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Abstract. The key of zero-shot learning (ZSL) is how to find the
information transfer model for bridging the gap between images and
semantic information (texts or attributes). Existing ZSL methods usu-
ally construct the compatibility function between images and class labels
with consideration of the relevance on the semantic classes (the mani-
fold structure of semantic classes). However, the relationship of image
classes (the manifold structure of image classes) is also very important
for the compatibility model construction. It is difficult to capture the
relationship among image classes due to unseen classes, so that the man-
ifold structure of image classes often is ignored in ZSL. To complement
each other between the manifold structure of image classes and that of
semantic classes information, we propose structure fusion and propaga-
tion (SFP) for improving the performance of ZSL for classification. SFP
can jointly consider the manifold structure of image classes and that
of semantic classes for approximating to the intrinsic structure of object
classes. Moreover, the SFP can describe the constraint condition between
the compatibility function and these manifold structures for balancing
the influence of the structure fusion and propagation iteration. The SFP
solution provides not only unseen class labels but also the relationship of
two manifold structures that encodes the positive transfer in structure
fusion and propagation. Experiments demonstrate that SFP can attain
the promising results on the AwA, CUB, Dogs and SUN datasets.
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1 Introduction

Although deep learning [32] depending on large-scale labeled data training has
been generally used for visual recognition [31], a daunting challenge still exists
to recognize visual object “in the wild”. In fact, in specific applications it is
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impossible to collect all class data for training deep model, so training (seen
classes) and testing classes(unseen classes) are often disjoint. The main idea
of ZSL is to handle this problem by exploiting the transfer model from the
redundant relevance of the semantic description. To recognize unseen classes
from seen classes, ZSL needs face to two challenges [3]. One is how to utilize the
semantic information for constructing the relationship between unseen classes
and seen classes, and other is how to find the compatibility among all kinds of
information for obtaining the optimal discriminative characteristics on unseen
classes.

ZSL can bridge the gap among the different domains to recognize unseen class
objects by semantic embedding of class labels. These semantic embeddings can
come from vision (attributes [11]) and language information (text [25]) by the
manual annotation, machine learning [29]or data mining [5]. In term of the trans-
formation relationship of different embedding, recent ZSL methods mainly fall
into linear embedding, nonlinear embedding and similarity embedding. Linear
embedding [1,2,7,13,24] implements the linear transformation method among
different embedding spaces for learning the relevance between unseen class
objects and class labels. Nonlinear embedding [23,25,28] can realize the non-
linear mapping of the embedding space for building the compatibility function
or classifier, which can be learned by deep networks [14,30]. Similarity embed-
ding [3,9,15,19,33] builds the classifier by the similarity metrics, which mostly
include structure learning or class-wise similarities. In our approach, the sim-
ilarity metric is extended from semantic space to image space, we attempt to
find the relationship of similarities (manifold structure in the different space)
for constraining the compatibility function, and further capture to the positive
structure propagation for the significantly improvement of the unseen object
classification.

In this paper, our motivation is inspired by structure fusion [16–18] for jointly
dealing with two challenges. The intrinsic manifold structure is crucial for object
classification. However, in fact, we only can attain the observation data of the
manifold structure, which can represent different aspects of the intrinsic manifold
structure. For recovering or approximating the intrinsic structure, we can fuse
various manifold structures from observation data. Based on the above idea,
we try to capture different manifold structures in image and semantic space for
improving the recognition performance of unseen classes in ZSL. Therefore, we
expect to construct the compatibility function for predicting labels of unseen
classes by building the manifold structure of image classes. On the other end, we
attempt to find the relevance between the manifold structure of semantic classes
and that of image classes in model space for encoding the influence between
the negative and positive transfer, and further make the better compatibility
function for classifying unseen class objects. Model space corresponding to visual
appearances is the jointed projection space of semantic space and image space,
and can preserve the respective manifold structure. Figure 1 illustrates the idea of
the proposed method conceptually. SFP considers not only semantic and image
structures but also the positive structure propagation for ameliorating unseen
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objects classification, while SynC [3] only focus on manifold structure in semantic
space for combining the base classifier in ZSL.

Fig. 1. The illustration of structure fusion and propagation for zero-shot learning.
Phantom object classes (the coordinates of classes in the model space are optimized
to achieve the best performance of the resulting model for the real object classes in
discriminative tasks [3].) and real object classes corresponding to all classes in model
space.

In our main contribution, a novel idea have tow aspects to recover or approx-
imate the intrinsic manifold structure from seen classes to unseen classes by fus-
ing the different space manifold structure for handling the challenging unseen
classes recognition. Specifically, one constructs the projected manifold structure
for real and phantom class in model space, another constrains the compatibility
function and the relationship of the manifold structure for the positive structure
propagation.

2 Structure Fusion and Propagation

In ZSL, we have training data set D = {(xn ∈ RD, yn)}Nn=1, in which xn is
image representation (it can be extracted based on deep model, and the detail
is described in Table 1) and yn(n = 1, ..., N) is the class label in the seen class
set S = {s|s = 1, ..., S}. We can denote the unseen class set as U = {u|u =
S+1, ..., S+U}. ac ∈ RD is the linear transformation vector of the c ∈ {S ⋃

U }
class.
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2.1 Classification Model and Manifold Structure

We construct a pair-wise linear classifier [3] in the visual image feature space,
and determinate a estimated label ŷ to a feature x by the following formula.

ŷ = arg max
c

aT
c x, (1)

here, ac ∈ RD is not only the transformation vector of the feature x, but also
the representation of the class c in model. In other words, the above formula can
describe the pair-wise linear relation between the feature space and the class
label space for characterizing the class representation in the model.

To measure the manifold structure, we can compute the similarity of the
related representation in the homogeneous space, which has the same scale and
metric. To this end, we respectively build a bipartite graph between unseen
classes and seen classes in semantic space and image space (this space includes
all image representations). In these bipartite graphs, nodes are corresponding to
unseen classes or seen classes, and weights of these nodes connect unseen classes
with seen classes. Because we focus on the transfer relation between unseen
classes and seen classes, no connection exists in unseen classes or seen classes.
Supposing Gb<Vb, Eb> can denote the manifold structure of semantic classes.
Here, Vb = Vbs

⋃
Vbu and ∅ = Vbs

⋂
Vbu. Eb includes connections between Vbs

(seen classes set in semantic space) and Vbu (unseen classes set in semantic space);
Gx<Vx, Ex> for the manifold structure of image classes. Here, Vx = Vxs

⋃
Vxu

and ∅ = Vxs

⋂
Vxu. Ex includes the connections between Vxs (seen classes set

in image space) and Vxu (unseen classes set in image space). Therefore, the
similarity of semantic and image space is respectively regarded as the weight
between nodes, which can be defined as following.

w(b)
su =

exp(−d(bs, bu))
∑U

u=1 exp(−d(bs, bu))
, w(x)

su =
exp(−d(xs, xu))

∑U
u=1 exp(−d(xs, xu))

, (2)

here, bs and xs are respectively the semantic and image representation (the detail
is described in Table 1) of the seen class s, while bu and xu are respectively the
semantic and image representation of the unseen class u. w

(b)
su and w

(x)
su are

respectively the weight (the similarity) between the seen class s and the unseen
class u in semantic and image representation space. d(bs, bu) and d(xs, xu) are
respectively the distance metric [3] of each space, and can be defined as following.

d(bs, bu) = (bs − bu)TΣ−1
b (bs − bu), d(xs, xu) = (xs − xu)TΣ−1

x (xs − xu), (3)

here, Σb = σbI can be learned from the semantic representation by cross-
validation (We alternately divide the training classes set into two part in accord-
ing with the proportion between the training classes set and the test classes set.
One part is to learn the model, and another is to validate the model. We give
the range of σb, which is form 2−5 to 25, and select the parameter corresponding
to the best result as the value of σb.) Σx = σxI can be learned from the image
representation by cross-validation (It is the same procedure like σb learning.).
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In image space, the differentiation compared with the semantic space is that xu is
not determined because of unseen classes, while xs can be obtained from training
data by computing the mean value of the seen class. The way to produce the cen-
ter of the class as a representation is simple for convenient computation, and it is
reasonable to preserve the base characteristic of image representation according
with the distribution of the same class. xu can be attained by pre-classification
of unseen classes (the detail in the next section).

In (1), ac is the transformation vector, and also is the class representation in
model space. In (2), bs and bu is the class representation in semantic space, while
xs and xu is the class representation in image space. We expect to construct the
link among these space by vs and vu, which are respectively the phantom class
of seen or unseen classes in model. For preserving the manifold structure of
two bipartite graphs and aligning the image, the semantic and the model space,
we build the optimization formula under the condition of the distortion error
minimization, which is defined as following.

(ac, vu,β) = arg min
ac,vu,β

‖ac −
U∑

u=1

βT
[
w

(x)
su w

(b)
su

]T
vu −

S∑

s=1

γT
[
w

(x)
ss w

(b)
ss

]T
vs‖22,

s.t. βT1 = 1,γT1 = 1, 0 ≤ βi ≤ 1, 0 ≤ γi ≤ 1 (i = 1, 2)
(4)

here, β =
[
β1 β2

]T , γ =
[
γ1 γ2

]T , and 1 =
[
1 1

]T . Because no connection exists
between unseen classes or seen classes in tow bipartite graphs, w

(b)
ss = 0 and

w
(x)
ss = 0. The analytical solution of (4) can find the relation between ac and vu.

ac =
U∑

u=1

βT
[
w

(x)
su w

(b)
su

]T
vu,

s.t. βT1 = 1, 0 ≤ βi ≤ 1 (i = 1, 2)

(5)

here, ∀c ∈ {1, 2, ..., S + U}.

2.2 Phantom Classes and Structure Relation Learning

For obtaining phantom class vu(u = 1, ..., U) and the manifold structure of the
weight coefficient vector β, we further reformulate the optimization formula for
one-versus-other classifier [3].
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(v1, ..., vU ,β) = arg min
v1,...,vU ,β

S∑

c=1

N∑

n=1

�(xn, Iyn,c, ac)

+
λ

2

S∑

c=1

‖ac‖22 +
γ

2
‖β1W

x − β2W
b‖22,

s.t. ac =
U∑

u=1

βT
[
w

(x)
su w

(b)
su

]T
vu,

βT1 = 1, 0 ≤ βi ≤ 1 (i = 1, 2)

(6)

here, w
(x)
su is the element of the matrix W x, and w

(b)
su is the element of the matrix

W b. The first term of formula (6) is the squared hinge loss, which can be defined
as �(xn, Iyn,c, ac) = max(0, 1 − Iyn,cacxn). Iyn,c ∈ {−1, 1} determines whether
or not yn = c. The second term of formula (6) is ac of a regularization tern,
which avoids over-fitting problem on the pair-wise linear classifier for modeling
the relationship between the class label and the image representation. The third
term of formula (6) is the constraint of the manifold structure similarity for
preventing the negative structure propagation in image space. The alternating
optimization can be implemented for minimizing the formula (6) with respect
to {vu}Uu=1 and β by solving the quadratic programming problem.

To depict the whole process of the structure fusion and propagation mecha-
nism, we show the pseudo code of the proposed SFP algorithm in Algorithm1.

Algorithm 1. The pseudo code of the SFP algorithm
Input: D = {(xn ∈ RD, yn)}N

n=1,bs and bu (input data)
Output: y∗

P (P is the total iteration number)
1: Computes the similarity matrix W(b) on the semantic representation by (2)
2: Setting the similarity matrix W(x) to zero matrix on the image representation
3: for 1 < t < P do
4: Solving {vu}U

u=1 and β by alternately optimizing (6)
5: Computing ac according to (5)
6: Computing ŷ by (1) and obtaining the class label y∗

t of the unseen class corre-
sponding to the semantic class

7: Computing the mean value of each image class as the image class representation
xs and xu

8: Computing and updating the similarity matrix W(x) on the image representation
by (2)

9: end for

2.3 Complexity Analysis

Formula (6) can be solved by alternately quadratic programming, which of the
complexity includes two parts. In the first part, when β is fixed, formula (6) is
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related to {vu}Uu=1 of a quadratic programming problem, which of the complexity
is O(U3) for the worst. In the second part, while {vu}Uu=1 is fixed, formula
(6) is corresponding to β of a quadratic programming problem, which of the
complexity is O(k3) (k is the dimension of β) for the worst. Given the proposed
algorithm SFP needs P iterations, it’s complexity is O(PU3 + Pk3).

3 Experiment

3.1 Datasets

For evaluating the proposed algorithm SFP1, we carry out the experiment in
four challenging datasets, which are Animals with Attributes (AwA) [12], CUB-
200-2011 Birds (CUB) [27], Stanford Dogs (Dogs) [4], and SUN Attribute (SUN)
[21]. These datasets can be used for fine-grained recognition (CUB and Dogs) or
non-fine-grained recognition (AwA and SUN) in ZSL. In semantic space, AwA
and CUB respectively are described by att [6], w2v [20], glo [22] and hie [1],
while Dogs is represented by w2v [20], glo [22] and hie [1]. SUN is only depicted
by att [6]. Table 1 provides the statistics and the extracted features for these
datasets. In addition, for conveniently comparing with the state-of-art methods,
we adopt image feature provided by [1].

Table 1. Datasets statistics and the extracted feature in experiments.

Datasets Number
of seen
classes

Number of
unseen
classes

Total
number of
images

Semantic
feature/
dimension

Image
feature/
dimension

AwA 40 10 30473 att/85,
w2v/400,
glo/400,
hie/about 200

Deep feature
based on
GoogleNet
[26]/1024

CUB 150 50 11786 att/312,
w2v/400,
glo/400,
hie/about 200

Deep feature
based on
GoogleNet
[26]/1024

Dogs 85 28 19499 N/A,
w2v/400,
glo/400,
hie/about 200

Deep feature
based on
GoogleNet
[26]/1024

SUN 645 72 14340 att/102,
N/A,
N/A,
N/A

Deep feature
based on
GoogleNet
[26]/1024

1 Source code: https://github.com/lgf78103/Structure-propagation-for-zero-shot-
learning.

https://github.com/lgf78103/Structure-propagation-for-zero-shot-learning
https://github.com/lgf78103/Structure-propagation-for-zero-shot-learning
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3.2 Comparison with the Baseline Methods

In this paper, there are three methods as the baseline for comparing with the pro-
posed SFP method because of the semantic structure mining. The first method
is structured joint embedding (SJE) [1], which can build the bilinear compati-
bility function with consideration of the structured output space for predicting
the label of the unseen class. The second method is latent embedding model
(LatEm) [28],which can construct the pair-wise bilinear (nonlinear) compatibil-
ity function according to model number selection for recognizing unseen classes.
The third method is synthesized classifiers (SynC) [3], which can make nonlinear
compatibility function with manifold structure in semantic space for combining
the base classifier in ZSL. Table 2 shows the performance of the structure fusion
and propagation (the proposed SFP method) greatly outperforms that of other
three methods.

3.3 Classification and Validation Protocols

Classification accuracy is average value of all test class accuracy in each database.
Because the learned model involves four parameters, which are λ, γ, σb and σx

(respectively are in formula (3) in formula (6)). We alternately divide the training
classes set into two part in according with the proportion between the training
classes set and the test classes set. One part is to learn the model, and another
is to validate the model. Firstly, we set σb and σx to 1, and obtain γ and λ
corresponding to the best result in γ (form 2−24 to 2−9) and λ (form 2−24 to
2−9) by cross validation. Secondly, we learn σb and σx corresponding to the best
result in σb and σx (form 2−5 to 25) by cross validation.

3.4 Structure Fusion and Propagation with the Iteration

The main idea of the proposed SFP method shows three contents. In the first
content, the manifold structure of images is considered for constructing the com-
patibility function between the class label and the visual feature. In the second
content, the relationship between multi-manifold structures is found for booting
the influence of the positive structure. In the last content, it is the most impor-
tant to propagate the positive structure and fuse multi-manifold structures by
the iteration computation. Therefore, we carry out the related experiment for
evaluating the effect of the iteration on the structure evolution in AwA. The
recognition accuracy can show the approximation degree of the class manifold
structure. In other word, the better recognition accuracy is proportional to the
more similar relationship between the reconstruction manifold structure and
the intrinsic manifold structure of classes. Figure 2 demonstrates the recognition
accuracy change with the iteration. In the beginning, the recognition accuracy
rapidly increases with the iteration, and then reaches a stable state. It means
that structure fusion and propagation with the iteration can advance the recog-
nition accuracy and finally obtain the best state.
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Table 2. Comparison of SFP method with SJE [1], LatEm [28] and SynC [3] in each
semantic space, average per-class Top-1 accuracy (%) of unseen classes is reported
based on the same data configurations, same images and semantic features in AwA. w:
the fusion includes att, w2v, glo and hie, while w/o: the fusion contains w2v, glo and
hie.

Datasets Semantic feature SJE LatEm SynC SFP

AwA att 66.7 71.9 69.3 84.3

w2v 51.2 61.1 52.9 77.4

glo 58.8 62.9 53.4 70.5

hie 51.2 57.5 52.0 62.1

w 73.9 76.1 78.0 85.4

w/o 60.1 66.2 69.1 81.4

CUB att 50.1 45.5 47.5 51.8

w2v 28.4 31.8 32.3 32.5

glo 24.2 32.5 32.8 33.3

hie 20.6 24.2 22.7 24.3

w 51.7 47.4 48.8 54.1

w/o 29.9 34.9 35.2 35.3

Dogs att N/A N/A N/A N/A

w2v 19.6 22.6 27.6 33.3

glo 17.8 20.9 21.9 33.4

hie 24.3 25.2 31.1 32.4

w N/A N/A N/A N/A

w/o 35.1 36.3 36.3 48.1

SUN att 56.1 57.6 62.8 67.6

3.5 Comparison with State-of-the-Arts

In term of the image data utilization of unseen classes in testing, we can divide
ZSL methods into two categories, which are inductive ZSL and transductive ZSL.
Inductive ZSL methods can serially process unseen samples without the consid-
eration of the underlying manifold structure in unseen samples [1,3,28,33], while
transductive ZSL can usually use the manifold structure of unseen samples to
improve ZSL performance [8,10,15]. SFP can find the structure of unseen classes
in image feature space to enhance the transfer model between seen and unseen
classes, so SFP belongs to a transductive ZSL method. For a fair comparison,
we use deep feature of images based on GoogleNet [26] in contrasting methods,
which include our method, one transductive ZSL method (DMaP [15]), and three
inductive ZSL methods (SJE [1], LatEm [28] and SynC [3]). To the best of our
knowledge, these methods are state-of-the-art methods for ZSL. Table 3 shows
their results for ZSL on three benchmark datasets. SFP mostly outperforms the
state-of-the-art methods except DMaP on CUB. DMaP focuses on the manifold



474 G. Lin et al.

Fig. 2. Average per-class Top-1 accuracy (%) of unseen classes is reported with struc-
ture fusion and propagation iteration times on AwA. w: the fusion includes att, w2v,
glo and hie, while w/o: the fusion contains w2v, glo and hie

structure consistency between the semantic representation and the image fea-
ture, and can better distinguish fine-grained classes. SFP can complement the
manifold structure between the semantic representation and the image feature,
and better recognize coarse-grained classes. Therefore, integrating two ideas is
expected to further improve the ZSL performance in future work.

3.6 Experimental Result Analysis

From the above experiments, we can attain the following observations.

– The semantic description have the different contribution for classifying unseen
classes. The supervised attribute tend to obtain the better recognition perfor-
mance than the unsupervised semantic representation (w2v, glo and hie) in
AwA and CUB. In the unsupervised semantic representation, the recognition
accuracy of w2v or glo is better than that of hie in AwA and CUB, but the
performance of hie is superior to that of w2v or glo in Dogs. This is mainly
due to the flexibility and uncertainty of the semantic representation in the
unsupervised way.

– The performance of SFP is better than that of other three methods, which are
SJE, LatEm, and SynC. However, the performance improvement is different
in the various datasets. The obvious improvement can be found in AwA,
Dogs and SUN, while the slight improvement can be shown in CUB. The main
reason of this situation is related to whether or not effectively to propagate the
positive structure in the optimization computation in term of data differences.

– SFP emphasizes on the different manifold structure complement, while DMaP
focuses on the various manifold structure consistency. Therefore, the perfor-
mance of SFP is superior to that of DMaP because the structure comple-
mentarity plays the important role for learning transfer model in AwA and
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Table 3. Comparison of SFP method with state-of-the-art methods for ZSL, average
per-class Top-1 accuracy (%) of unseen classes is reported based on the same data
configurations. ‘+’ indicates fusion operation.

Method Semantic feature T/I AwA CUB Dogs

SJE att I 66.7 50.1 N/A

w2v I 51.2 28.4 19.6

LatEm att I 71.9 45.5 N/A

w2v I 61.1 31.8 22.6

SynC att I 69.3 47.5 N/A

w2v I 52.9 32.3 27.6

DMaP att T 74.9 61.8 N/A

w2v T 67.9 31.6 38.9

att+w2v T 78.6 59.6 N/A

SFP att T 84.3 51.8 N/A

w2v T 77.4 32.5 33.3

att+w2v T 84.7 52.5 N/A

att+w2v+glo+hie T 85.4 54.1 N/A

w2v+glo+hie T 81.4 35.3 48.1

Dogs, and the performance of DMaP is better than that of SFP because the
structure consistency is a key point for classifying unseen classes in CUB.

– SFP performs better with the positive structure fusion and propagation. SFP
has demonstrated great promise in above experiments due to multi-manifold
structure consideration and alternated optimization between the weight com-
putation and the manifold structure estimation for ZSL.

– The proposed fusion method can attain the better performance than the non-
fusion method because of appropriate complementing each other. w or w/o
always performs better on AwA, CUB and Dogs.

4 Conclusion

We have proposed a new ZSL method, which called structure fusion and propa-
gation (SFP). This method can not only directly model the relevance among the
manifold structures in semantic and image space, but also dynamically propa-
gate the positive structure by the crossing iteration. Specifically, the proposed
SFP method mainly includes four parts. First, nonlinear model constructs the
mapping relationship between the class label and the visual image represen-
tation. Second, graph describes the relevance between seen classes and unseen
classes in semantic or image space. Three, loss function indicates the constrains
relationship of multi-manifold structure to balance the structure dependance.
Last, structure fusion and propagation is implemented by the crossing iteration
computation between phantom classes and weights solving. For evaluating the
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proposed SFP, we carry out the experiment on AwA, CUB, Dogs and SUN.
Experimental results show that SFP can obtain the promising results for ZSL.
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