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Abstract. We introduce a novel embedded algorithm for feature selec-
tion, using Support Vector Machine (SVM) with kernel functions. Our
method, called Kernel Parameter Descent SVM (KPD-SVM), is tak-
ing parameters of kernel functions as variables to optimize the target
functions in SVM model training. KPD-SVM use sequential minimal
optimization, which breaks the large quadratic optimization problem
into some smaller possible optimization problem, avoids inner loop on
time-consuming numerical computation. Additionally, KPD-SVM opti-
mize the shape of RBF kernel to eliminate features which have low rel-
evance for the class label. Through kernel selection and execution of
improved algorithm in each case, we simultaneously find the optimal
solution of selected features in the modeling process. We compare our
method with algorithms like filter method (Fisher Criterion Score) or
wrapper method (Recursive Feature Elimination SVM) to demonstrate
its effectiveness and efficiency.
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1 Introduction

Feature Selection is a vital issue in machine learning. It is common to apply fea-
ture selection methods to classification problems, especially when those original
data sets have redundant features [1].

According to [2], there are three main directions for feature selection: filter,
wrapper, and embedded methods.

Filter takes statistical analysis to filter out poorly informative features, it is
usually done before the samples taken into a classifier. Relief [3] is a typical filter
method which is statistically relevant to the target concept and feeds features
into the classifier.

Wrapper approach searches the whole set of samples to score feature subset,
therefore it naturally entails training and implementation of learning algorithms
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during the procedure of feature selection, wrappers use different classifier such
as naive Bayes [4], neural networks [5] and nearest neighbor [6]. The random
forests based wrapper approaches [7,8] are widely used to identify important
features from feature subset.

In embedded method, feature selection is embedded into the classifier [9],
feature is selected by the internal function of an algorithm such as least absolute
shrinkage and selection operator (LASSO) [10] and decision tree [11].

Above methods have their limitation, wrapper algorithms are complex in
computation, but usually obtain more accurate results than filter methods [12],
the problem of a wrapper is high computational cost because it involves repeated
training. The robustness of above methods in high dimension data set is a crucial
problem. Therefore some features select approaches constructed by combining
multiple classifiers, their robust more than the approaches with a single classi-
fier [13]. In addition, support vector machines (SVM) have been proposed as a
wrapper classifier for feature selection [14].

Although standard implementation of SVM shows good performance in clas-
sification prediction, it cannot rank each features’ importance for feature elim-
ination. Thus we introduce a novel approach which selects features according
to the descent path of kernel parameters, indirectly figuring out the importance
of each features as well as optimizing the model predicting ability. The method
we called Kernel Parameter Descent Support Vector Machine (KPD-SVM), the
approach not only optimizes the parameter of SVM, but also obtains a sub-
set of features for specific objective. KPD-SVM will be talked in detail and be
compared with other characteristic approaches of feature selection in SVM.

2 Related Works

2.1 Support Vector Machine

In this section, we will simply review the development of SVM method.
Support Vector Machine (SVM) is a strictly math-based machine learning

model, raised by Vapnik [15]. The principle of SVM classifier is obvious. It tries to
find out the optimal hyperplane for the optimization problem with “soft margin”
as follows:

min
w,b,ξ

1
2
‖w‖2 + C

n∑

i=1

ξi (1)

s.t. yi · (wT · φ(xi) + b) ≥ (1 − ξi) i = 1, . . . , n,

ξi ≥ 0, i = 1, . . . , n

Here we denote ξi as slack variable. The training data can be transformed into
higher dimensional space through kernel function x → φ(x). So the decision
function can be rewritten as:

f(x) =
n∑

i=1

αiyi〈φ(xi), φ(x)〉 + b (2)
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Since the scalar products 〈φ(x), φ(y)〉 are the only value to be calculated,
kernel function

K(x, y) = 〈φ(x), φ(y)〉 (3)

is used to solve them. As result the optimization problem can be rewritten as:

max
α

n∑

i=1

αi − 1
2

n∑

i,j=1

αiαjyiyjK(xi, xj) (4)

s.t. 0 ≤ αi ≤ C i = 1, . . . , n

n∑

i=1

αiyi = 0

2.2 Feature Selection in SVMs

Typically, there are three methods in SVM based feature selection process, Filter,
Wrapper and Embedded [1]. Here we review each of them briefly and stress one
representative algorithm of each method, for experimental comparison in next
section.

– Filter Method: Among all the measurement in Filter method, Fisher Crite-
rion Score (F-Score) is one of the most common indicator to use. It computes
the significance of each feature independently of the other feature by compar-
ing that feature’s correlation to the output labels. The respective score F (j)
of feature j is given by:

F (j) =

∣∣∣∣∣
μ+

j + μ−
j

(σ+
j )2 + (σ−

j )2

∣∣∣∣∣ (5)

Where μ+
j (μ−

j )is the mean value for the jth feature in positive(negative) class.
And σ+

j (σ−
j ) is the standard deviation. When the F (j) is large, it means jth

feature has much more information to discriminate itself from other features,
which suggests it ranks top of the feature list and would be more likely not
to be eliminate and vice versa. The disadvantage of filter method is time
consuming and skillful because you need to choose a suitable measurement
method.

– Wrapper Method: One representative wrapper method is Recursive Fea-
ture Elimination SVM (RFE-SVM), which is raised by Guyon [16]. RFE-SVM
aims to find out the r-feature subset among the original n-feature set through
backward greedy algorithm, which build model by the whole feature at the
beginning then cut off one feature according the ranking order. The disadvan-
tage of Wrapper method is that it is more time consuming than filter method
because it need to train models on different feature subsets.



354 H. Zhu et al.

– Embedded Method: The last method for feature selection is embedded
method. The most different novelty between embedded and others is that it
conducts the selection in the process of model training. One common embed-
ded method is to add a penalty item to the target function which limits the
model complexity [17]. Compared with filter method and wrapper method,
we choose embedded method in our model because it is less time consuming.

3 The Proposed Method: KPD-SVM

The principle of proposed method aims to improve the classification perfor-
mance as well as to eliminate less important features by optimizing parame-
ter/parameters in kernel function. This method use penalty item like L0−norm
or L1 − norm of the parameter to punish the large number of feature we con-
sider in modeling which is more likely to cause over-fitting problems. Through
gradient descent algorithm, we can find out the best solution (which means the
best classification performance) of the vector of kernel parameters. During this
iteration process, we set the parameters whose values are lower than a small
criterion as 0. Thus we can deal with the feature selection task.

3.1 Kernel Function

Among the kernel function SVM commonly uses, we pay attention to the fol-
lowing mostly-used kernels:

Gaussian Kernel function we write the kernel function in the form of the
summation in each feature:

K(x, y) = exp

(
−

d∑

j=1

(xj − yj)2

2σ2
j

)
(6)

where σ = [σ1, σ2, σ3 . . . , σn] indicates the width of the kernel and determines
the kernel shape. d is the number of features. For better demonstration, we
denote:

γ = [
1

2σ2
1

,
1

2σ2
2

,
1

2σ2
3

, . . . ,
1

2σ2
d

] (7)

which leads to

K(x, y) = exp

(
−

d∑

j=1

γj(xj − yj)2
)

(8)

Exponential kernel (Laplace) Similar with Gaussian kernel, it is shown as:

K(x, y) = exp

(
−

d∑

j=1

γj(xj − yj)
)

(9)
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Polynomial kernel its function as:

K(x, y) = (αxT y + c)D (10)

Here we fix D and let c = 1 in our proposed method, hence we only need to
consider the vector of α:

K(x, y) = ((
d∑

j=1

αjxjyj) + 1)D (11)

3.2 Target Function in KPD-SVM

According the previous definition, the set of Lagrange multipliers α is considered,
and adding the new parameter γ in kernel function and penalty item of model
complexity, therefore the optimization problem minw,b

1
2‖w‖2 is minimized with

a penalty function and some constrains.Our target function G is as follows:

min
α,γ

G(α, γ) = min
α

Ψ(α) + min
α,γ

Φ(α, γ) (12)

where the Ψ(α) are transformed from the target optimization function (4) of the
standard SVM:

min
α

Ψ(α) = min
α

−
n∑

i=1

αi +
1
2

n∑

i,j=1

αiαjyiyjK(xi, xj) (13)

s.t. 0 ≤ αi ≤ C i = 1, . . . , n
n∑

i=1

αiyi = 0

and Φ(α, γ) is penalized function, the first item of Eq. (14) is transformed from
the second item of Eq. (13), the second item of Eq. (14) is penalized item:

min
α,γ

Φ(α, γ) = min
α,γ

1
2

n∑

i,s=1

αiαsyiysK(xi, xs, γ) + C2f(γ) (14)

s.t. 0 ≤ αi ≤ C i = 1, . . . , n
n∑

i=1

αiyi = 0

γj ≥ 0 i = 1, . . . , d

where γj need to be non-negative and we use L0 − norm as f(γ), which is
approximately equal to [9]:

f(γ) = eT (e − exp(−βγ)) =
d∑

j=1

[1 − exp(−βγj)] (15)
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C2 is the strength of the penalty of the complexity of our model which is
different from C for penalty of training error(slack variable ξ). Also L0 − norm
can be replaced with L1 − norm or L2 − norm in our target function.

Because this optimization problem is not convex [17], it may be hard to
search the globally optimal solution. So that we propose an algorithm to search
a locally optimal solution. Then we use a method to solve this optimization
problem in two step [17]:

[Step 1] Given a set of fixed kernel parameter γ, calculate the value of α
in optimal function minα Ψ(α), here sequential minimal optimization(SMO) [18]
is a method to solve the SVM QP problem.

For convenience, all quantities that refer to the first multiplier will have a
subscript 1, while the other refers to the second multiplier α2. Without loss
of generality, the second multiplier α2 will be computed firstly. The following
bounds W,H apply to α2 while the target y1 does not equal the target y2:

W = max(0, α2 − α1),H = min(C,C + α2 − α1). (16)

If the target y1 = y2, the bounds apply to α2 is shown as:

W = max(0, α2 + α1 − C),H = min(C,α2 + α1). (17)

The second derivative of the objective function minα Ψ(α) along the diagonal
line can be conducted as:

η = K(x1, x1) + K(x2, x2) − 2K(x1, x2). (18)

Under the normal condition, the objective function is positive definite, there will
be a minimum along the direction of the linear constraint, and η is greater than
0. The new minimum is computed along the direction of the constraint as follow:

αopt
2 = α2 +

y2(E1 − E2)
η

(19)

where Ei = ui − yi, i = 1, 2 is the error on the i-th training example, as a next
step, the constrained minimum is clipped by the bound W,H. Let s = y1y2. The
optimal α1 is computed by the optimized and clipped α2:

αopt
1 = α1 + s(α2 − αopt

2 ) (20)

Under unusual condition, η will not be positive, which can cause the objective
function to become indefinite.

[Step 2] Find out the best γ for given fixed α in step 1, solve the
objective function minα,γ Φ(α, γ) using gradient descent algorithm. And if the
renewed γj is below the criterion we set, eliminate the feature j and loop for
next iteration until reaching the stop criterion. For given j the gradient of F (γ∗

j )
is:

Gaussian

ΔjΦ(γ∗) =
1
2

n∑

i,s=1

γ∗
j (xi,j − xs,j)2αiαsyiysK(xi, xs, γ

∗)

+ C2βexp(−βγ∗
j )

(21)
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Polynomial

ΔjΦ(γpoly) =
1
2

n∑

i,s=1

Dxi,jxs,jαiαsyiysK(xi, xs, γ
poly,D − 1)

+ C2βexp(−βγpoly
j )

(22)

To avoid misunderstandings of γ in polynomial kernel and target function,
we set γpoly in polynomial kernel. Exponential Kernel (Laplace)

ΔjΦ(γ∗) =
1
2

n∑

i,s=1

(xi,j − xs,j)αiαsyiysK(xi, xs, γ
∗)

+ C2βexp(−βγ∗
j )

(23)

The algorithm adjust the kernel components using gradient descent proce-
dure, specially to parameter γ, which is set to be small to avoid negative at the
first iterations.

3.3 Detailed Process of Proposed Algorithm

The pseudo code is shown as below:

Algorithm 1. KPD-SVM
kernel selection: we take Gaussian kernel as an example.
input:
parameter of gentle update strategy:d1, d2, θ;
parameter of update:ε1, ε2
01 start: stop = False, t = 0,

γ∗ = (γ∗)[0], α
[0]
1 , α

[0]
2

02 WHILE stop �= True
03 train SVM for a given γ∗ using SMO
04 FOR i = 1, . . . , d1

05 compute E1, E2, η, s
06 α

[i+1]
2 = α

[i]
2 + y2(E1−E2)

η
,

α
[i+1]
1 = α

[i]
1 + s ∗ (α

[i]
2 − α

[i+1]
2 )

07 IF‖(α1)
[t+1] − (α1)

[t]‖ < ε1
THEN α∗ = (α1)

[t+1] Break ENDIF
08 ENDFOR
09 train SVM for a given α∗

10 FOR j = 1, . . . , d2

11 (γ∗
j )[t+1] = (γ∗

j )[t] − θΔjΦ((γ∗)[t])
12 IF(γ∗

j )[t+1] < ε2
THEN (γ∗

j )[t+1] = 0 Break ENDIF
13 ENDFOR
14 IF(γ∗)[t], (γ∗)[t+1] meet the requirements of ζabsolute, ζrelative

15 stop = True
16 ENDIF
17 ENDWHILE
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where
γ∗ =

√
(2γ) = [

1
σ1

,
1
σ2

, . . . ,
1
σd

] (24)

and

F (γ∗) =
n∑

i,s=1

αiαsyiysK(xi, xj , γ
∗) + C2f(γ∗) (25)

In the algorithm, we may consider the following vital step, some details are
given as follows:

Kernel Selection, Use the whole features to train model with different
kernels (eg. Gaussian, Polynomial) and different parameter (γ,D, c). Calculate
the average accuracy of each model with different kernels by cross validations.
Then select the kernel with the best performance which is the most appropriate
kernel of this data set.

Set Original Value, At the start of algorithm, we give the initial value of
α, γ, and some parameter for update.

Calculate α, Based on standard SVM training process and may take SMO
algorithm [18] to quickly and efficiently find out the answer α∗.

Update σ and γ, Apply gradient descent algorithm to renew σi or γ∗
i , the

lines 10–13 of the algorithm shows the iteration process, one by one for fixed the
optimal α.

Step size of gradient descent, We set θ as the step size of gradient descend
in each iteration.

Elimination criterion, ε is the eliminate threshold which means we elimi-
nate the feature j by setting γ∗

j = 0 if value γ∗
j is below ε.

Stop criterion, For the stop criterion, we set a relative stop criterion
ζrelative and an absolute stop criterion ζabsolute in order to balance the time
of iterations and the performance of the model. ζrelative is defined as the ratio
‖(γ∗)[t+1]−(γ∗)[t]‖1

‖(γ∗)[t]‖1
and ζabsolute is set as ‖ (γ∗)[t] ‖1.

3.4 Discussion of Parameter

Our discussion mainly concentrates on one issue: Selection of parameter values
in proposed method. Basically, the proposed method outperforms in its process
of feature selection and modeling. However, there are some parameters we need
to tune for the optimal solution of classification. In [17], it has already concluded
that β, ε and γ[0] have less influence in the final solution. In terms of the penalty
for slack variables, C, we use Leave-One-Out Cross-Validation to find the best
value of C in each case.

Complexity Penalty C2: C2 is the coefficient of penalty item on the number
of feature or model complexity. A large C2 means a strict limitation to build
greatly complicated model. We choose C2 according to the balance of prediction
performances and model complexity.

Step Size θ: θ represents the step size of gradient descend in each iteration.
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We want to use an automatically adjusted step size in some cases. Hence,we
denote θauto as ε

median{ΔjF (γ∗)} , j = 1, . . . , d. And we may take θ =
min{θoriginal, θauto} as step size in each iteration.

Stop Criterion ζabsolute, ζrelative: With the increasing number of iterations,
the 1 − norm difference of kernel parameter in t and t + 1 iteration goes to
convergence, which shows the algorithm can find out the best kernel parameter
in certain countable iterations.

4 Experiments

In this section, we apply the proposed method to do experiments in some real-
world dataset. Also we will compare our method with F-score and RFE-SVM,
which represents the filter and wrapper algorithm in feature selection. The mea-
surements we make comparison are as follows: First, model prediction perfor-
mance. Second, the number of features in the optimal solution.

4.1 Data Set

The data sets we selected are from UCI Machine Learning Database. Detailed
information of each data set is shown as follows:

– Sonar: This is the data set used by Gorman and Sejnowski in their study of
the classification of sonar signals.
The data set contains 111 patterns obtained by bouncing sonar signals off a
metal cylinder at various angles and under various conditions. And it contains
97 patterns obtained from rocks under similar conditions. The label associated
with each record contains the letter “R” if the object is a rock and “M” if it
is a mine (metal cylinder).

– WBC: The Wisconsin Breast Cancer data set has 569 observations and 30
features. All feature values are recoded with four significant digits. In addi-
tion, people who are diagnosed are labeled as M (malignant tumor) and
the other are marked as B (benign tumor).

We basically consider the following three kernel functions: Gaussian, Poly-
nomial, Laplace (Exponential). Then the values of parameters in each kernel
function we used are as follows:

– σGaussian = (0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 10, 50, 100, 500,
1000)

– D = (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)
– σLaplace = (0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 10, 50, 100, 500,

1000)
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4.2 Case: Sonar

Basic information of this data set is shown in Table 1.

Table 1. Basic information of Sonar (mines vs. rocks) data set

Features Observations Proportion Predominant class prop.

Total 60 208 100% 53.4%

Train 60 145 70% 54.5%

Test 60 63 30% 50.8%

Fig. 1. The accuracy of Gaussian,
Laplace and Polynomial in Sonar (hori-
zontal axis represents feature numbers)

Fig. 2. The accuracy of KPD-SVM, F-
Scores and RFE-SVM in Sonar (hori-
zontal axis represents feature numbers)

First we carry out kernel selection. Fig. 1 shows the average performances of
each kernel function applied in Sonar. Thus we choose Polynomial Kernel in this
case.

Figure 2 shows the performance of proposed method KPD-SVM compared
with F-Score and RFE-SVM. The optimal feature subset are selected by each
method, and the number of these subsets are shown below: Filter(F1-Scores):24,
Wrapper(RFE-SVM):18-20, Embedded(KPD-SVM):20.

In conclusion, KPD-SVM outperforms F-Score and RFE-SVM in this Sonar
case.

4.3 Case: WBC

Basic information of this data set is shown in Table 2.
First we carry out kernel selection. In WBC we choose Polynomial Kernel

in this case. Figure 3 shows the average performances of each kernel function
applied in WBC.

The performance of proposed method KPD-SVM compared with F-Score
and RFE-SVM shown in Fig. 4. The optimal feature subset are selected by each
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Table 2. Basic information of WBC data set

Features Observations Proportion Predominant class prop.

Total 30 569 100% 62.7%

Train 30 512 90% 63.4%

Test 30 57 10% 52.6%

Fig. 3. The accuracy of Gaussian,
Laplace and Polynomial in WBC (hori-
zontal axis represents feature numbers)

Fig. 4. The accuracy of KPD-SVM, F-
Scores and RFE-SVM in WBC (hori-
zontal axis represents feature numbers)

method, and the number of these subsets are shown below: Filter(F1-Scores):26,
Wrapper(RFE-SVM):19, Embedded(KPD-SVM):15.

In conclusion, considering the model prediction accuracy and the model com-
plexity (the number of features), we can say KPD-SVM outperforms in this WBC
case.

5 Conclusion

In this paper, we have presented a novel method called Kernel Parameter Descent
Support Vector Machine (KPD-SVM) for feature selection using kernel func-
tions. Our embedded method can generalize a well-trained SVM classifier as
well as a good solution for feature selecting. In addition, our KPD-SVM method
outperforms other methods, like filter method (F-Score) and wrapper method
(RFE-SVM). Besides, compared with former embedded algorithm by optimizing
kernel parameters [1–4], our method has novelties in stop criterion and step size
settings in executions, which performs better in time consuming.
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