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Abstract. In this paper, we propose a novel robust face recognition
framework named nuclear norm based superposed collaborative represen-
tation classifier (NNSCRC) to handle illumination variations, occlusion
and undersampled problems in face recognition. Specifically, we develop
a superposed linear collaborative representation classifier for robust face
recognition by representing the query image in terms of a superposi-
tion of the class centroid, the shared intra-class difference, and the low
rank error. By representing a face image as the class centroid and the
shared intra-class difference, our model can effectively enhance the face
recognition performance on undersampled databases. In addition, since
the occlusion and illumination variations generally lead to a low-rank
error image, we use nuclear norm matrix regression to obtain these low-
rank errors, which makes our model able to reconstruct the test image
better. Extensive experiments are performed on Extended Yale-B and
AR databases, which show the effectiveness of NNSCRC in robust face
recognition.
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1 Introduction

Face recognition (FR) has received extensive research during last thirty years
and numerous FR methods have been developed [7,8,13,15,17,24]. Classical FR
algorithms including principal component analysis (PCA) [19], linear discrimi-
nant analysis (LDA) [3] and laplacianface [10] try to employ subspace learning
method to represent the intrinsic characteristics of faces. At the same time, many
types of image features like scale-invariant feature transform (SIFT) [16], local
binary pattern (LBP) [1], speeded-up robust features (SURF) [2] and histogram
of oriented gradient (HOG) [21] have been introduced into FR algorithms, while
the final recognition result can be easily obtained based on these feature rep-
resentations. However, these feature descriptors are hand-crafted and always
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require many prior knowledge, which limits the improvement of recognition per-
formance.

Regression analysis based methods have also aroused broad interests in face
recognition community. For example, Naseem et al. proposed a linear regression
classification (LRC) [15] by reconstructing a query image as the linear combi-
nation of dictionary faces. Wright et al. proposed a sparse representation based
classification algorithm (SRC) [22] for robust face recognition using a sparse
constraint. By representing a face image with a sparse linear combination of the
dictionary faces, SRC believed that the query image will be reconstructed by the
training samples in the same class. However, when the number of training sam-
ples is limited, sparsity between classes may lead to misleading solutions. Zhang
et al. [25] analyzed the principle of SRC and believed that collaborative represen-
tation is more effective than sparsity constraint. Based on ridge regression, they
introduced a collaboration representation classifier (CRC) which lead to better
FR accuracy and lower complexity than SRC. After that, many improved ver-
sions of CRC algorithm have been proposed to further improve the performance
of FR. For example, Wang et al. [20] used a relaxed collaborative representation
(RCR) by considering locality constraints. Huang et al. [11] introduced group
sparse classifier (GSC) which tries to incorporate the class labels to boost FR
performance. IRGSC [26] further introduced group sparse classifier with adaptive
weights learning, and had achieved good performance in robust face recognition.

Recently, Yang et al. [23] proposed nuclear norm based matrix regression
(NMR) classification framework for occlusion face recognition and had achieved
good recognition performance. However, NMR relies heavily on the complete-
ness of database. When the number of training samples is limited, NMR suffers
from misleading coding coefficients of incorrect classes. More recently, super-
posed linear representation based classification (SLRC) [9] model was proposed
to further improve the robustness of CRC. SLRC decomposed the training sam-
ple of CRC into prototype and variation parts, and proposed a superposed linear
representation that encodes the test sample as a superposition of the prototype
and variation dictionaries. In SLRC, the author simply assumed that the test
image can be reconstructed by class-central of corresponding class and the shared
intra-class differences. However, when there are unknow illumination variations
or occlusion in the test image, the SLRC model will not work effectively since it
cannot reconstruct the image properly.

In order to address the limitations of NMR and SLRC, we propose a novel
model called nuclear norm based superposed collaborative representation clas-
sifier (NNSCRC). In our model, a query image can be decomposed as a class
centroid, a shared sample-to-centroid difference and a low rank error image. The
main contributions of this paper are outlined as follows:

– We propose a new framework named nuclear norm based superposed col-
laborative representation classifier for robust face recognition where a test
face image can be reconstructed as a superposed of class centroid, intra-class
difference and low rank error. The new model can address the misleading cod-
ing coefficients of incorrect classes when the dataset is undersampled, since
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it has decomposed the image as a class centroid and sample-to-centroid dif-
ference. Alternating direction method of multipliers (ADMM) algorithm has
been used to obtain the optimal solution of proposed model.

– By introducing a nuclear norm constraint, the low-rank part, generally the
occlusion or illumination variations in the image, will be separated out from
the dictionary reconstruction. Thus, the NNSCRC model is robust to occlu-
sion or illumination variations.

– NNSCRC model is robust to single sample per person (SSPP) face recognition
problem. Specifically, when there is only one train image available in each
class, we can borrow the intra-class variations from the subjects outside the
gallery since these variations are usually similar across different subjects.
The variations between query image and gallery images can be represented
by these intra-class variations properly, which will improve the performance
of SSPP face recognition.

– Experimental results on Extended Yale-B and AR databases show the pro-
posed NNSCRC model achieves better performance than state-of-the-art
regression based methods for illumination variations, occlusion and under-
sampled face recognition.

The remainder of this paper is organized as follows: Sect. 2 reviews the related
works. Section 3 introduces the proposed nuclear norm based superposed collab-
orative representation classifier (NNSCRC). In Sect. 4, we conduct experiments
on two popular face databases and compare our model with the state-of-the-art
regression based methods. Finally, Sect. 5 concludes this paper.

2 Related Works

In this section, we briefly review the regression based methods and introduce
SLRC method in detail, which is related to our model.

Regression based methods have long been a research hotspot in face recog-
nition community. Started by SRC, which represents a query image as a sparse
reconstruction of dictionary images, many regression based approaches like CRC
have been proposed in succession and have achieved good performance in face
recognition task. Collaborative representation based methods believe that l2-
norm constraint is more important than l1-norm constraint in classifier. They
use training samples to reconstruct the test sample and believe the training sam-
ples in the same class will become the major components in the reconstruction
process. Although these regression based methods have achieved good perfor-
mance on general face recognition, their generalization ability to illumination
variations, occlusion and undersampled face recognition problems is still weak.

Recently, superposed linear representation based classification (SLRC) [9] is
proposed to decompose the collaborative dictionary in a manner similar to the
decomposed representation in LDA. Specifically, given a sample x from one of
the classes in the training set, SLRC assume it can be naturally reconstructed
by two parts:

x = c(x) + (x − c(x)) (1)
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where c(x) is the centroid of corresponding class, and x − c(x) is the intra-class
difference from the sample to its class centroid. SLRC has achieved promise
performance when the test images have similar attributes to the training images.
However, when there are unknow variations in the test image such as illumination
changes or occlusion, the SLRC model will not work properly since it cannot
reconstruct these variations in test image.

Considering these limitations, we propose a novel framework to incorporate
the nuclear norm constraint into superposed linear representation based classifi-
cation, which not only makes use of the general variation information of training
samples, but also improves the robustness to unknow illumination changes and
occlusions. The proposed model will be introduced in detail in the next section.

3 Nuclear Norm Based Superposed Collaborative
Representation Classifier (NNSCRC)

Although CRC methods have received great success in face recognition, it still
suffers from undersampled and occlusion problems. Firstly, when the training
images are insufficient or unrepresentative, the test sample has to be recon-
structed by the samples of other classes, which usually generates misleading
coding coefficients. Secondly, when there are illumination changes or occlusion in
the test images, the reconstructed error will be dominated by these noise, which
will also lead to erroneous results. In order to overcome these difficulties, we pro-
pose a novel robust face recognition framework called nuclear norm based super-
posed collaborative representation classifier (NNSCRC). We will introduce our
NNSCRC model in detail and provide the optimization algorithm of NNSCRC
in this section.

3.1 NNSCRC Model

Inspired by NMR [23] and SLRC [9], we represent a test image as a superposition
of three parts, i.e., the class centres, the shared intra-class differences, and the

Fig. 1. In the proposed NNSCRC model, we try to reconstruct a test image as a linear
superposition of the class centroid, the shared intra-class differences, and the low-rank
error. (a) the original test image (b) the class centroid image (c) the shared intra-class
differences image (shown in absolute value) (d) the low-rank error image (shown in
absolute value)
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low-rank error, as shown in Fig. 1. Specifically, given a test image Y, we assume
it can be reconstructed by the mentioned three parts, which can be formulated
as:

Y = P(α) + V(β) + B. (2)

where P(α) = α1P1 + α2P2 + ... + αnPn, V(β) = β1V1 + β2V2 + ... + βnVn,
and Pi is the central of class i, Vi is the variation dictionary of class i. αi, βi

are the corresponding reconstruction coefficients of class i. B is the low rank
error image. To obtain the optimal reconstruction coefficients α̂ and β̂, we can
naturally construct the objective function as:

[
α̂

β̂

]
= arg min ‖y − [P ,V ]

[
α
β

]
− b‖22 + λ1‖

[
α
β

]
‖22 + λ2‖B‖∗, (3)

where P ∈ R
d×k is the prototype dictionary and V ∈ R

d×n is the variation
dictionary, d is the dimension of face image, k represents the class number and n
is the number of training images. ‖B‖∗ represents the nuclear norm of low rank
error B, and b is the vectorization of matrix B. α,β are the coefficient vectors
to be determined. λ1, λ2 are the penalty parameters. The prototype dictionary
P consists of centroid from all classes, and the variation dictionary V consists
of intra-class difference from the sample to its class centroid. The construction
of dictionaries P and V is similar to [9]. For most collaborative representation
based methods, undersampled training images usually lead to misleading coding
coefficients. The main reason is that when the training images is insufficient,
the difference between test image and corresponding prototype class need to
be make up by images from other class, which make the major components
of reconstruction might be found in the error class. By integrating superposed
linear representation classifier with nuclear norm, our model can address the
problem of misleading coefficients and enhance the robustness to illumination
changes and occlusion. The reasons are listed as follows:

Firstly, we introduce a superposed linear representation into our model, which
constructs a prototype dictionary P and a variation dictionary V . When the
dataset is undersampled, the shared variation dictionary V will make up the
difference between the test image and the corresponding prototype class. The
major components of reconstructed test image will be the class centroid of corre-
sponding class, the intra-class variations from all classes, and the low rank error,
which makes our model can handle the misleading coefficients problem.

Secondly, since occlusion and illumination changes generally lead to a low-
rank error image, we apply a nuclear norm constrained matrix to characterize this
structured noise (see Fig. 1(d)). When there are unknow occlusion or illumination
changes in the test image, the nuclear norm constrained error term will represents
this kind of noise properly, which makes the NNSCRC model can work effectively.

3.2 Algorithm of NNSCRC

We provide the theoretical solution of NNSCRC in this section. Since Eq. (3) is
not always a convex function, we cannot solve it with traditional methods like
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augmented Lagrange Multipliers (ALM). Notice that it satisfies the condition
of Alternating Direction Method of Multipliers (ADMM) [4], which will been
proved in Sect. 3.3, we use ADMM algorithm to solve the optimization problem.
Specifically, we first introduce a matrix variable C and rewrite Eq. (3), which
form the object function as:

J(α,β,B,C) = min
α ,β ,B ,C

‖y − [P ,V ]
[
α
β

]
− b‖22 + λ1‖

[
α
β

]
‖22

+ λ2‖C‖∗, s.t. C − B = 0.

(4)

Denote

f(α,β,B) = ‖y − [P ,V ]
[
α
β

]
− b‖22 + λ1‖

[
α
β

]
‖22. (5)

Then the Lagrange form of J(α,β,B,C) is

Lρ(α,β,B,C) = f(α,β,B) + λ2‖C‖∗ + tr(ZT (C − B)) +
ρ

2
‖C − B‖2F

= f(α,β,B) + λ2‖C‖∗ +
ρ

2
‖C − B +

1
ρ
Z‖2F − 1

2ρ
‖Z‖2F .

(6)

where ρ > 0 is the Lagrangian multiplier, and Z is the dual variable. The obtain
of the optimal solution contains the following three iterative processes.

Fix Z,α,β,B to Solve C. At k-th iterative, when Z,α,β,B is fixed, Eq. (6)
can be rewritten as

J1(C) = arg min
C

λ2‖C‖∗ +
ρ

2
‖C − Bk +

1
ρ
Zk‖2F . (7)

Let Q = Bk − 1
ρZk ∈ R

m1×m2 , where rank(Q) = r. We apply singular value
decomposition to Q as:

Q = Um1×rΣV T
m2×r, (8)

where Σ = diag(σ1, σ2, ..., σr) and σ1, σ2, ..., σr are positive singular values.
Um1×r and Vm2×r are corresponding matrices with orthogonal columns. Accord-
ing to [5], the iterative solution of Ck+1 can be expressed as

Ck+1 = Um1×r({max(0, σj − λ2

ρ
)}1≤j≤r)V T

m2×r. (9)

Fix Z,C to Solve α,β and B. At k-th iterative, when Z,C is fixed, Eq. (6)
can be rewritten as

J2(α,β,B) = min
α ,β ,B

f(α,β,B) +
ρ

2
‖Ck+1 − B +

1
ρ
Zk‖2F

= min
α ,β ,B

‖y − [P ,V ]
[
α
β

]
− b‖22 + λ1‖

[
α
β

]
‖22

+
ρ

2
‖Ck+1 − B +

1
ρ
Zk‖2F .

(10)
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Define Hk = Ck+1 + 1
ρZk ∈ R

m1×m2 , hk = V ec{H} ∈ R
m1m2×1, the optimal

solution can be obtained by setting the derivative of J2(α,β, b) with respect to
α, β, and b to zero respectively. Therefore, we have the optimal solution of α, β
and B at k-th iterative as

αk+1 = (P T P + 2λ1I)−1P T (y − bk+1 − V βk), (11)

βk+1 = (V T V + 2λ1I)−1V T (y − bk+1 − Pαk+1), (12)

bk+1 =
1

2 + ρ
(2y − 2Pα − 2V β + ρhk). (13)

Fix α,β,C and B to Solve Z. According to [4], the optimal solution of Z at
iteration k can be directly obtained by

Zk+1 = Zk + ρ(Ck+1 − Bk+1). (14)

With the iteration optimal solution in Sect. 3.2, we can finally obtain the optimal
solution of J(α,β,B,C) by alternate iteration. Finally, the optimal reconstruc-
tion coefficients are:

α̂ = αk+1, β̂ = βk+1. (15)

3.3 Classification Strategy of NNSCRC

Given test image Y , we need to decide which class it belongs to for face recog-
nition task. By using NNSCRC algorithm, we can obtain the reconstruction
coefficients α̂ and β̂. We use the reconstruction residual in each class as the
criterion for classification. Specifically, the residual of test image Y is

ri(Y ) = ‖Y − [P ,V ]
[
δi(α̂)

β̂

]
− B‖2, i = 1, ..., k. (16)

Where δi(α̂) ∈ R
n is a new vector whose only nonzero entries are the entries in

α̂ that are associated with class i. Note that when we calculate the residual, we
use intra-class variation matrix of all classes to reconstruct the test image Y ,
because these intra-class variation are often shareable across different subjects.
This is also one of the reason that our model is suitable for SSPP task. From
Eq. (16), we can find that the normal variations and error image are separated
out from the original query image, which can remove the influence of illumination
changes and occlusions. Based on the reconstruction residual, we can decide the
class label by

class(Y ) = arg min
i

ri(Y ). (17)

4 Experiments

In this section, we perform extensive experiments on two publicly available face
datasets to demonstrate the effectiveness of NNSCRC. Section 4.1 first gives the
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experimental settings of our experiments. In Sect. 4.2, we evaluate NNSCRC for
FR with different training sizes under controlled conditions. Section 4.3 verifies
the robustness of NNSCRC to illumination changes and occlusion face recogni-
tion. Section 4.4 compares our method with existing methods for face recognition
task under real face disguise. Finally, in Sect. 4.5, face recognition experiment
with single sample per person has been performed.

4.1 Experimental Settings

We apply Aleix Martinez and Robert Benavente (AR) dataset [14] and the
Extended Yale B (ExYaleB) dataset [12] to test the effectiveness and robustness
of proposed model. The AR dataset contains over 4000 images of 126 individ-
uals (70 men and 56 women). The faces in AR dataset contain variations such
as lighting conditions, expressions and occlusions. Some examples of face images
in AR database are shown in Fig. 2. For this dataset, we randomly seclect 100
subjects (50 men and 50 women) for our experiments. The Extended Yale B face
dataset contains 38 human subjects under 9 poses and 64 illumination condi-
tions. The 64 samples of each subject are acquired in a particular pose, which
are all frontal view facial images. Figure 3 shows some facial images in ExYaleB
database. All face images marked with P00 are used in our experiments.

Fig. 2. Facial image samples in AR database

Fig. 3. Facial image samples in the Extended Yale B face database

The proposed model is compared to state-of-the-art regression based rep-
resentation methods including NMR [23], WGSC [18], RCRC [6], RSRC [22],
and IRGSC [26]. For NNSCRC, the Lagrangian multiplier ρ is set to 1, and the
parameter λ1, λ2 are both traversed in {0.01, 0.05, 0.1, 0.5, 1, 5, 10} to obtain
best result. For all the comparative methods, the related parameters are set to
the values suggested by the authors.
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4.2 Face Recognition with Different Sample Sizes

We first validate the performance of NNSCRC without occlusion on ExYaleB
database. In order to explore the effect of sample size on experimental results,
we randomly split the dataset into two parts. One part is used as the dictionary,
which contains n(=10, 20, 30, 40, 50) images for each person, and the other
part is used for testing. The results are shown in Fig. 4, which compares our
method with the state-of-the-art method, IRGSC. Two most classical regression
based face recognition methods including CRC and SRC have also been used for
comparison.

Fig. 4. Face recognition with different sample sizes on ExYaleB database

From Fig. 4, we can find that the performances of all methods improved when
the sample size increases. Though the test faces suffers from illumination prob-
lems, for all groups of sample size, our NNSCRC model outperforms SRC and
CRC for over five percentage, which shows our model is more robust to illu-
mination variations compared to original collaborative representation methods.
IRGSC achieves higher accuracy than SRC and CRC because it use the recon-
struction residuals to obtain the feature weights, which can reduce the influence
of the pixel errors. However, there are still some variations between train images
and test images which will influence the reconstruction and classification, and
these variations cannot easily removed by the adaptive weights in IRGSC. In
comparison, our model still achieves higher accuracy than IRGSC for all groups
of sample sizes. The main reason is that our model can reconstruct the varia-
tions by using the variation dictionary which is constructed by all classes. The
nuclear norm constraint can also handle the illumination variations problem,
which make NNSCRC achieve better performance compared to IRGSC.
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4.3 Face Recognition with Occlusion

To validate the robustness of proposed NNSCRC model to occlusion, we conduct
two types of experiments on ExYaleB dataset, including random block occlusion
experiment and random face occlusion experiment.

Random Block Occlusion. We select 20 samples per subject in ExYaleB
dataset for training, and 20 for testing. Similar to the work in IRGSC, for each
test image, we randomly select a location in the image and replace 10–60%
pixels using a black block. Figure 5 shows the examples of different percentage
of occlusions. The recognition rates of different methods are shown in Table 1.
From Table 1, we can see that for all group of block occlusion, our method achieve
the best performance compared with state-of-the-art regression based methods.
Note that for 60% occlusion, our method still achieves 80.3% recognition rate,
which is 7.7% higher than IRGSC. NMR has worse performance compared to
IRGSC because it simply ignores the general variations, which will also influence
the reconstruction error. By considering the general variations and the low-lank
error, the proposed model can achieve better performance than other methods.

Fig. 5. Samples with different percentage of pixel corruption (0%–60%)

Table 1. Recognition accuracy of different methods versus different percentage of block
occlusion

Occlusion (%) 10 20 30 40 50 60

RSRC 98.6 96.2 95.2 93.5 69.7 56.4

RCRC 99.0 97.9 96.7 94.3 81.2 62.0

WGSC 94.1 93.4 85.3 73.9 57.1 41.3

NMR 99.0 98.0 95.9 92.5 81.1 69.3

IRGSC 99.1 98.2 96.7 94.2 83.8 72.6

NNSCRC 99.4 98.4 96.7 94.7 87.5 80.3

Random Face Occlusion. In this experiment, we replace 10–50% pixels of
each test images with other face images. As shown in Fig. 6, both the location of
occlusion position and the occlusion face images are randomly selected. Table 2
lists the recognition accuracy of different methods. As can be seen, our method
still achieve better performance compared to others methods. The recognition
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Fig. 6. Samples with different percentage of face occlusion (0%–50%)

Table 2. Recognition accuracy of different methods versus different percentage of face
occlusion

Occlusion (%) 10 20 30 40 50

RSRC 96.9 95.6 91.2 88.6 72.9

WGSC 97.6 96.4 90.2 84.0 67.8

NMR 98.9 95.3 93.8 83.1 72.1

IRGSC 99.1 96.4 94.1 89.2 81.7

NNSCRC 99.3 97.2 96.0 91.4 83.2

rate of our model is a little lower than that of random block occlusion, which is
due to the reason that face occlusion is not strictly low rank. Still, our model
outperforms about 2% than IRGSC under large percentage face occlusion, which
indicates the effectiveness of NNSCRC to address occlusions.

4.4 Face Recognition with Real Disguise

To evaluate the robustness of our model to real possible disguise, we further
conduct experiments on AR dataset. As shown in Fig. 2, there are some samples
with sunglasses or scarves in AR database, which reflects the real FR conditions
in practical application. This kind of occlusion is irregular, thus brings a large
challenge for FR tasks. In our experiment, the face images of these 100 persons
were separated into 2 sessions according to the shooting time of photos. For
each person, we select 3 images in session 1 which has no illumination changes
or occlusion problem as training samples. 1200 face images are used for test,
which are divided into 4 groups as: 300 face images with illumination changes
and sunglasses in session 1, and 300 face images with illumination changes and
scarves in session 1, and the same divided in session 2.

The experiment results of competing methods are listed in Table 3. Clearly,
the NNSCRC method achieves better result in all 4 groups of experiments com-
pared with WGSC, RCRC, RSRC, and NMR. WGSC has the worst performance,
while WGSC tried to regress the query images only with the training samples,
and failed to consider the influence caused by occlusion. RCRC tries to solve
the problem of occlusion, and in fact achieves better performance than WGSC.
Note that our model outperform NMR by around 14%, which indicates that by
introducing a superposed linear collaborative representation to NMR model, our
model can enhance the robustness of face recognition effectively.
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Table 3. Recognition rates (%) of different methods on AR database

Classifier Session 1 Session 2

Sunglasses Scarves Sunglasses Scarves

WGSC 66.3 62.7 32.0 36.3

RSRC 89.3 32.3 57.3 12.7

RCRC 80.3 70.3 46.3 42.0

NMR 72.3 72.3 35.3 45.3

NNSCRC 90.0 79.7 59.7 50.7

4.5 Face Recognition with Single Sample per Person

We further conduct experiments on ExYaleB dataset to evaluate the robustness
of our model to single sample per person (SSPP) face recognition. 20 persons in
ExYaleB are used for SSPP test and the other persons are used to construct intra-
class variations. We use the first image of these 20 persons in ExYaleB dataset
as gallery, and select 30 images each person as probe set. The results are shown
in Table 4. As can be seen, the recognition rate of NNSCRC is 9.9% and 3.9%
higher than that of NMR and IRGSC respectively. Though NMR and IRGSC
can handle the problem of differences between query and gallery images in some
kind, both of them suffers from the misleading coding coefficients of incorrect
classes when there is only one sample per subject. Different from these methods,
our model can borrow the intra-class variations from other subjects which are
not in the gallery set because these variations are usually similar across different
subjects. Clearly, the NNSCRC method achieves much better result than NMR
and IRGSC since NNSCRC can borrow the intra-class variations from other
subjects, which demonstrate our model is capable for SSPP face recognition
task.

Table 4. SSPP FR accuracy of different methods on ExYaleB database

NMR IRGSC NNSCRC

Accuracy 79.3 85.3 89.2

5 Conclusion

In this paper, we present a NNSCRC model for robust face recognition task. In
the proposed framework, a superposed collaborative representation is adopted to
obtain robust representation of reconstruct face images. By representing a face
image as a superposed of a class centroid, a shared sample-to-centroid difference
and a low rank error, our method can address the misleading coding coefficients
of incorrect classes when the dataset is undersampled. Specially, when there
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is only a single sample per class available, the proposed model can still have
promised performance by acquiring the intra-class variation base from the generic
subjects outside the gallery. Furthermore, our model is robust to occlusion and
illumination changes by introducing nuclear norm constrained. Experiments on
the famous Extended Yale-B and AR databases show the superiority of our model
compared with the state-of-the-art regression based face recognition methods.
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