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Abstract. As a model of unsupervised learning, autoencoder is often employed
to perform the pre-training of the deep neural networks. However, autoencoder
and its variants have not taken the statistical characteristics and the domain
knowledge of training set into the design of deep neural networks and have
abandoned a lot of features learned from different levels at the pre-training
process. In this paper, we propose a novel sparse feature ensemble learning
method for natural image classification, named boosting sparsity-induced
autoencoder, to fully utilize hierarchical and diverse features. Firstly, a sparsity
encourage method is introduced by adding an extra sparsity-induced layer to
exploit the representative and intrinsic features of the input. And then, the
ensemble learning is taken into consideration of the construction of the model to
improve and boost the accuracy and stability of a single model. The classifi-
cation results on three datasets demonstrate the effectiveness of the proposed
method.
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1 Introduction

The performance of a generic learning algorithm, especially adopted to the classifi-
cation problem, extremely relies on the quality of learned feature representation of raw
input data. Good features not only could remove irrelevant or redundant features
coexisting in the original input space, but preserve the essential information for the
target tasks. A good feature extractor built for input space, especially using unsuper-
vised learning methods, can be further utilized for computer vision tasks. Deep hier-
archical features produced by stacked unsupervised models have been demonstrated to
be a powerful tool and appeal to emerging focus [1, 2].

In recent years, the study found that deep learning constructed by the multiple non-
linear transformations can be a powerful feature learning tool. Deep learning has
already been broadly used to address image classification tasks [3–6]. As a tool of deep
learning with a special architecture, the autoencoder has already been stacked to pre-
train a deep neural network using a greedy layer-wise means [7], where each layer is
separately initialized by unsupervised pre-training method, and then a fine-tuning way
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based on backpropagation is used by a supervised learning algorithm [8, 9], leading to
solving the lack of expression ability of shallow network.

By restricting the output of the model identical to the input data, autoencoder can be
regarded as an identity function which could reconstruct the raw input data composed
of an encoding phase and a decoding phase. Meanwhile, sparse representation has
proven its significant impact on computer vision [10–12]. The performance of an image
classifier can be improved if the input image can be represented by a sparse repre-
sentation. Ghifary [12] demonstrated that, in most cases, sparse network structures have
better classification performance than dense structures. In recent years, the sparse deep
model is proposed based on the sparse encoding strategy, sparse regularization term
and sparse filtering that have taken the input samples into sparse depth related neural
network model.

However, autoencoder and its variants have not taken the statistical characteristics
and the domain knowledge of training set into the design of deep networks, and they
have abandoned a lot of features learned from different levels. Therefore, autoencoder
can only provide a relatively coarse parameters setting and serves as a pre-training
method because of the large variance and low generalization ability on the unknown
testing dataset. So, how to fully utilize the features existed in the input is one of the
most important points in our work. It is well known that an ensemble of multiple
classifiers is considered as a practical technique for improving accuracy and stability
with comparisons to a single classifier. Ensemble learning employs some weak clas-
sifiers, according to some combination rule, to construct a stronger one to obtain
significantly reduced generalization error than any weak one. But, two key issues,
namely the diversity and accuracy of each classifier and the combination rules of fusion
rules [13], are required to be taken into consideration to ensure a better performance.

In this paper, we introduce a novel sparsity-induced autoencoder that can further
exploit the representative and intrinsic features of the input. Then, to benefit the ability
of the ensemble learning, an ensemble sparse feature learning algorithm based on the
novel sparse autoencoder mentioned above, named BoostingAE, is proposed. On the
one hand, the completion of the pre-training sparsity-induced autoencoder can obtain a
plurality of different levels of abstraction of sparse features; on the other hand,
ensemble learning could effectively improve and enhance the recognition rate and
stability of single classifier. Experimental results on three different datasets show that
the proposed ensemble feature learning method can significantly improve the overall
performance.

2 Related Work

2.1 Sparse Representation

Sparse Coding. Sparse coding provides a family of methods for acquiring the con-
dense features in the input. Given only the unlabeled dataset, it can discover the basic
functions aimed to capture the higher-level features in the data itself. Despite its close
relationship to the traditional sparse coding techniques on image denoising, the main
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drawback of sparse coding is its high computation cost. Moreover, it is well-known that
the sparse coding is not “smooth” [14, 15], which means a tiny variation in input space
might result in a significant difference in code space.

Sparse Filtering [16]. In contrast to many existing feature learning models, one of the
important properties of sparse filtering is that it only requires one hyper-parameter
rather than extensive hyper-parameters tuning for its very simple cost function:
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where f represents the learned feature value for input sample, ~f is defined by ‘2 norm of
f , and M indicates the sample’s number.

Sparse Regularization. Compared with sparse coding, sparse regularization needs to
perform an extra separate stage to induce sparsity and encourage sparse representations
of input. Various methods of sparsity regularization either employed in deep belief
network or autoencoder [17], similar to sparse coding, each of which has been proved
the beneficial effects for some particular scene.

2.2 Softmax Regression

Softmax regression is a generalized version of logistic regression applied to classifi-
cation problems where the class label y can be chosen from more than two values.
Assume that there are k labels and m training samples:
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where h is the parameter of the softmax model. For each input, the probability of its
category is estimated to be:
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2.3 Ensemble Learning

According to certain combination rule, ensemble learning employs some weak clas-
sifiers to construct a stronger one to obtain significantly reduced generalization error
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than any weak one. Weak learner refers to whose generalization performance on the
unknown testing dataset is only slightly better than random guessing. From mathe-
matics, ensemble learning can significantly reduce the variance to achieve more stable
performance. In order to get a better integration result, it is necessary to make the
individual learner as different as possible, that is to say, there is a high degree of
diversity between the base learners, which will be helpful to the performance of
ensemble learning.

Boosting method is a widely used method for statistical learning, and severs as an
important means of ensemble learning. By changing the weights of training samples,
boosting method trains a group of individual learners and gets final decision results
with a combination rule of voting.

3 Boosting Sparsity-Induced Autoencoder

To learn more representative and intrinsic features of input, a novel sparsity encourage
method is first introduced to build a new autoencoder, called sparsity-induced
autoencoder (SparsityAE). Based on SparsityAE and ensemble learning, we further
proposed a boosting sparsity-induced autoencoder (BoostingAE), which is capable of
utilizing the hierarchical and diverse features, ensuring the accuracy and diversity, and
boosting the performance of the single SparsityAE on computer vision tasks.

3.1 Sparsity-Induced Autoencoder

Inspired by the assumptions of the sparse representation and the efficient reconstruction
of low-dimension feature representation obtained in the encoding phase of deep
models, SparsityAE is proposed, whose structure is shown in Fig. 1.

We feed the encoder by the dataset of high-dimension space. The length of the
codes learned by each layer gets less along with the deepening of the encoder. At the
end of the encoding phase, we employ a sparsity-induced layer to generate sparse

Encoding Stage Decoding Stage
Sparsity-induced layer

Fig. 1. The topology of the proposed sparsity-induced autoencoder
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codes. Conversely, the decoding phase deals with the compressed and sparse codes
given by sparsity-induced layer. In sparsity-induced layer, the neurons without sig-
nificant activation value will be set to zero, which could decrease the number of
neurons, remove the correlation between attributes and compress the raw inputs.

Let yiði ¼ 1; 2; . . .NÞ be the original data and xi be its degraded version, so the input
can be mapped to a hidden representation by the formulations as follows:

ŷðxiÞ ¼ r W
0
h xið Þþ b

0
� 	

ð4Þ

where ŷi is an approximation of yi, and r �ð Þ is the mapping function.
To benefit both from the virtues of sparse representation and deep neural networks,

we optimize the reconstruction loss regularized by a weight decay and a sparsity-
inducing term. The cost function can be designed as follows:
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represents weights and bias, KL q̂jjqð Þ is the sparse regular-

ization to extract sparse representation, and q̂ is the average output of hidden neurons:
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In the training process, for the intractability of the whole image, the model is
provided with the original overlapping patches yi i ¼ 1; 2; . . .;Nð Þ as the reconstruction,
and their corrupted image patches xi as the polluted input. As long as the training is
completed, the learned model could reconstruct the corresponding clean image given
any polluted observation. The detailed process is shown in Algorithm 1.

Algorithm 1 SparsityAE
Notation: iΩ is reconstruction error for ix , iS is the reconstruction coefficient for ix , and 

1{ }N
iy is the hidden representation for every input. 

Input: training set 1{ }N
iD x= , parameters k  (constant) and { , , ', '}W b W bθ = . 

Process: 
(1) Compute the iS for each input 1{ }N

ix ; 
(2) Minimize the cost function by the stochastic gradient descent and update θ ; 
(3) Compute the hidden representation 1{ }N

iy for each input, keep the k biggest activation 
value and others are set to zero, and update iS and iΩ ; 
(4) Repeat the step (2) and (3) until convergence. 
Output: reconstruction representation of the input. 
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3.2 Feature Ensemble Method

Multiple sparse features with different abstraction levels will be obtained using the
SparsityAE introduced above; ensemble feature learning could effectively improve the
accuracy and stability of a single classifier. Together two points above, a BoostingAE
is proposed that uses hierarchical feature obtained in pre-training stage to train multiple
classifiers, and integrates the outputs of classifiers with specific fusion rules to get the
final prediction of image classification.

To make the whole structure easy to understand, Fig. 2 gives a clear and detailed
understanding of BoostingAE, which indicates that by cascading multiple SparsityAEs,
BoostingAE is theoretically possible to obtain N compressed sparse features derived
from the output of SparsityAEs.

In our work, training three SparsityAEs and utilizing softmax regression to perform
the classification task. First, we train SparsityAE_1 in Fig. 2. Assuming that the
original input sample is x, the weight matrix connecting the input layer and the hidden
layer is W ð1Þ, the bias vector is bð1Þ, so its output can be mapped by Eq. (4):

ŷ1 ¼ r x �W 1ð Þ þ b 1ð Þ
� 	

ð8Þ

Regard ŷ1 as the input of the second SparsityAE, thus further train SparsityAE_2.
Its weight matrix connecting the input layer and the hidden layer is W ð2Þ, and bias
vector is bð2Þ. With reference to the above operation, SparsityAE_2’s output can be
further obtained, which also be used as the input of next SparsityAE:

ŷ2 ¼ r ŷ1 �W 2ð Þ þ b 2ð Þ
� 	

ð9Þ

Along with the cascaded sparsity-induced autoencoder network, the characteristic
attributes which are trained from the current layer will be passed to the next layer by

Input 
dataset

Classifier
_1 Classifier_2 Classifier

_N Classifier_bias

Confusion rules

SparsityAE_1

SparsityAE_2

SparsityAE_N

Classifier_1 Classifier_N

Final decision

Fig. 2. The topology of the proposed BoostingAE
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above process, and therefore three SparsityAEs can be trained. At the same time, in the
longitudinal direction, the trained classifier model and optimal parameters of each
classifier are obtained by training the characteristic attribute at the encoding stage.
Further, three classifiers are obtained.

3.3 Combination Method of Voting

After training all base classifiers, final prediction is given by results of three classifiers
after integrating with some fusion rules. Here, the Naïve Bayes combination rules [18]
are applied which assume that individual classifiers are mutually independent.

We adopt three Naïve Bayes combination methods, namely MAX, MIN, and AVG
rules. Given a sample x, and its label y has C possible values. Assuming that the current
BoostingAE model consists of N base classifiers, Pnj xð Þ is the probability that the
category of x is j in the nth classifier. So label y can be defined as follows:

• MAX rule: y ¼ arg max
j¼1;2;...;C

max
n¼1;2;...;N

Pnj xð Þ;
• MIN rule: y ¼ arg max

j¼1;2;...;C
min

n¼1;2;...;N
Pnj xð Þ;

• AVG rule: y ¼ argmax
j¼1;2;...;C

1
N

PN
n¼1

Pnj xð Þ.

3.4 BoostingAE Algorithm

From Fig. 2, a multi-layer architecture based on ensemble learning consists of an input
layer, some hidden layers and an output layer to carry out specific tasks.

Here, how to measure the importance of each layer’s feature and how to select the
optimal models for each layer are two key issues, which will directly influence the
performance of the model. As a main contribution of this paper, we employ Adaboost
to supervise the adjustment of parameters and weight coefficients. Algorithm 2 gives
the detailed process of the proposed BoostingAE.

Algorithm 2 BoostingAE
Notation: T is the number of base sparse autoencoder, and the algorithm of base learner is 
SparsityAE.  
Input: training set ( ) ( ) ( ){ (1) (1) (2) (2) ( ) ( ), , , ,..., ,m mD x y x y x y=
Process:
Initialize: assign the default parameters.
Loop: for 1,2,...,k k=
Generate the new dataset 'D by bootstrapping the original dataset;
Obtain the trained individual classifier, =SparsityAE(D ).tg ′
Output: Obtain ensemble classifier { }' ( ).tD Uniform g=

}.
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Compared with traditional sparse stacked autoencoder, BoostingAE’s characteris-
tics are shown in following aspects:

• whose construction of base learners is similar to that of AdaBoost, BoostingAE
utilizes the cascade serialization mechanism among the base learners, which makes
the individual learners are related to each other and also maintain the difference;

• the subsequent layer takes the output of the previous layer as the input to obtain rich
feature representation, which makes each learners receive various “training input” at
the same time and avoids the waste of computing and storage resources;

• when design individual learners, the topology of each model can be specified
separately rather than by a unified model topology. This makes it possible to further
increase the diversity of base learners while maintaining the homogeneity of them.

4 Experiments

First of all, we verify the performance of SparsityAE in sparse feature learning. Next, to
unbiasedly and accurately show the performance and the stability of BoostingAE on
real-world image classification, the experiments are carried out on three widely
employed datasets, i.e., MNIST, CIFAR-10, and SVHN. Moreover, some state-of-art
methods are employed to provide the comparable results on the same datasets.

4.1 The Sparse Feature Learning of SparsityAE

To validate the performance of SparsityAE in sparse feature learning, we mainly focus
on denoising of grey-scale images. From http://decsai.ugr.es/cvg/dbimagenes, a set of
natural images are employed as the training set, and a set of standard natural images as
the testing set which has been widely used in the image processing.

When it comes to the training process, we randomly pick a clean image y from the
dataset and generate its corresponding noisy patch x by corrupting it with a specific
strength of additive white Gaussian noise. The training performed, the learned model
will be capable of reconstructing the corresponding clean image given any noisy
observation. To avoid the local minimum, we adopt the layer-wise pre-training pro-
cedure introduced in [7].

Figure 3 shows the comparison between SparsityAE and classic image denoising
methods: KSVD [19], BM3D [20], on standard testing images degraded by various
noise levels. We tell that when r ¼ 25, SparsityAE (magenta line) is competitive, while
corrupts for other different, i.e., higher noise strengthens, which is owing to that our
model knowing nothing about the noise of level but other methods were provided with
such information. The green line shows that if we train the proposed model on several
different noise levels, our SparsityAE is more robust to the change of noise levels
which means that it can generalize significantly better to higher noise levels.

What’s more, we compared the SparsityAE with several state-of-art denoising
methods: WNNM [21] and two training based methods: MLP [22], TNRD [23]. The
numerical results are shown in Table 1, which is measured by the peak signal to noise
ratio (PSNR in dB). The best PSNR result for each image is highlighted in bold.
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Although images with a lot of repeating structure are ideal for both KSVD and BM3D,
we do outperform KSVD, BM3D, and WNNM on every image except Barbara. It is
also shown that our SparsityAE is able to compete with MLP and TNPD.

The results illustrated that SparsityAE can not only project the original high
dimensional space to a lower dimensional and more intrinsic space from the per-
spective of dimension-reduction, but capture the more representative sparse feature
from multiple layers to make the best use of the information contained in original
space.

4.2 BoostingAE for Classification on MNIST

MNIST is a large dataset of handwritten digits that is widely used for image processing
and computer vision tasks. It contains 60,000 training images and 10,000 testing
images with labels, and the size of a single image is 28� 28.

The topology of the SparsityAE on MNIST with three hidden layers is first
determined, i.e., 784� 500� 250� 100� 10, which 784 is the size of the image and

Fig. 3. Denoising performance comparison of various methods with various noise levels (Color
figure online)

Table 1. Comparison of the various methods’ denoising performance measured by PSNR.

Image KSVD BM3D WNNM MLP TNRD Ours

Lena 31.35 32.08 32.24 32.25 32.00 32.46
House 32.14 32.86 33.23 32.56 32.53 32.96
C.man 28.72 29.45 29.64 29.61 29.72 29.98
Moarch 28.81 29.25 29.85 29.61 29.85 29.65
Couple 28.84 29.71 29.82 29.76 29.69 29.68
Man 29.09 29.61 29.76 29.88 30.11 29.78
Babara 29.60 30.72 31.24 29.54 29.41 29.20
Boat 29.32 29.91 30.03 29.97 30.21 29.91
Pepper 29.71 30.16 30.42 30.30 30.57 30.37
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10 is the label number. Then, Classifier_1 in Fig. 2 is obtained by pre-training and fine-
tuning SparsityAE_1. After that, SparsityAE_2 takes the feature representations
learned from SparsityAE_1 as input to get Classifier_2. With the process above, we get
the final three base classifiers that will be integrated when all base learners achieve
convergence after fine-tuning. With this, the whole BoostingAE model is constructed
and trained completely. When it comes to predicting the real samples, three Naïve
Bayes combination rules will be respectively used for voting the integrative result of
three classifiers to improve the performance.

Table 2 shows that three individual classifiers have better classification results than
KNN and SVM because of the introduction of the sparsity-induced layer in Spar-
sityAE. And the BoostingAE with three different fusion rules gets better performance
than any individual classifier and achieves 98.37%, 98.43% and 98.87% accuracy rate
respectively, which is very close to the result of Lp–norm AE [24]. Moreover, stacked
CAE [25] and CASE [26] employ more feature maps obtained by convolutional
operations and hidden layers, so our performance is slightly worse than these.

4.3 BoostingAE for Classification on CIFAR-10 and SVHN

CIFAR-10 is a dataset contains ten kinds of color images, each category contains 6000
color images. The training set contains 5000 images of each category, the remaining is
used for testing. SVHN dataset can be regarded as the upgrade of MNIST and also
contains ten kinds of color images. Both are captured from the real life so the back-
ground is more complex and the images are difficult to identify. SVHN is divided into
training set, testing set and extra set; the validation set is constructed in a random way:
the 2/3 of them is derived from the training set (400 samples per class), and the
remaining samples come from the extra set (200 samples per class).

Table 2. Classification results on three datasets.

MNIST CIFAR-10 SVHN

KNN 91.32% 84.47% 78.32%
SVM 94.02% 88.45% 83.24%
Lp–norm AE(KNN) [24] 97.44% / 67.23%
Lp–norm AE(SVM) [24] 98.64% / 71.19%
Stacked CAE [25] 99.29% 79.20% /
CSAE [26] 99.39% / /
CDSAE [27] / 74.18% /
Classifier_1 96.73% 91.46% 88.46%
Classifier_2 96.35% 91.83% 88.93%
Classifier_3 95.89% 90.96% 87.69%
BoostingAE(MAX) 98.37% 92.32% 89.94%
BoostingAE(MIN) 98.43% 91.49% 90.35%
BoostingAE(AVG) 98.87% 92.63% 90.87%
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Before the experiment, the original images of CIFAR-10 and SVHN should be
transformed from RGB space into grey space, and then normalized. To improve the
training efficiency, the mini-batch gradient descent algorithm is used when pre-training
and fine-tuning. Considering the unsupervised learning mechanism of autoencoder,
both CIFAR-10 and SVHN use a certain proportion of unlabeled samples as training
set in pre-training; and in the process of fine-tuning, two datasets require ground-truth
to implement the classification. Next, the topology of SparsityAE is determined as
1024� 500� 250� 100� 10. The subsequent operations are similar to those per-
formed on MNIST.

We report the results of comparison methods, individual classifiers and the pro-
posed method in Table 2 and get the similar conclusion as MNIST. Our methods
achieve the best results among comparison methods. The results illustrated the
BoostingAE could capture more sparse representation and utilize multi-layer features,
resulting in the improvement of accuracy and diversity of overall.

5 Conclusion

In this work, we first built SparsityAE by adding an extra sparsity-induced layer, which
efficiently abstract the sparse feature representations, and then based on SparsityAE and
ensemble learning, we further proposed a BoostingAE model to integrate sparse feature
learned from multi-layer, so as to improve the performance of individual sparse
encoder, which has been successfully applied to image classification.

The main advantage of our approach is that it could abstract more significantly
sparse representations that reflect the distribution of original data better and make full
use of the features learned from multi-layer to improve the diversity of base learners.
What’s more, it also promotes the overall performance after integrating multiple weak
learners. Additional experiments on three different datasets validate the effectiveness of
the proposed algorithm in image classification.
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