detection. The experiment results on KITTI and our proposed
BPD dataset demonstrate that our method can achieve a significant
increase in performance efficiently and get the state-of-the-art.
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1 Introduction

With the help of deep neural networks, object detection has achieved great
progress in recent years. However, in many real-world applications, it is still
challenging for object detection to deal with a dramatic variety of illumination,
occlusions, viewpoints, and busy backgrounds, etc.

Currently most approaches of object detection are monocular-based [7,8,
11,13,15,16,18,19], in other words, they take as input RGB images from single
camera. Rich information of color and textures can be extracted from monocular
RGB images, and the data only depend on one RGB camera with low cost.
Therefore, monocular RGB images are popular in researches on object detection.
Nevertheless, monocular-based methods utilizing only RGB data are likely to be
mistaken on some hard-negative and hard-positive samples. As illustrated in
c© Springer Nature Switzerland AG 2018
J.-H. Lai et al. (Eds.): PRCV 2018, LNCS 11259, pp. 3–15, 2018.
https://doi.org/10.1007/978-3-030-03341-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03341-5_1&domain=pdf
https://doi.org/10.1007/978-3-030-03341-5_1


4 R. Lu et al.

Fig. 1(a), in RGB image, a lamp has the similar appearance with people’s head,
so it tends to be mistaken for a pedestrian. In addition, a white hat of the person
brings an unusual color of the head, so monocular-based methods recognize him
with low confidence due to the sensibility to color. However, if the depth features
of objects are known, we can find that lamp’s shape is flat, and pedestrian’s shape
is a paraboloid (Fig. 1(b)), then hard-negative and hard-positive samples can be
distinguished, also the confidence of true pedestrian improves, such as Fig. 1(c).

(a) (b) (c)

Fig. 1. An example of pedestrian detection. (a) A lamp is likely to be mistaken for a
pedestrian because it looks like a head for the monocular-based methods. In addition,
a white hat of the person brings an unusual color of head, so monocular-based methods
recognize him with low confidence. But (b) from disparity map we can find that lamp’s
actual shape is flat, and pedestrian’s shape is a paraboloid. According to these, (c)
hard-negative and hard-positive samples can be distinguished, also the confidence of
true pedestrian improves. Best viewed in color. (Color figure online)

Learning depth features of objects contributes to locating objects accurately.
There are two ways to achieve this. On one hand, RGB cameras and extra
equipment, such as LIDAR and Microsoft Kinect, can be utilized to get depth
information of objects. Some methods took as input LIDAR bird views (3D) [1–
3] or depth images (2.5D) [5] with RGB images to locate objects more accurately.
However, these approaches need extra expensive equipment, which is unavailable
in normal public places. As a result, currently they are too costly to be applied
in most public cases, except for some special ones such as autonomous driving,
which desperately needs accurate object detection and can afford it.

Besides, from disparity maps we can also get depth information of objects,
and these will help learn more discriminative features, such as Fig. 1(b). Fur-
thermore, disparity maps can be got only depending on a pair of normal RGB
cameras, so RGB-Disparity based approaches are more feasible and they have
much lower cost than the above polymorphic-based approaches. Object detec-
tion utilizing only binocular information has not drawn much attention so far.
Some approaches regarded binocular information as the correction of monocu-
lar detection. For example, Zhang et al. [22] adjusted the detection results of
left images with that of right images, but it needed to detect respectively on
binocular images so brought much higher computational cost.

In this paper, we propose the asymmetric two-stream networks for RGB-
Disparity based object detection. Different from normal two-stream networks
[3–5,21,23,24], where both streams were similarly designed as complete network
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structures, in our networks one of the streams is based on only part of the whole
backbone network with lower computational cost. Our method can significantly
improve the performance of basic network. The main contributions of this paper
are as follows.

– We propose the asymmetric two-stream networks for RGB-Disparity based
object detection. To our knowledge, we are the first to raise a deep learning
based framework utilizing only binocular information for object detection.

– Asymmetric two-stream networks are designed to combine RGB and disparity
data, so the proposed method can learn discriminative features more easily.
Besides, our approach only depends on a pair of normal RGB cameras, so it’s
low-cost and more feasible in public places.

– The experiment results on KITTI and our proposed BPD dataset have shown
that, with less complexity, our method can improve the performance and have
comparable effect with some complicated monocular-based methods.

2 Related Work

Object detection has made great progress during these years. For more accurate
localization, researchers worldwide have made a lot of efforts, which are twofold:
designing stronger networks and utilizing other more reliable equipment.

On the aspect of designing stronger networks, proposal-based methods [7,8,
11,18], generating proposals first and then applying high-quality classifiers, have
developed for their performances but with higher computational cost. Ren et al.
[18] proposed faster R-CNN, which employed RPN and following classification
into an end-to-end network. Lin et al. [11] exploited the inherent pyramidal
hierarchy of deep convolutional network to construct feature pyramid. On the
other hand, [12,13,15,16,19] established regression-based frameworks to locate
objects, which removed the step of generating proposals and trained end-to-end
detectors directly with higher computational efficiency. Liu et al. [13] proposed
SSD, predicting object locations on multi-scale layers thus obtaining desirable
performance for objects with different scales. In this paper, for the excellent
trade-off between performance and computational cost, our proposed method is
based on the SSD network [13].

More complex networks can learn more discriminative features, yet with
higher computational cost. On the other hand, some methods utilized other
more reliable equipment to locate objects, such as LIDAR and Kinect. [1–3]
took as input both LIDAR point clouds and RGB images to predict oriented
3D bounding boxes. Deng et al. [5] stuck to the 2.5D representation framework,
taking as input RGB images and Kinect depth maps, to find 3D locations of
objects. With the help of other reliable equipment, depth features of objects
can be caught, thus localization would be more accurate. However, such expen-
sive devices are not available in most public places. Furthermore, in most public
cases 2D localization is enough instead of 3D. As a result, these methods are
not feasible in normal public places. In our work, we propose the asymmetric
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two-stream networks utilizing RGB and disparity data for 2D object detection,
which only require a pair of normal RGB cameras and can achieve a significant
increase in performance.

Object detection utilizing only binocular information has not drawn much
attention so far. Actually, with the binocular images by a pair of normal RGB
cameras, disparity maps can be got and represent the distances between objects
and cameras. Utilizing it we can learn more discriminative features of objects.
Zhang et al. [22] detected pedestrians, aided by the fusion of binocular informa-
tion. However, detections were based on traditional sliding-window methods and
needed to be processed on binocular images respectively, where disparity maps
were used for preprocessing only. To our knowledge, we are the first to pro-
pose a deep learning based framework utilizing binocular information for object
detection, and it needs to be processed only once per image.

The structure of two-stream networks is popular in dealing with cross-modal
data. [21,23,24] designed two-stream networks to fuse RGB and flow features in
action recognition. [4] proposed two-stream networks to utilize ensembles of RGB
and hypothetical thermal data in pedestrian detection. However, to maintain the
symmetry of networks, in existed methods both streams were similarly tended to
be designed as complete network structures, so they were multi-parameter and
computationally costly. In this paper, we establish a framework of asymmetric
two-stream networks, where one of the streams is based on only part of the whole
backbone network with lower computational cost. RGB and disparity data go
through different networks respectively, and then discriminative features can be
learned and fused for better object detection.

3 Two-Stream Networks for Learning and Fusing
RGB-Disparity Representations

In this section, the proposed asymmetric two-stream networks for RGB-Disparity
based object detection will be described in details. We first present the overview
of our approach in Sect. 3.1. Then in Sect. 3.2, the design of asymmetric two-
stream networks will be discussed in particular. Finally, specific to the construc-
tion of two-stream networks, we will talk about our training strategy in Sect. 3.2.

3.1 Overview

The overview of our asymmetric two-stream networks is illustrated in Fig. 2.
Given a pair of binocular RGB images, a disparity map can be got by stereo
matching methods, and then two-stream networks get processed. Our proposed
two-stream networks consist of two different networks, Disparity Representa-
tions Mining Network (DRMN) and Muti-Modal Detection Network (MMDN).
DRMN takes as input disparity maps in order to learn discriminative features
from them, which will be aided to MMDN later. On the other hand, MMDN
learns representations from RGB images and fuses them with the output of
DRMN. According to representations from both sides, MMDN processes the
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Fig. 2. The overview of our asymmetric two-stream networks.

final detection. With the two-stream networks, representations from RGB and
disparity data can be learned and fused to generate more discriminative infor-
mation, helpful to detection.

3.2 Two-Stream Networks

Given RGB images xrgb and disparity maps xd, the easy ways to fuse them
are addition of them, maximum of them, and concatenation of them. However,
features from RGB images and disparity maps, representing information of color
and depth respectively, are cross-modal, and it’s hard for models to directly
learn from them. As a result, We need to learn transform functions F1(·), F2(·),
projecting them into a common space S, where the fusion of them will be much
easier.

X̃1 = F1(xrgb), X̃2 = F2(xd), X̃1, X̃2 ∈ S (1)

To deal with cross-modal features, referring to [4,24], we establish a framework
of asymmetric two-stream networks to model F1(·) and F2(·) separately. RGB
and disparity data go through different convolution networks respectively, after
that semantic information learned can be fused more easily. According to above,
our proposed asymmetric two-stream networks consist of two different networks,
Disparity Representations Mining Network (DRMN) and Muti-Modal Detection
Network (MMDN).

Disparity Representations Mining Network (DRMN). In order to nar-
row the apparent gap between RGB and disparity data, Disparity Representa-
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tions Mining Network (DRMN) is aimed to learn high-level semantic informa-
tion from disparity data. Actually, it’s worth noting that disparity data mainly
represent the depths of objects, from which almost only objects’ actual shapes
can be got, while from RGB images we can extract rich color and texture fea-
tures, so disparity maps contain less information compared with RGB images.
An intermediate experiment shows that, as illustrated in Fig. 3, enough seman-
tic information has been learned on low-level layers, thus it’s not necessary for
disparity data to go through very deep layers. As a result, different from [4,24],
where both streams were designed using complete backbone networks, in our
implementation of DRMN we only exploit half of the whole backbone network,
which is computationally saving. According to above, we develop DRMN based
on VGG-16 network structure [20] except for the first convolution layer. Note
that due to the simplicity of disparity data, layers after pool3 are removed, which
will be evaluated in Sect. 4 in details.

(a) RGB (b) Disparity (c) Pool3 (d) Pool5 (e) Conv6 1

Fig. 3. Feature maps output from different layers for disparity data. Note that the
saliency of a car has already been learned on the layer of pool3 (c), getting approxi-
mately the same effects with that from pool5 (d) and conv6 1 (e). Best viewed in color.
(Color figure online)

Muti-Modal Detection Network (MMDN). The aim of Muti-Modal Detec-
tion Network (MMDN) is to fuse multi-modal data and then process the final
detection. There are 3 main steps in MMDN, learning representations from RGB
data, fusing heterogeneous features from RGB and disparity, and determining
the final detection. With the help of multi-modal data, localization will be more
accurate.

For excellent performance on objects with different scales, we develop our
MMDN on SSD backbone network [13] to finish the above 3 steps. There are
2 main differences between our method and [13]. Firstly, features learned from
RGB data and DRMN will be concatenated on the layer of pool3. At this moment
semantic information of them can be fused more easily. Secondly, in [13], feature
maps in a layer were responsible for the regression of bounding boxes with a
range of size. But if the range was too large, the accuracy of regression will be
affected. Referring to [17], we discretize the range of bounding boxes’ size and
assign 4 regressions for features maps in a layer. However, different from [17], we
do not exploit Recurrent Rolling Convolution architecture because of the large
computational cost, and evaluations in Sect. 4 will show that our asymmetric
two-stream networks have comparable performance with [17], but with less time
consumption.
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Training Strategy. As discussed above, our proposed two-stream networks
consist of 2 different networks. To avoid the problem of slow convergence, the
training process includes 3 main phases. Firstly, DRMN is trained on the SSD
network [13], initialized using the parameters of VGG-16 [20] pre-trained on
ImageNet dataset. After training the layers after pool3 are removed. Secondly,
MMDN is trained with the output of DRMN deactivated. The layers of MMDN
are initialized similar to DRMM. Finally, the layer of pool3 in MMDN is con-
catenated with the output of DRMN. The combined two-stream networks are
finetuned together, where the coefficients of learning rates of the layers before
pool3 drop to 0.1 and others remain 1.

4 Experiment

In this section, details of evaluation will be described. Experiments are performed
on KITTI Object Detection Benchmark [6], a publicly available dataset, and our
proposed Binocular Pedestrian Detection (BPD) dataset, captured by binocular
devices. To evaluate the effectiveness of our method, we conduct 3 experiments
in this section. Firstly, we process our method under different stereo matching
methods to demonstrate the insensitivity of our algorithm to different stereo
matching approaches. Secondly, because DRMN is based on part of the whole
backbone network, exploration of different DRMN’s depths is performed. Finally,
the analysis of performances on both datasets is provided.

4.1 Datasets

The KITTI dataset [6] consists of 7481 images for training and validation, and
7518 images for testing, captured by driving cars with stereo cameras. The
groundtruth of the test set is not available, and everyone has only one chance to
submit results to a dedicated server for evaluation on the test set. Following [17],
We employ an image similarity metric for the training set and validation set
separation, which makes our resulting validation set contain 2741 images. In the
meanwhile, for a fair comparison, as described in [17], the experiments on KITTI
are carried out with only car dataset because the pedestrian data are scarce.

The Binocular Pedestrian Detection (BPD) dataset is captured by ourselves
using top-view binocular devices, which covers plenty of indoor and outdoor
real-world scenes, such as offices, corridors, laboratory, teaching building, and
scenic spots, etc. Besides the BPD dataset is very challenging with many hard
samples, and a low image resolution of 320× 240, as illustrated in Fig. 4. The
BPD dataset consists of 65093 images for training and 12330 images for testing.
Specially, all images are captured in the top-view. All left and right images are
provided so that we can get a disparity map for each pair of images using stereo
matching methods.
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(a) (b) (c) (d) (e) (f)

Fig. 4. The BPD dataset. Plenty of indoor and outdoor real-world scenes are covered,
such as offices (a), corridors (b, c), laboratory (d), teaching building (e), and scenic
spots (f), etc. The dataset is challenging with a low image resolution of 320× 240, and
a lot of hard samples, for instance, the pedestrians in the dark.

4.2 Experiment Setting

The following settings are used throughout the experiments. In training, we
adopt the data augmentation methods described in SSD [13]. Stochastic gradient
descent (SGD) is chosen for optimization. Besides, the initial learning rate is set
to 0.0005, which will be divided by 10 at iterations of 20000 and 100000. Training
is processed for 120000 iterations in total. In the whole evaluation, mAP with
IoU of 0.5 is adopted as the criteria, and all experiments on speed are measured
with batch size 1 using TITAN X with Intel Xeon E5-2620@2.10 GHz.

4.3 Exploration Under Different Stereo Matching Methods

Our proposed DRMN takes as input disparity map, which can be got using var-
ious of stereo matching methods. To demonstrate that our method is insensitive
to different stereo matching approaches, we process our method under two typi-
cal stereo matching methods, CRL [14] and SGBM [9]. CRL [14] is CNN-based so
it’s time-consuming but performs very well. SGBM [9] is a time-saving method
with the help of classical semi-global matching, but the disparity maps got are
coarser, such as Fig. 5. Table 1 shows the performances of the proposed method
under these two stereo matching approaches on the KITTI validation set, where
all images are resized to 640 × 192. We can find that although there is a large gap
between both of disparity maps, our asymmetric two-stream networks get almost
the same accuracy under them (84.1% vs 83.8%). We argue that it’s because, on
one hand, the semantic information learned by our DRMN can help to reduce
the discrepancy on appearances of them. On the other hand, features learned by
MMDN can correct the results of DRMN. As a result, it can be confirmed that
our method is insensitive to stereo matching approaches, which means we can
adopt fast stereo matching (e.g. SGBM (40 ms/frame)) for practical feasibility
instead of CNN based ones (e.g. CRL (190 ms/frame)).

4.4 Evaluation of Performances Under Different Depths of DRMN

As mentioned in Sect. 3, DRMN is based on part of the whole backbone network.
To explore the depth of DRMN, Table 2 shows the performances under different
depths of DRMN on the KITTI validation set, where disparity maps are gen-
erated using SGBM [9]. Noting that Asymmetric Two-Stream Networks (data)
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(a) RGB image (b) CRL [14] (c) SGBM [9]

Fig. 5. Disparity maps from CRL [14] and SGBM [9]. Best viewed in color. (Color
figure online)

Table 1. Performances of our method under two different stereo matching methods
on KITTI validation set.

Our mAP (%) Time (per image)

CRL [14] 84.1 190 ms

SGBM [9] 83.8 40 ms

means the depth of DRMN is zero and raw disparity data are concatenated with
RGB data directly. Other Asymmetric Two-Stream Networks (X) mean DRMN
forwards until the layer of X and then the output are concatenated on the
corresponding layer in MMDN. In addition, One-Stream Network (only RGB)
is also chosen for comparison, where DRMN is removed and MMDN utilizing
only RGB data works without the output of DRMN. We can see that because
RGB and disparity are cross-modal data, concatenating them directly without
two-stream networks even results in a worse accuracy than one-stream network
utilizing only RGB data (73.7% vs 80.8%), which strongly confirms the necessity
of DRMN. Besides, we demonstrate that performance is not better as DRMN
goes deeper, and concatenating features on a low-level layer of pool3 can achieve
better performance boost than other high-level layers (i.e. pool5 and conv6 1).
As discussed in Sect. 3, the reason is that disparity maps are simpler than RGB
images, and enough semantic information has been learned on low-level layers,
thus it’s not necessary to forward very deep layers. According to above, in our
implementation of DRMN, layers after pool3 are removed.

4.5 Results on the KITTI Dataset

To demonstrate the effectiveness of our asymmetric two-stream networks, our
method is evaluated on the KITTI validation set. Because our method is
regression-based, for fairness, we compare our method only with regression-based
methods. Thereinto, our method is compared with the recently published state-
of-the-art method, Recurrent Rolling Convolution Detector (RRC) [17], which
ranked the first for the hardest category of the car on KITTI testing set by the
time this paper was written. Note that our method is not compared with other
two-stream or binocular-based methods because of the different applications.
Firstly, existed two-stream networks for detection [1–3,5] were mostly designed
for 3D localization instead of 2D, and they required data from LIDAR or Kinect,
which is not consistent with our case. [4] was for 2D localization but it needed
thermal data for training. Secondly, binocular-based approach [22] was based
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on traditional sliding-window methods inefficiently and designed for front-view
pedestrian detection only. We are the first to propose an end-to-end deep learning
based framework for RGB-Disparity based object detection, which only utilizes
binocular information.

Table 2. Detection results on KITTI validation set.

Methods mAP (%) FPS

One-stream network (only RGB) 80.8 25

Asymmetric two-stream networks (data) 73.7 20

Asymmetric two-stream networks (pool3) 83.8 17

Asymmetric two-stream networks (pool5) 82.3 15

Asymmetric two-stream networks (conv6 1) 82.2 14

RRC [17]a 84.0 11

Asymmetric two-stream RRC 85.6 9
aThe accuracy is lower than that reported in [17], mainly because
in [17] an image size of 2560× 768 was adopted but here all images
are resized to 640× 192. Actually, the increase in input size signifi-
cantly boosts detection accuracy, as pointed out in [10], but it will
cause overloaded occupation of GPU memory and be impractical.

Table 2 shows the results on the KITTI validation set. It needs to be pointed
out that, in [17], to achieve the best performance, an image size of 2560× 768
was adopted, which would cause overloaded occupation of GPU memory and
be divorced from reality. In order to develop feasible methods available in most
public places, all images are resized to 640 × 192 and we retrain RRC carefully
for evaluation. From the results we can observe that, on one side, our proposed
asymmetric two-stream networks exploiting RGB and disparity get the accuracy
of 83.8%, outperforming one-stream network exploiting RGB by 3%. On the
other side, our method can get comparable accuracy with RRC (83.8% vs 84.0%),
while our method runs faster than RRC (17 FPS vs 11 FPS). It can be confirmed
that our method exploits disparity data well so that it can learn discriminative
features more easily without the large increase in network complexity. Finally,
since RRC is based on SSD network too, we employ our asymmetric two-stream
networks in it, which achieves the state-of-the-art with an accuracy of 85.6%.
All of the above have shown the effectiveness of our asymmetric two-stream
networks.

4.6 Results on the BPD Dataset

In this section, we evaluate methods on our proposed BPD dataset, which is
captured by ourselves using top-view binocular devices, including lots of hard
samples. Following the settings in Sect. 4.5 except that image size of 320 × 240
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Fig. 6. Examples of detection results on the BPD dataset. The top and bottom rows
refer to results of one-stream network and our asymmetric two-stream networks respec-
tively. Compared with the other, Our method can handle more hard samples (e.g.
objects on the sofa, lamps, and pedestrians with hats on). Best viewed in color. (Color
figure online)

Table 3. Detection results on BPD dataset.

Methods mAP (%) FPS

One-stream network (only RGB) 77.8 28

Asymmetric two-stream networks 83.0 22

RRC [17] 83.3 14

Asymmetric two-stream RRC 84.7 11

is adopted here, results on the BPD dataset are illustrated as Table 3. Simi-
lar to results in Sect. 4.5, we can see that our asymmetric two-stream networks
bring a significant increase in performance over the one-stream network (83.0%
vs 77.8%). Figure 6 shows the qualitative results of one-stream network exploit-
ing only RGB data and our asymmetric two-stream networks respectively, we
can see that our method can handle more hard samples. Besides, our method
achieves comparable accuracy with RRC (83.0% vs 83.3%), while RRC runs at 14
FPS, slower than our methods (22 FPS). Obviously, our asymmetric two-stream
networks utilizing both RGB and disparity information can get comparable per-
formance with lower network complexity. Finally, we employ our asymmetric
two-stream networks in RRC, with an accuracy of 84.7%, getting the state-of-
the-art. The results shown in this section demonstrate the effectiveness of our
asymmetric two-stream networks again.

5 Conclusion

In this paper, we propose the asymmetric two-stream networks for RGB-
Disparity based object detection, which exploit both RGB and disparity data to
get a higher accuracy of localization. Unlike normal two-stream networks, our
model is asymmetric due to the different capacity of RGB and disparity data.
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Experiment results show that our asymmetric two-stream networks can learn
more discriminative features without the large increase in network complexity,
and get the state-of-the-art. In the future, we plan to refine disparity data by
detection, to generate disparity better benefitting detection.
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