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Abstract. One of the most challenging problems in the domain of 2-
D image or 3-D shape is to handle the non-rigid deformation. From
the perspective of transformation groups, the conformal transformation
is a key part of the diffeomorphism. According to the Liouville Theo-
rem, an important part of the conformal transformation is the Mobius
transformation, so we focus on Md&bius transformation and propose two
differential expressions that are invariable under 2-D and 3-D Mébius
transformation respectively. Next, we analyze the absoluteness and rela-
tivity of invariance on them and their components. After that, we propose
integral invariants under Mobius transformation based on the two differ-
ential expressions. Finally, we propose a conjecture about the structure
of differential invariants under conformal transformation according to
our observation on the composition of above two differential invariants.
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1 Introduction

One of the most challenging problems in the domain of 2-D image or 3-D shape
is to handle the non-rigid deformation, especially in the situation of anisotropy,
which is universal in the real world. In the viewpoint of transformation groups,
the isometric transformation is a prop subgroup of the conformal transformation,
which is a prop subgroup of the diffeomorphism. Obviously, the anisotropic non-
rigid transformation exceeds the boundary of isometric transformation and con-
tains conformal transformation. Based on the Erlangen program of Klein, geom-
etry is a discipline that studies the properties of space that remain unchanged
under a particular group of transformation. In order to solve the anisotropic
transformation problem, it is necessary to find the invariants under the confor-
mal transformation.

The original motivation of conformal mapping is how to flatten the map of
globe, and the Mercator projection produce an angle-preserving map that is
very useful for navigation. More generally, the conformal geometry focuses on
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Tt
f(x,y) — g(u,v) Stepl: (u,v)=T(x,y) ——> (xy)=T*(u,v)

Step2:  g(u,v)=f(x,y)=f[T *(u,v)]

‘ . step3:  8(uV)u =fx,y)e=fT*(u,v)lu

' |:(> ' glu,v)w =f(x,y)w=FT *(u,v)]w

Stepd: Searching differential expressions of f(x,y) and
M(x,y) g(u,v) in isomorphism, just like expression (12).

Fig. 1. A brief flowchart of the method.

the shape in which the only measure is angle instead of usually length. The
descriptions of conformal mapping contain angle preservation [5,12,26], metric
rescaling [21,27], preservation of circles [14,28], etc. Some key ideas reside in
the conformal surface geometry are Dirac equation [6], Cauchy-Riemann equa-
tion [22], Mébius transformations [27,28], Riemann mapping [9,10,33,35], Ricci
flow [34], etc. The conformal geometry lies between the topology geometry and
the Riemannian geometry, it studies the invariants of the conformal transforma-
tion group. The conformal structures [9,10] based on the theories of Riemann
surfaces are invariants under conformal transformation. According to conformal
geometry [7], the shape factor [10] and conformal module [35] are conformal
invariants. Moreover, the conformal inner product [26] defined by an inner prod-
uct of function is also changeless under conformal transformation. According to
the Liouville Theorem [8,20], the M6bius transformation plays an important role
in conformal mapping.

The definition of Mobius transformation [25] shows that it is compounded
by a series of simple transformations: Translation, Stretching, Rotation, Reflec-
tion and Inversion. In the domain of invariants under translation, stretching and
rotation transformations, the Geometric moment invariants (GMIs) [32] and the
ShapeDNA [17] show a general method to generate the moment invariants; Hu
et al. [13] proposed a general construction method of surface isometric moment
invariants based on the intrinsic metric. In the domain of invariants under reflec-
tion transformation, the chiral invariants [36] show the moment invariants based
on the generating functions of ShapeDNA [17]. In the domain of invariants under
conformal transformation, Hu [12] proposed limited conformal invariants based
on geodesic tangent vectors. In the domain of invariants under Mobius trans-
formation, the expression (H? — K)dA proposed by Blaschke [1] is proved to
be a conformal invariant by Chen [4]; based on the Gauss-Bonnet Theorem,
White [30] proposed that | uH 2dA is a global conformal invariant if M is an ori-
ented and closed surface. The Gauss-Bonnet Theorem associates the differential
expression (Gaussian curvature) of the surface S with its topological invariant
x(S) (the Euler’s characteristic). This great theorem motivates us to explore
the differential invariants under the Md&bius transformation since the differen-
tial expressions play essential roles in some procedures of physics, mathematics,
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computer science and other fields. In the domain of differential invariants, rota-
tion and affine differential invariants were proposed by Olver [23] based on
the moving frame method; a special type of affine differential invariants was
presented by Wang et al. [29]; Li et al. [19] prove the existence of projective
moment invariants of images with relative projective differential invariants; the
research [18] on the relationship between differential invariants and moment
invariants show that they are isomorphic under affine transformation.

In this article, we study invariants by combining functional map [24] and the
derivatives of function (see Fig.1). In Sect.2, we show the background of this
paper. In Sect. 3, we propose the invariants under Mo6bius transformation. In
Sect. 4, we show another Md&bius invariant from the functional view. Finally, we
propose a conjecture about the structure of differential invariants under confor-
mal transformation. The main contributions of this paper are as follows.

— We propose two differential expressions that are invariant under 2-D and 3-D
Mobius transformation respectively. According to the Liouville Theorem, the
3-D differential invariant is a conformal invariant.

— Based on the analysis on absoluteness and relativity of invariance about the
two differential expressions and their components, we propose integral invari-
ants under Mobius transformation.

— We propose a conjecture about the composition of differential invariants under
conformal transformation.

2 Notion and Background

2.1 Notion

The formulation in this paper is same with the functional maps framwork [24].
Assuming M and N are two manifolds, a bijective mapping T : M — N induces
the transformation 7% : F(M,R) — F(N,R) of derived quantities, where F(-,R)
is scalar function defined on manifold. It means that any function f: M — R
have a counterpart function g: N — R and g = foT L.

To make the invariants under Mobius transformation clear, we partially mod-
ify original definition and theorem in this paper with this formulation.

2.2 Theoretic Background

According to the Liouville Theorem [20], the only conformal mapping in R™(n >
2) are Mdbius transformation [11,15,25]. Furthermore, the Generalized Liouville
Theorem shows that any conformal mapping defined on D(D € R”, n > 2) must
be a restriction of Mobius transformation.

Theorem 1 (Generalized Liouville Theorem [8]). Suppose that D, D' are
domains in R and that T : D — D' is a homeomorphism. If n = 2, then T
18 1-quasiconformal if and only if T' or its complex conjugate is a meromorphic
function of a complex variable in D. If n > 3, then T is 1-quasiconformal if and
only if T is the restriction to D of a Mobius transformation, i.e., the composition
of a finite number of reflections in (n — 1)-spheres and planes.
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Next, we will show the common expressions of Mobius transformation in
different dimensions (n > 2).
In the filed of complex analysis, a Mobius transformation could be expressed

as
az+b

T(z)= 2, M)

cz+d

where a,b,c,d,z € C, ad — bc # 0. Based on the Liouville Theorem [20], every
Mobius transformation in higher dimensions could be given with the form

(2)

where z,a,b € R", eis QO or 2, v € R and A € R, «,, is an orthogonal matrix.
The choice of € decides if T'(z) contains inversion transformation, and the sign
of det(A) decides if T'(x) contains reflection transformation.

More generally, a Mdbius transformation could be composed of a series of

simple transformations (Fig.2), the definition of Mébius transformation is as
below.

o

Original Data Reflection Stretching Rotation Inversion

Fig. 2. Some elementary transformations of M&bius transformation.

Definition 1 (Mobius transformatlon [25]). A n-dimension Mdbius trans-
formation is a homomorphzsm ofR (the one-point compactification of R™), it is

a mapping T : R" = R" that is a finite composition of the following elementary
transformations (x € R™):

(1) Translation: T,(xz) =z + a, a € R™.

(2) Stretching: S¢(x) = sz, s € R and s > 0.

(3) Rotation: Rotr(z) = Rz, R € R,xn, and R is an orthogonal matriz.

(4) Reflection about plane P(a,t): Refq+(z) = x — 2(a’x — t)a, a € R™ is the
normal vector of P(a,t), t € R is the distance from the origin to P(a,t).

r2(r —
(5) Inversion about sphere S"~1(a,r): I, () = a + E (m |) , a € R" is the

inversion center, r is the inversion radius.
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3 Mobius Invariants

3.1 Inversion Invariants

In order to derive the differential invariant under inversion transformation I, ,,
in the 2-D situation we assume that the 77, . map the function f(x,y) on domain
D c R" to g(u,v) on domain D' ¢ R", where (u,v) = I, ,(z,y) and g(u,v) =
f(z,y), this means that the coordinates transformations under I, , are as follows.

r2(z — ay)
(T —az)? + (y — ay)?

3)

) @)
(= az)? + (y — ay)?
At the same time, it means that the coordinates transformations under I} are
as follows.

V= ay +

. r2(u — ay)
T et (u—az)?+ (v — ay)? 5)
r?(v — ay)

O ) - a) )

Based on g(u,v) = f(z,y) and the Egs. (5) and (6), we obtain the relation-
ships between the partial derivatives of g(u,v) and f(z,y) as follows.

-3

Gu = faTu + fylu

9o = [2Tv + [yl
Guu = (fraTu + foy¥u)Tu + foTuu + (Fyau + fyyYu)Yu + fyYuu
Guv = (fraTo + fay¥o)Tu + foTuw + (fyao + fyy¥o)Yu + iyt (1
Gov = (feaTo + foyYo)To + foToo + (fyaTo + FyyYo)Yo + fyYoo (

Then we obtain a 2-D equation under the inversion transformation, it is

N N N
S ©
NN NN NI 4

[
—_

gz + 95 2+ 1
This means that F F
ez T Jyy
7 13
R 13)

is a differential invariant under inversion transformation. We use the same
method in 3-D situation and obtain a differential invariant under the inversion
transformation, it is

fa+f
CENESE 14
where
_ P 2 2 2
fa= (faa + fyy+ f22)(fi + [, + 1) (15)

fB = fifa:m +f3fyy +fz2fzz +2fszyfy +2fwfaczfz +2fyfyzfz
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3.2 The Boundary of Invariance

We have shown that (13) and (14) are differential invariants under inversion
transformation. It is obvious that they are invariants under translation transfor-
mation. We prove that (13) and (14) are also differential invariants under rota-
tion, stretching and reflection transformations (see Appendix A! for a proof).
According to the definition of Mobius transformation, we conclude that the
differential expression (13) is a differential invariant under 2-D Mobius transfor-
mation. Furthermore, with the Generalized Liouville Theorem we obtain that
(14) is a conformal invariant.

3.3 Absoluteness and Relativity of Invariance

If expression Inwvp is an invariant under transformation 7', the transformed
. ’ .
expression Inv, satisfies

Invy = Wy - Invrp (16)

where W is an expression related to 7. In this context, Invp is an absolute
invariant if Wpr = 1, otherwise, Invr is a relative invariant. Base on the analysis
in 3.2, (13) is an absolute invariant under Mdbius transformation and (14) is
an absolute invariant under conformal transformation. Next, we will show the
numerator and denominator of (13) or (14) are relative invariants.

In the derivation of 2-D inversion invariants, we obtain that Wy, == ||J||*
for the numerator and denominator of (13), this means

Juu T Gov = ||J||71(fxx+fyy) (17)

gutgs=IITHE+ 1) (18)

where |J| is the determinant of Jacobian matrix of transformation I, ., ||J]| is
the absolute valve of |J|. In 3-D situation, we obtain Wy, = |[J]|=% for the
numerator and denominator of (14). In the stretching transformation, we obtain
Ws = ||J||7 in 2-D situation, and Wg = [|J]|"% in 3-D situation. We also
obtain that Wr = 1 for the numerator and denominator of (13) or (14) under
translation, rotation and reflection transformations.

The result of absoluteness and relativity of invariance on (13) and (14) is
shown in Table 1.

3.4 Multiscale and Quantity

Assuming f(z,y) is a regular parameter surface S defined on D, if T transform
f(z,y) defined on D to g(u,v) defined on D’ and g(u,v) = f(x,y), based on the
change of variable theorem [16] for multiple integrals and Table 1 we obtain that

// (Guu + gov)dudv = //D Wi (fae + fyy)llJr|ldxdy = //D(fx:c + fyy)dady
(19)

! https://github.com/duduhe/Differential-and-integral-invariants-under- Mobius-
transformation /blob/master /Appendix.pdf.
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Table 1. The form of Wt under transformations

Expression Translation | Stretching | Rotation | Reflection | Inversion
(13) and (14) 1 1 1 1 1
Num?®/den of (13) |1 [|J]]~* 1 1 [[J]]~"
Num/den® of (14) | 1 EiAE! 1 7]~

*Num means the numerator of fraction.
PDen means the denominator of fraction.

// (62 + g2 dudvf/ Wi (2 + )||JT\|dxdyf/ (f2 + [2)dady (20)

where ||Jr|| is the area extension factor, so we obtain that

J[ e+ tydaay (21)
D

J[ 2+ s2raady (2)

are integral invariants under 2-D Mobius transformation. In the same way, we

obtain that
/ / / (2 + 12 + ) dadydz (23)
D

J[[ at gt ez (24)

are integral invariants under 3-D conformal transformation.

Actually a differential expression Invy of function f defined on domain Dy
accurately characterize f at point of Dy, it provides extremely wide space to
describe the function f.

Multiscale of Invariants. Assuming F;(Invr) is a function of Invr, a
general method to construct descriptors in different scale is the integral of
fD i(Invg)dA on region D;(D; C Dy) with different size, and when D; = Dy

the result is a global invariant, for example, the Willmore energy [(H?—K)dA [1]
applied in the theory of surfaces [31], digital geometry processing [2] and other
fields.

In this view, the only difference between invariant with specify-scale and
global invariant is the definition domain, the construction method of specify-
scale invariant is same with global invariant. The former could be elaborately
modified by selecting domain of integration in different applications.

Quantity of Invariants. A general method to construct a large number of
invariants is using various functions F;(Invr) with these functions are inde-
pendent of each other [3]. We just show a simple method to construct integral
invariants based on differential invariants and integral, in addition, more invari-
ant forms can be constructed with differential invariants. Next, we give a possible
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form of invariants under Mobius transformation:

/ fm;;rfjcg Yot Fu)" ™ 4 (25)
I, e @
/ / / f;:féi ;;1) dxdydz (27)

if the denominators of (25)7 (26), (27), (28) are not zero.

3.5 Another Conformal Invariant

The expression (H? — K)dA proposed by Biacchke [1] has been proved to be an
invariant under Mobius transformation [4,30]. It differs from our method in two
important respects: the domain of transformation and the number of functions
participated in invariants (see detailed expression at Appendix B).

4 Conjecture of Conformal Invariants

We have shown that (13) is a M6bius invariant and (14) is a conformal invariant.
However, the fascinating part of (13) or (14) is that the differential expressions

fo+fr or [+ fo+f? (29)

fmw+fyy or fa:z"‘fyy""fzz (30)
Jofoa + T fyy + J2 Foz + 2fafay fy + 2fnfoefz + 2fy fy=t- (31)

are differential invariants under rigid transformation. Based on this observation
and the fact that the differential expressions play important roles in transfor-
mation, we have a bold conjecture about the structure of differential invariants
under conformal transformation.

Conjecture: The differential invariants under conformal transformation are
composed of differential invariants under rigid transformation in a self-consistent
manner.
One of the possible self-consistent forms in n-dimensional Euclidean space
may be
—1 a;
nz Hj:l DRI;
LA A

i=1

(32)

where DRI is differential invariant under rigid transformation.
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5 Experimental Results

We choose a human face model from TOSCA database and treat the z-coordinate
value of vertexes of the triangle mesh as a function f defined on x-coordinate
and y-coordinate, i.e. z = f(x,y). With least square method, the coordinates of
a vertice and its 1-ring neighbors were used to estimate parameters in Taylor
expansion of f at the vertice; in order to guarantee the accuracy of descriptor
calculation, we only consider vertexes that are located inside the mesh and have
enough 1-ring neighbors. After that, we calculate a descriptor at the vertice
and the descriptor is composed by (13), (25) and (26) with different n(> 0).
Moreover, in integral invariants, the area A,e,+ around a vertice is determined
by Mixed Voronoi cell.

We deform the definition domain of f with reflection, stretching, rotation
and inversion transformation(Fig.3). In reflection transformation, a = (1,0)
and t = 0; the s in stretching transformation is 2; in rotation transformation the
original data is rotated 90° counterclockwise; in inversion transformation the
inversion center is (0,1000) and inversion radius is 500 (see more explanation
about experiments at Appendix C).

Original Data Reflection Stretching Rotation Inversion

Fig. 3. Elementary transformations of Mdbius transformation on human face model.

5.1 Stability of Invariants

In this experiment we choose n = 0, 1 and the integral invariants is calculated at
the local area of each vertex. After we obtain a 5-dimension descriptor at vertexes
of the five mesh in Fig. 3, we calculate the average error of each dimension of
the descriptor. In addition, we choose an isometric invariant at the vertex, the
Laplacian operator, to compare with above invariants. The average error of each
dimension is calculated by the following formula

1 |I7’L’UT-i — I’I’Lvo-z’|
Err = — ; L% 100 33
=N 2 Tl + lTmvos] < 1% 33)

where Invp,; is the value of invariant at vertex ¢ on original data, Invr,; is the
value of invariant at vertex ¢ on deformed data, and N is the total number of ver-
texes participated in the calculation. The result of this experiment is in Table 2,
it shows that (13), (25) and (26) are invariants under Mobius transformations.
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Table 2. The average error of Laplacian operator and Mobius invariants.

Expression Reflection | Stretching | Rotation Inversion

Joz + fyy 0 6.00 x 10" 14.82x 107" 8.82 x 10"

f;;i;gy 0 1.20 x 10712 1.33 x 10712 1.98 x 1073
x Y

[ (for + fyy)dady O 438 x 1073 | 4.82 x 1073 | 1.69 x 10~

[ (f2 + fdady | 0O 1.21 x 10712 1.27 x 1072 | 1.69 x 107!

11, %dxdy 0 1.24 x 10712 1.47 x 107*2 | 1.70 x 107"

x Y

If Fatd)? 0 o 2.39 x 10712 12,58 x 10712 | 1.70 x 107*

D fmz+fyy ray ’ x : % i *

5.2 Discrimination of Invariants

In this experiment we use the 5-dimension descriptor of vertex at original to
match its corresponding vertex in the deformed mesh with nearest neighbor
rule, the metric between vertexes is standardized Euclidean distance. The error
rate (percentage) of this experiment is in Table 3.

Table 3. The error rate (percentage) of Mobius invariants in vertex matching.

Reflection | Stretching | Rotation | Inversion

0 0 0 0.87
Y
N s NM:
2|
o N o \\ g .\ P S
x N\ ke e X\\ o o
o Y Y Y

Fig. 4. Some situations where vertex matching fails.

In conformal deformation scenario, this experiment shows the potential of
Mobius invariants in matching task. Figure4 shows some matching-fail situa-
tions, where the white point is the real position and the red point is the matching
vertex. The reason for most matching failures is that the original white vertex
and deformed red vertex have similar functional distribution environments.

6 Conclusions

In this article, we propose two differential invariants under 2-D and 3-D Mgbius
transformation respectively, in particular, the 3-D expression is a conformal
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invariant according to the Liouville Theorem. After that, we analyze the abso-
luteness and relativity of invariance on the two expressions and their components,
and we show an integral construction method that targets to the multiscale and
quantity of invariant, the experimental results show that the invariants proposed
in this paper perform well. Furthermore, we show another Mébius invariant from
the functional view. Finally, we propose a conjecture about the structure of dif-
ferential invariants under conformal transformation.

This article shows a method of combining functional map and derivatives
of function to study conformal invariant, more research about the differential
invariants under conformal transformation is necessary in the future. In addi-
tion to practical application solutions based on M&bius invariants, questing the
generative structure of conformal differential invariant is also an interesting topic.
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