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Abstract. The Symmetric Positive Definite (SPD) matrix on the Rie-
mannian manifold has become a prevalent representation in many com-
puter vision tasks. However, learning a proper distance metric between
two SPD matrices is still a challenging problem. Existing metric learn-
ing methods of SPD matrices only regard an SPD matrix as a global
representation and thus ignore different roles of intrinsic properties in
the SPD matrix. In this paper, we propose a novel SPD matrix met-
ric learning method of discovering SPD matrix intrinsic properties and
measuring the distance considering different roles of intrinsic proper-
ties. In particular, the intrinsic properties of an SPD matrix are dis-
covered by projecting the SPD matrix to multiple low-dimensional SPD
manifolds, and the obtained low-dimensional SPD matrices constitute a
set. Accordingly, the metric between two original SPD matrices is trans-
formed into a set-to-set metric on multiple low-dimensional SPD mani-
folds. Based on the learnable alpha-beta divergence, the set-to-set metric
is computed by summarizing multiple alpha-beta divergences assigned on
low-dimensional SPD manifolds, which models different roles of intrinsic
properties. The experimental results on four visual tasks demonstrate
that our method achieves the state-of-the art performance.
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1 Introduction

The Symmetric Positive Definite (SPD) matrix has become a prevalent repre-
sentation in many visual tasks, such as face recognition [12], action recognition
[30], and object detection [25]. It utilizes the second-order or higher-order statis-
tics information to capture the desirable feature distribution. There are several
works try to model a more discriminative SPD matrix [16,27,28] from local
features. Meanwhile, calculating the distance metric in the SPD manifold is a
crucial problem coming along with the SPD matrix representation. Due to the
no-Euclidean structure of SPD manifolds, the Euclidean metric can’t be applied
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directly on it. In this paper, we focus on a robust metric learning method on
SPD manifolds.

Many efforts have been devoted to the SPD matrix metric, such as the Affine
Invariant Metric (AIM) [19], Log-Euclidean Metric (LEM) [2], Bregman diver-
gence [14], Stein divergence [21], and alpha-beta divergence [3,4,22]. Given a
concrete metric, metric learning aims at learning proper metric parameters that
keep similar pairs close and separate dissimilar pairs. Most of the existing met-
ric learning methods on the SPD manifold learn a discriminative metric on the
tangent Euclidean space [11,23,31].

However, how to learn a proper SPD matrix metric is still a challenging
problem. The SPD matrix is aggregated from local features, and contains differ-
ent essential intrinsic properties. Existing SPD matrix metric learning methods
[11,23,31] just regard an SPD matrix as a global representation and exploit a
direct metric on the complex manifold, ignoring the different roles of intrinsic
properties in the SPD matrix. It is unsuitable to treat intrinsic properties equally
when they have different roles, e.g., different distribution or significance. There-
fore, we argue that an SPD matrix metric modeling different roles of intrinsic
properties will achieve a better performance.

In this paper, a novel metric learning method on SPD manifolds is proposed
to solve the issues mentioned above. Firstly we discover intrinsic properties of
an SPD matrix, and then calculate the SPD matrix metric considering differ-
ent roles of them. In particular, our method aims to jointly learn multiple low-
dimensional projections and a set-to-set metric. As the property discovery can be
seen as the feature extraction, we apply multiple low-dimensional manifold pro-
jections on the SPD matrix to discover discriminative intrinsic properties. Thus,
the distance metric between two original SPD matrices is transformed into the
distance metric between the two sets which contain several corresponding pro-
jected low-dimensional SPD matrices. The alpha-beta divergences is a learnable
SPD matrix metric, so it is applied in our set-to-set metric to be adaptive to
the intrinsic property. We assign multiple alpha-beta divergences on different
low-dimensional manifolds as the sub-metrics and summarize these sub-metrics
discriminatively as the SPD matrix metric. Through this, the different roles of
intrinsic properties are involved in the SPD matrix metric. Evaluated by experi-
ments, the proposed learnable metric is extremely helpful to capture meaningful
nearest neighbors of different original SPD matrices.

In summary, our contributions are three-fold.

(1) We propose a robust SPD matrix metric learning method of discovering
discriminative intrinsic properties and modeling their different roles in metric
computation.

(2) We formulate the metric learning as the two-component joint optimization
problem, i.e., multiple low-dimensional manifold projections and a set-to-set
metric are learned jointly.

(3) We introduce the manifold optimization method which can learn metric
parameters to guarantee the robustness of the proposed metric.
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Fig. 1. The flowchart of our SPD matrix metric learning method. Left: multiple pro-
jections f1

W , f2
W , and f3

W used to discover intrinsic properties; Right: the computation
of the set-to-set distance Ds which considers different roles of intrinsic properties.

2 The Proposed Method

Throughout this paper, scalars are denoted by the lower-case letters; the vectors
are represented by the bold lower-case letters; the matrices are denoted by the
upper-case letters; the sets are represented by the bold upper-case letters.

2.1 Problem Definition

This work aims to discover discriminative intrinsic properties in an SPD matrix
and compute the distance of SPD matrices considering different roles of discov-
ered properties. The property discovery can be regarded as a feature extrac-
tion process that projects an original SPD matrix to multiple low-dimensional
SPD manifolds to form a set of the low-dimensional SPD matrices. We propose
a set-to-set metric to consider different roles of intrinsic properties. Individual
sub-metrics are assigned on low-dimensional manifolds and summarized discrim-
inatively. Consequently, our metric learning method is composed of two compo-
nents, multiple low-dimensional manifold projections and a set-to-set metric.
Given two SPD matrices Xi and Xj , the distance DΘ(Xi,Xj) is

DΘ(Xi,Xj) = Ds(Xi,Xj)

= Ds

(
{f1

W (Xi), · · · , fm
W (Xi)}, {f1

W (Xj), · · · , fm
W (Xj)}

)

= hM

(
g1A

(
f1

W (Xi), f1
W (Xj)

)
, · · · , gm

A

(
fm

W (Xi), fm
W (Xj)

))
,

(1)

where fk
W (·) is the low-dimensional manifold projection, and Xi = {fk

W (Xi)}m
k=1

is the set containing low-dimensional SPD matrices. The distance DΘ(Xi,Xj)
between original SPD matrices Xi and Xj is transformed into a set-to-set dis-
tance Ds(Xi,Xj), where the sub-metric on the k-th low-dimensional manifold
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is calculated by gk
A(·, ·) and all sub-metrics of properties are summarized by

hM (·). W,A,M are the projection parameter, the sub-metric parameter, and
the summarization parameter, respectively. We exploit a learnable parameter
set Θ = {W,A,M} to represent the parameters. The framework of our metric
learning method for the SPD matrix is shown in Fig. 1.

The goal of metric learning is to learn the metric parameter Θ from an SPD
matrix similar pair set S, a dissimilar pair set D, and their labels Y , where
yij = 1 means Xi and Xj are similar, otherwise yij = 0. The metric parameter
Θ can be learned by optimizing the loss function L(Θ,S,D, Y ) which is the
punishment of both far similar sample pairs and close dissimilar sample pairs.
We define L(Θ,S,D, Y ) in the following subsection. Moreover, we impose the
manifold constraints on W and M to obtain a more robust metric.

2.2 Multiple Low-Dimensional Manifold Projections

For an SPD matrix sample Xi ∈ R
n×n, we project Xi to m low-dimensional

manifolds to discover the intrinsic properties,

X1
i = f1

W (Xi) = W�
1 XiW1

...

Xm
i = fm

W (Xi) = W�
mXiWm,

(2)

where Xk
i ∈ R

p×p is the k-th low-dimensional SPD matrix, k ∈ {1, 2, · · · ,m}.
An SPD matrix Xi is projected to a set Xi = {Xk

i }m
k=1, which contains several

low-dimensional SPD matrices.
We expect that each low-dimensional matrix Xk

i is guaranteed to be still
an SPD matrix having the ability of capturing desirable feature distribution,
and any two low-dimensional SPD manifolds are unrelated to preserve as much
information as possible in the low-dimensional SPD matrix set. The learnable
parameter Wk needs to be a column full rank matrix to make Xk

i be an SPD
matrix as well. Based on the affine invariance [3,7] of the alpha-beta divergence,
we relax the column full rank constraint of Wk to the semi-orthogonal constraint,
i.e., W�

k Wk = Ip. In order to preserve more information in the Xi = {Xk
i }m

k=1

set, we expect that any two low-dimensional manifolds have a low relevance.
For any k �= l, we set W�

k Wl = 0, where 0 ∈ R
p×p is a matrix whose elements

are all “0”s, to reduce relevance between Xk
i and X l

i . These low-dimensional
SPD manifolds can be seen as analogies of different PCA subspaces. A total
projection matrix W is composed of all Wk, W = [W1,W2, · · · ,Wm] ∈ R

n×mp,
in which Wk is a partitioned matrix of W containing p columns. Note that, W
is a semi-orthogonal matrix, i.e., W�W = Imp, which is on the non-Euclidean
Stiefel manifold [1].

2.3 The Set-to-Set Metric

Based on multiple manifold projections, the distance DΘ(Xi,Xj) of two
SPD matrices is transformed into the set-to-set distance Ds(Xi,Xj). Firstly
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{gk
A(·, ·)}m

k=1 is exploited to compute sub-metrics on m low-dimensional SPD
manifolds, and then hM (·) is utilized to summarize the m sub-metrics, where
A and M are learnable parameters. We use the flexible alpha-beta diver-
gence [3,4,22] as the sub-metric gk

A(·, ·). For two SPD sets Xi = {Xk
i }m

k=1,
Xj = {Xk

j }m
k=1, the distance dk

ij between Xk
i and Xk

j is computed by the k-
th alpha-beta divergence,

dk
ij =gk

A(Xk
i , Xk

j )=D(αk,βk)
(
Xk

i ‖Xk
j

)
=

1

αkβk

p∑
u=1

log

(
αk(λ

k

iju)βk + βk(λ
k

iju)−αk

αk + βk

)
,

(3)
where λk

iju is the u-th eigenvalue of Xk
i (Xk

j )−1, and (αk, βk) is the individual
parameter of the k-th alpha-beta divergence. We denote all alpha-beta divergence
parameters as a matrix A = [(α1, β1), (α2, β2), ..., (αm, βm)] ∈ R

m×2, and a
distance vector between Xi and Xj as dij = [d1ij , d

2
ij , ..., d

m
ij ] ∈ R

m×1. Since
(αk, βk) needs to be adaptive to the k-th low-dimensional manifold, we exploit
a learnable strategy to update (αk, βk), which is detailed in the next subsection.
After computing all sub-metrics, the distance metric DΘ(Xi,Xj) between two
original SPD matrices Xi and Xj is formulated as

DΘ(Xi, Xj) = Ds(Xi,Xj) = hM (d1
ij , d

2
ij , ..., d

m
ij ) = d�

ijMdij

=

m∑
k=1

m∑
l=1

(
D(αk,βk)(W �

k XiWk‖W �
k XjWk

) · Mkl · D(αl,βl)
(
W �

l XiWl‖W �
l XjWl

))
,

(4)
where M ∈ R

m×m is the metric parameter, and Mkl is an element of M in the k-
th row and l-th column, reflecting the significance and relationship of properties.
If Xi = Xj , then dij is a zero vector, and DΘ(Xi,Xj) = 0. If Xi �= Xj , then dij

is a non-zero vector, and DΘ(Xi,Xj) should be larger than 0. The nonnegativity
of the metric forces M to be an SPD matrix and M ∈ Sym+

m.
To learn the parameter Θ, we formulate loss function L(Θ,S,D, Y ) as

min
Θ

L(Θ,S,D, Y ) =
1

|S|
∑

i,j∈S
yij · max

(
DΘ(Xi,Xj) − ζs, 0

)2

+
1

|D|
∑

i,j∈D
(1 − yij) · max

(
ζd − DΘ(Xi,Xj), 0

)2

+ ξ · γ(M,M0).

(5)

We expect that the distance between similar samples is smaller than a threshold
ζs, and the distance between dissimilar samples is larger than a threshold ζd.
We add two coefficients 1

|S| and 1
|D| to solve the imbalance issue of similar and

dissimilar sample pairs, where |S| and |D| are the pair numbers of sets S and
D. In addition, we add a regularization term ξ · γ(M,M0) on M in Eq. (5).
γ(M,M0) = Tr(MM−1

0 ) − logdet(MM−1
0 ) − m is the burgman divergence [5,8,

10], where Tr(·) is the trace of a matrix, M0 is the prior information, and ξ is
the trade-off coefficient.
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2.4 Optimization

L(Θ,S,D, Y ) in Eq. (5) is not a convex function with respect to W , A, and
M . Accordingly, we apply the gradient descent to learn Θ. The gradients are
computed as follows.

(1) The gradient of L with respect to M
The gradient of L with respect to M can be computed by

∇M (L) =
1

|S|
∑

i,j∈S
dij∇DΘ

ij
(L)d�

ij +
1

|D|
∑

i,j∈D
dij∇DΘ

ij
(L)d�

ij + ξ · ∇M (γ(M, M0)),

(6)

where ∇DΘ
ij

(L) is the gradient of L with respect to DΘ(Xi,Xj),

∇DΘ
ij

(L) = 2 · yij · max(DΘ
ij − ζs, 0) + 2 · (yij − 1) · max(ζd − DΘ

ij , 0), (7)

and ∇M (γ(M,M0)) is the gradient of γ(M,M0) with respect to M ,

∇M (γ(M,M0)) = M−1
0 − M−1. (8)

(2) The gradient of L with respect to A
The gradients of L with respect to αk and βk in A are

∇αk
(L) =

1
|S|

∑
i,j∈S

∇dk
ij

(L) · ∇αk
(dk

ij) +
1

|D|
∑

i,j∈D
∇dk

ij
(L) · ∇αk

(dk
ij), (9)

∇βk
(L) =

1
|S|

∑
i,j∈S

∇dk
ij

(L) · ∇βk
(dk

ij) +
1

|D|
∑

i,j∈D
∇dk

ij
(L) · ∇βk

(dk
ij). (10)

∇dk
ij

(L) is the k-th element of ∇dij (L) which is the gradient of L with respect
to dij ,

∇dij (L) = ∇DΘ
ij

(L) · ∇dij (D
Θ
ij) = ∇DΘ

ij
(L)d�

ij(M
� + M). (11)

∇αk
(dk

ij) and ∇βk
(dk

ij) are the gradients of dk
ij with respect to αk and βk, respec-

tively,

∇αk
(dk

ij) =
1

α2
kβk

p∑
u=1

(
αk(λk

iju)βk − αkβk(λk
iju)−αk logλk

iju

αk(λk
iju)βk + βk(λk

iju)−αk

− αk

αk + βk
− log

αk(λk
iju)βk + βk(λk

iju)−αk

αk + βk

)
,

(12)
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∇βk
(dk

ij) =
1

αkβ2
k

p∑
u=1

(
βk(λk

iju)−αk − αkβk(λk
iju)βk logλk

iju

αk(λk
iju)βk + βk(λk

iju)−αk

− βk

αk + βk
− log

αk(λk
iju)βk + βk(λk

iju)−αk

αk + βk

)
.

(13)

(3) The gradient of L with respect to W
The gradient of L with respect to each Wk is

∇Wk
(L) =

N∑
i

(
(Xi)�Wk∇Xk

i
(L) + XiWk∇Xk

i
(L)�)

, (14)

where N is the number of training samples, and N = 2 × (|S| + |D|). ∇Xk
i
(L)

is the gradient of L with respect to the low-dimensional SPD matrix Xk
i . The

eigenvalue decomposition of Xk
i (Xk

j )−1 is Xk
i (Xk

j )−1 = Uk
ijΣ

k
ij(U

k
ij)

�. Σk
ij is

the diagonal matrix eigenvalues, and λk
iju is the u-th eigenvalue. The gradients

∇Xk
i
(L) and ∇Xk

j
(L) are

∇Xk
i
(L) = Uk

ij∇Σk
ij

(L)(Uk
ij)

�(Xk
i )−�, (15)

∇Xk
j
(L) = (−1) · (Xk

j )−�(Xk
i )�Uk

ij∇Σk
ij

(L)(Uk
ij)

�(Xk
j )−�, (16)

where ∇Σk
ij

(L) is the gradient of Σk
ij with respect to L. ∇Σk

ij
(L) is a diagonal

matrix, and the u-th element is

∇λk
iju

(L) = ∇dk
ij

(L) · ∇λk
iju

(dk
ij)

= ∇dk
ij

(L) · 1
αkβk

αkβk(λk
iju)βk−1 − αkβk(λk

iju)−αk−1

αk(λk
iju)βk + βk(λk

iju)−αk
.

(17)

Since the gradients ∇W (L), ∇M (L), and ∇A(L) are obtained, the metric
parameter set Θ can be updated. A is optimized by the standard gradient
descent, A := A − η∇A(L), where η is the learning rate. W and M are updated
by the Riemannian optimization algorithm [1,6,20]. The computation details are
presented below,

⎧
⎨
⎩

∇WR
(L) = ∇W (L) − W

1
2
(W�∇W (L) + ∇W (L)�W )

W := q
(
W − η∇WR

(L)
) , (18)

and ⎧
⎨
⎩

∇MR
(L) = M

1
2
(∇M (L) + ∇M (L)�)

M

M := M
1
2 expm

( − ηM− 1
2 ∇MR

(L)M− 1
2
)
M

1
2

, (19)
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where ∇WR
(L) and ∇MR

(L) are the Riemannian gradients with respect to W
and M . In Eq. (18), q (·) is the retraction operation mapping the data back to
the Stiefel manifold. q (W ) denotes the Q matrix of the QR decomposition to
a matrix W , i.e., for the matrix W ∈ R

n×p, W = QR, where Q ∈ R
n×p is a

semi-orthogonal matrix and R ∈ R
p×p is a upper triangular matrix. In Eq. (19),

expm(·) is the matrix exponential function. We summarize the learning process
of our method in Algorithm1, w.

Algorithm 1. Trainging Process of Our Method
Input: Training SPD sample pairs S and D, labels Y . The initial projection matrix

W . The initial metric matrix M . The initial alpha-beta divergence parameter A.
Learning rate η.

Output: The learned W , M , and A.
1: while not converge do
2: For each SPD matrix, compute subspaces by Eq.(2).
3: For each sample pairs, compute the distance between their sets by Eq.(3) and

Eq.(4).
4: Compute the loss L by Eq.(5).
5: Compute the gradient ∇M (L) by Eq.(7), Eq.(8), and Eq.(6).
6: Compute the gradient ∇A(L) by Eq.(12), Eq.(13), Eq.(9), and Eq.(10).
7: Compute the gradient ∇W (L) by Eq.(17), Eq.(15), Eq.(16), and Eq.(14).
8: Update the parameter W by Eq.(18).
9: Update the parameter A by A := A − η∇A(L).

10: Update the parameter M by Eq.(19).
11: end while
12: return W , M and A

3 Experiments

In order to test the efficiency of our method, we conduct experiments on the
object recognition, video-based face recognition, action recognition, and tex-
ture classification tasks. Four datasets are utilized: the ETH-80 [15], the MSR-
Action3D [17], the YouTube Celebrities (YTC) [13], and the UIUC [18] datasets.

3.1 Datasets and Settings

The ETH-80 is an object image dataset, which contains 80 image sets of eight
categories. Each category consists of 10 image sets, and each set includes 41
images captured under different views. In our experiment, all the images of
the ETH-80 are resized to 20 × 20 and denoted by the intensity features. The
YTC is a video-based face dataset, collecting 1910 videos of 47 persons. Face
regions are detected from each frame by a cascaded face detector and resized
to 30 × 30, followed by the histogram equalized operation, and represented by
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the gray values. The MSR-Action3D is a 3D action dataset, containing totally
567 videos of 20 actions. There are 20 skeleton joints in the body of actions. In
the experiments, each frame is represented by a 120-dimensional feature, which
is the 3D coordinate differences of skeleton joints between this frame and its
two neighborhood frames. The UIUC material dataset contains 216 samples of
18 categories. We resize each image to 400 × 400. Then 128-dimensional dense
SIFT features are extracted from each image with 4-pixel space concatenated by
27-dimensional RGB color features from 3 × 3 patches centered at the locations
of dense SIFT features.

On the ETH-80, YTC, and UIUC datasets, we compute a covariance matrix
C to represent each sample and add a small ridge δI to avoid the matrix sin-
gularity, where δ = 0.001 × Tr(C). On the MSR-Action3D dataset, we first
compute the covariance matrix C with size of 120 × 120, then transform it to a
121 × 121 Gaussian distribution SPD matrix, C = |C|− 1

121

[
C + mm� m

m� 1

]
as the

sample representation, where m is the mean vector of 120-dimensional features.
Following the standard protocols [7,11,24,29], for each category, we randomly
select half of the samples for training and the rest for testing on the ETH-80,
MSR-Action3D, and UIUC datasets. On the YTC dataset, for each person, three
videos are randomly selected as the gallery, and six as the probe. In experiments,
we set ξ = 0.01, M0 = Im, ζs = 5, and ζd = 100.

3.2 Evaluation

We exploit the 1-NN classifier to evaluate the performance of all metric learning
methods. The following methods are evaluated in our experiments: AIM [19],
Stein Divergence [21], LEM [2], SPD-DR [7], CDL [29], RSR-ML [9], LEML
[11], and α-CML [31]. AIM, Stein Divergence, and LEM are the basic SPD
matrix metrics, measuring the geodesic distance between SPD matrices. SPD-DR
implements the dimensionality reduction on the SPD matrix and then applies
the AIM or Stein Divergence between samples. CDL is a Riemannian kernel
discriminative learning approach on the SPD manifold. RSR-ML employs sparse
coding and dictionary learning scheme on the SPD manifold. LEML and α-
CML are two LEM based SPD matrix metric learning methods which project
SPD matrices to the tangent space and utilize the LEM to compute the distance
between them.

Table 1 shows the comparisons of the four visual tasks. In the object recogni-
tion task, we set the dimensionality of the low-dimensional manifolds is 10 × 10
and the number of them is 20, i.e., m = 20. We find that LEM has a better per-
formance than AIM, 93.0 vs 85.0, showing that the point on the tangent space is
more discriminative. If the manifold point is projected to a low-dimensional dis-
criminative space, i.e., the SPD-DR method, the performance can be improved
to 96.0, 0.5 better than LEML. Compared with SPD-DR, our method achieves
97.5, 1.5 higher than it, which shows the power of discovering discriminative
properties and their roles.

In the video-based face recognition task, the dimensionality of projected man-
ifolds is 10 × 10, and the number of them is 40. We achieve 49.2 in this task, 2.5
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higher than SPD-DR and 10 percent higher than the basic SPD matrix metrics
approximately. However, due to the large variable faces caused by posture, illumi-
nation, scale, and occlusion, the performance of linear metric learning methods is
far less than it of the nonlinear kernel method CDL. The reason we think is that
the samples in the original space are not separable, a more higher-dimensional
RKHS space can relieve this problem.

In the action recognition task, the dimensionality of the low-dimensional
manifolds is 8 × 8 and the number of them is 15. Nonlinear kernel methods
CDL and RSR-ML achieve 95.4 and 95.0 respectively and have a better per-
formance than the existing metric methods [7,11,31]. In this case, our linear
method obtains the comparable performance with CDL and RSR-ML, achieving
95.8. Besides, Wang et al. [26] shows that the nonlinear kernel matrix represen-
tation has a better performance than the linear SPD representation, while our
accuracy is 3.1 higher than α-CML whose performance is based on the kernel
matrix [26] rather than the Gaussian distribution SPD matrix.

In the texture classification task, in our method, we set the dimensionality of
the low-dimensional manifolds is 8 × 8, and there are totally 18 low-dimensional
manifolds. We can see that, the three basic SPD matrix metrics i.e., AIM, Stein
Divergence, and LEM achieve comparable performance in the UIUC dataset,
35.6, 35.8 and 36.7 respectively. Meanwhile, metric learning methods can bring
a remarkable improvement. CDL achieves 54.9, and the accuracy of LEML is
53.9. SPD-DR achieves a better performance 58.3, showing that there are too
much noise and information redundancy in the original SPD representation. Our
method further improves the result to 60.8 showing that our method can not
only remove the noise and information redundancy but also bring the benefits
of discovering discriminative intrinsic properties and their different roles.

Table 1. Accuracies (%) on the four visual tasks. Our method is bold in the last line.

Method Eth-80 YTC MSR-Action3D UIUC

AIM [19] 85.0 38.2 84.7 35.6

Stein [21] - - 83.5 35.8

LEM [2] 93.0 40.8 84.7 36.7

AIM-DR [7] 96.0 46.7 93.1 58.3

Stein-DR [7] - - 94.6 58.1

CDL [29] 94.5 67.5 95.4 54.9

RSR-ML [9] 94.8 - 95.0 -

LEML [11] 95.5 - 92.3 53.9

α-CML [31] - - 92.7 -

Ours 97.5 49.2 95.8 60.8
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4 Conclusions

In this paper, we have proposed a novel metric learning method on the SPD
manifold, which can discover discriminative intrinsic properties and computes
the metric considering their different roles. We can formulate the SPD manifold
metric learning process as the multiple projections and a set-to-set metric joint
optimization problem. Moreover, we force the projection matrix and the metric
matrix on manifolds, obtaining a robust metric. Extensive experiments have
shown that our method outperforms existing metric learning methods on the
SPD manifold. As our method is differentiable in the whole process, in the future,
we will endow it with deep learning for the desirable nonlinearity.
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