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Abstract. It is generally known that the illumination could seriously
affect the performance of face analysis algorithms. Moreover, in most
practical applications, the illumination is usually uncontrolled. A number
of methods have been put forward to tackle the problem of illumination
variations in face images, but they always only work on facial region
and need to segment faces in advance. Furthermore, many illumination
processing methods only demonstrate on grayscale images and require
strict alignment of face images, resulting in limited applications in the
real world. In this paper, we propose a face image illumination processing
method based on the Generative Adversarial Network (GAN) with dual
triplet loss. Through considering the inter-domain similarity and intra-
domain difference between the generated images and the real images, we
put forward the dual triplet loss. At the same time, we introduce the
self-similarity constraint of the images in the target illumination field.
Experiments on the CMU Multi-PIE face datasets demonstrate that the
proposed method preserve the facial details well when relighting. The
experiment of 3D face reconstruction also verifies the effectiveness of the
proposed method.
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1 Introduction

Because of the great development of biometric recognition and machine learning,
face analysis technologies, such as face detection, face recognition and 3D face
reconstruction, have received great attention. Nowadays, in a highly constrained
environment, many classical algorithms have been able to achieve nearly per-
fect performance. However, in the real world, the imaging environment in most
applications is uncontrolled. For example, the user’s posture or expression are
not a neutral state, the illumination condition changes and so on. Compared
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with other interference factors, illumination has a greater impact on many face
analysis algorithms. Therefore, the normalization of illumination is crucial for
exploring the method of illumination invariant.

Over the years, a large number of methods on illumination invariance have
been put forward. The invariant feature method is proposed to get the illumina-
tion invariant feature of images. Among them, Xie et al. [3] divided face images
into large scale and small scale, and processed them separately. Recently, Wang
et al. [4] proposed robust principal component analysis to eliminate the shadow
produced by high-frequency features based on Xie’s work. All these methods
have achieved impressive results in the removal of soft shadows, but they are
not effective in dealing with problems such as hard edge shadow caused by self
occlusion. At the same time, these technologies can not be extended to color
space, resulting in limited application in the real world.

With the development of 3D technology and deep learning, many researchers
turn to use them to solve the illumination problems. Zhao et al. [5] propose a
method for minimizing illumination difference by unlighting a 3D face texture
via albedo estimation using lighting maps. Hold-Geoffroy et al. [6] trained a con-
volutional neural network to deduce the illumination parameters and reconstruct
the illumination environment map. These methods are powerful and accurate.
However, they are easily limited by data collection and unavoidable highly com-
puting cost. In addition, most of the existing methods only focus on dealing
with the carefully segmented face regions, which are not robust to the whole
face images.

Inspired by the successful application of the Generative Adversarial Network
in transfer learning [8] and domain adaptation [9], we propose to reformulate
the face image illumination processing problem as a style translation task with
a Generative Adversarial Network (GAN) in [10]. By using the circle reversible
iterative scheme and via the multi-scale adversarial learning, we build the map-
ping from any complex illumination field to a target illumination field and its
inverse mapping to effectively achieve the normalization of illumination with-
out affecting any other non-illumination features of the image. In this paper, by
analyzing the distance relationship between the generated image and the real
image, an improved illumination processing method based on the dual triplet
loss is proposed in order to better retain the details of the image and improve
the quality of the generated image.

Overall, our contributions are as follows:

– We propose an improved illumination processing method based on Generative
Adversarial Nets with dual triplet loss.

– We put forward the dual triplet loss through considering the inter-domain
similarity and intra-domain difference between the generated images and the
real images.

– We introduce the self-similarity constraint of the images in the target illu-
mination field and add two image similarity indexes, SSIM and PSNR, to
supplement the measure of similarity.
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– We demonstrate that the proposed method can outperforms the state-of-the-
arts realistic visualization results on non-strictly aligned color face images
and eliminate the ill effects caused by illumination.

2 The Proposed Approach

2.1 Overall Network Framework

The overall network framework of our generative adversarial nets is shown in
Fig. 1. The same as [10], our network consists of one generator and a pair of
multi-scale discriminators with the same network structure but different classi-
fication constraint. We train G to translate an input image x under any lighting
conditions into an expected lighting image x̃′ conditioned on the target illu-
mination label c′, G(x, c′) → x̃′. And then reconstruct x̃′ to the input image
conditioned on the original illumination label c using the same G, G(x̃′, c) → x̃.
The discriminator D1 distinguishes between the synthesized output images x̃′

and the real ones x, and classify the illumination category c̃′. The classification
loss of real images used to optimize D1, and the fake images’ used to optimize G.
Similar but different, D2 distinguishes between x̃′ and a randomly selected pic-
ture y′ of maybe anybody’s under target illumination condition and recognizes
the identity l̃′ to optimize G and D2.

Fig. 1. Basic network architecture for face image illumination processing based on
GAN with dual triplet loss.

2.2 Inter-domain Similarity and Intra-domain Difference

According to our research idea, face images under the same illumination con-
ditions are divided into the same domain and our goal is to learn the mapping
from any other illumination domain to the target illumination domain, which
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refers the positive standard illumination in this paper. As shown in Fig. 2(a),
the images before and after illumination normalization belong to different illu-
mination domains, but their non-illumination information are same, which we
call “inter-domain similarity”. At the same time, the different images after nor-
malization belong to the same illumination domain, but their non-illumination
information are different, which we call “intra-domain difference”.

(a) illumination domain (b) identity domain

(c) sketch of the dual triplet loss

Fig. 2. Sketch of inter-domain similarity, intra-domain difference and the dual triplet
loss.

Besides, as shown in Fig. 2(b). If we treat the non-illumination information
as a symbol of the domain division, the two images before and after the normal-
ization belong to the same identity domain, but their illumination information
are different. That is, the two images have intra-domain difference now. Simi-
larly, for any two different images after illumination normalization, they belong
to different identity domains, but their illumination information are consistent.
That is, the two images have inter-domain similarity now.

2.3 Dual Triplet Loss

Inspired by the thought of the triplet loss [11], we propose to construct a dual
triplet loss based on the intra-domain difference and inter-domain similarity
between the generated image and the real image. As is shown in Fig. 2(c).

The dual triplet loss include two triplet loss, each is composed of the orig-
inal image x, the generated image x̃′ after illumination normalization and the
real image y′ captured randomly from the target illumination domain. The first
triplet loss takes y′ as anchor and takes x̃′ and x as positive and negative sample
respectively. The second triplet loss takes x as anchor and takes x̃′ and y′ as
positive and negative sample respectively.
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Define f(x), f(x̃′) and f(y′) are the features of x, x̃′ and y′ extracted from
our multi-scale discriminant network. In the illumination domain, x and x̃′ have
inter-domain similarity. So the distance between them should be as small as
possible and must be shorter than the distance between y′ and x. That is:

‖f(x) − f(x̃′)‖22 − ‖f(x) − f(y′)‖22 < 0 (1)

Similarly, in the identity domain, x̃′ and y′ have inter-domain similarity. So the
distance between them should be as small as possible and must be shorter than
the distance between y′ and x. That is:

‖f(y′) − f(x̃′)‖22 − ‖f(y′) − f(x)‖22 < 0 (2)

In addition, x̃′ and y′ belong to the same illumination domain, but their non-
illumination information are different. So, the distance between them should be
larger than a minimum distance interval Δ1. That is:

Δ1 − ‖f(y′) − f(x̃′)‖22 < 0 (3)

Similarly, in the identity domain, the distance between x̃′ and x should be larger
than a minimum distance interval Δ2. That is:

Δ2 − ‖f(x) − f(x̃′)‖22 < 0 (4)

In summary, the formula for calculating the loss function of dual triplet
constraints is:

Ldual−tri = E[‖f(x) − f(x̃′)‖22 − ‖f(x) − f(y′)‖22]+
+ E[‖f(y′) − f(x̃′)‖22 − ‖f(y′) − f(x)‖22]+
+ E[Δ1 − ‖f(y′) − f(x̃′)‖22]+ + E[Δ2 − ‖f(x) − f(x̃′)‖22]+

(5)

where [•]+ is a brief description of max[•, 0], which indicates that the loss is
valid only when the result value of [] is greater than 0, otherwise it is recorded
as 0. The threshold distance Δ1 is set as the minimum value of the feature
distance between any two face images in the target illumination domain of the
current training batch. Similarity, Δ2 is set to the minimum value of the distance
between any two face images in the original identity domain.

2.4 Self-similarity Constraint and Reconstruction Loss

The ideal function of the generate network is transferring the input image to the
target illumination and keeping the non-illumination information unchanged.
Therefore, if we use any real image of target illumination domain as input, the
generated image should be the same as the original, namely “self-similarity.
Because the illumination scene of them are already the target illumination and
don’t need to be transferred.



Face Image Illumination Processing Based on GAN with Dual Triplet Loss 155

Similar to the definition of the reconstruction loss in the previous article, we
use the L1 distance to measure the error between the input and output image
at first. The self-similarity constraint can be defined as

Lrec−y′ = E‖y′ − G(y′, c)‖1 (6)

L1 distance calculation is the sum of the absolute values of the corresponding
pixel difference of all pixels between two images. The advantage is that it is
convenient to calculate and can ignore the influence of the abnormal value in
the image data, which is relatively stable and robust. But its disadvantage is also
obvious, that is, the space between the pixels and their neighborhood is omitted,
which may lead to the loss of high frequency information such as texture and
detail. Based on the confirmation in [10], we use SSIM [12] and PSNR [13] to
supplement the L1 distance in the image reconstruction constraint. Define:

LSSIM (x1, x2) = 1 − SSIM(x1, x2)

=1 − (2μx1μx2 + c1)(2σx1x2 + c2)
(μ2

x1
+ μ2

x2
+ c1)(σ2

x1
+ σ2

x2
+ c2)

(7)

LPSNR(x1, x2) = 1 − PSNR(x1, x2)
30

=1 − 1
3

log
MAXx

2

MSE(x1, x2)

(8)

where MAXx is the maximum possible pixel value of the image. MSE(x1, x2)
is the mean squared error of x1 and x2. μx1 , μx2 , and σx1 , σx2 are the average
and variance of x1 and x2 respectively. σx1x2 is the covariance of x1 and x2.
c1 = (0.01L)2 and c2 = (0.03L)2 are two variables to stabilize the division with
weak denominator, in which L is the dynamic range of the pixel-values (1 in this
paper). Special to note is that we use an empirical value of 30 to normalize the
PSNR value.

Then the final cycle consistency loss of the generator can be written as

Lrec−all = Lrec−new + α1Lrec−y′−new

= E‖x − xrec‖1 + α2(LSSIM (x, xrec) + LPSNR(x, xrec))
+ α1(Lrec−y′ + α3(LSSIM (y′, G(y′, c)) + LPSNR(y′, G(y′, c)))

(9)

We use α2 = 0.5, α3 = 0.5 and α1 = 2 in all of our experiments.

2.5 Loss Function

Base Loss. To stabilize the training process and generate higher quality images,
we use Wasserstein GAN objective with gradient penalty as [8,10,14,15]. Define
x̆1 and x̆2 are sampled uniformly along a straight line between a pair of real
image and generated image, as well as a pair of target illumination image and
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generated image. The discriminator network D1 and D2 update their parameters
by minimizing the following loss:

Ladv1 = E[D1src(x)] − E[D1src(G(x, c′))] − λgpE[(‖∇x̆2D1src(x̆1)‖2 − 1)2]
(10)

Ladv2 = E[D2src(y′)] − E[D2src(G(x, c′))] − λgpE[(‖∇x̆2D2src(x̆2)‖2 − 1)2]
(11)

where we use λgp = 10 for all experiments.
For an input image x whose identity label is l and a target illumination label

c′, our goal is to translate x into an output image x̃′, which is properly classified
by D1 to c′ and recognized by D2 to l. The classification loss for illumination
and identity classification task can be defined uniformly as

Lcls1 = E[logD1cls(ĉ|x̂)] (12)

Lcls2 = E[logD2cls(ĉ|x̂)] (13)

where x̂ represents the image to be classified and the item ĉ represents the proper
label x̂ should be in this classification task.

Loss Function for Generator. Define the illumination label and identity label
of the synthesized output image as c̃′ and l̃′. So, the base objective functions to
optimize G can be written as

LG−base = Ladv1(x,G(x, c′)) + Ladv2(y′, G(x, c′))

+ α4Lcls1(c̃′, c) + α5Lcls2(l̃′, l)
(14)

where α4 and α5 are hyper-parameters that control the relative importance of
illumination classification and identity recognition losses respectively, compared
to the adversarial loss. We set α4 = 1 and α5 = 1. According to Eqs. (14, 9, 5),
the overall objective functions to optimize G can be written as

LG = LG−base + α6Lrec−all + α7Ldual−tri (15)

The detailed description of all the individual loss functions was postpone above.
We use a6 = 10 and a7 = 10 in all of our experiments.

Loss Function for Discriminator. The networks parameters of D1 and D2
can be optimized by minimizing a specifically designed adversarial loss Ladv1,
Ladv2 and the aforementioned classification loss Lcls1, Lcls2 of the real one’s
respectively:

LD1 = −Ladv1(x,G(x, c′)) + α8Lcls1(c̃′, c) (16)

LD2 = −Ladv2(y′, G(x, c′)) + α9Lcls2(l̃′, l′) (17)

we set a8 and a9 as 1 in our experiments.

2.6 Model Training

We summarize the details of our algorithm training procedure in Algorithm 1.
And we use the same history updating strategy as [10]. Moreover, we set Kd = 5,
Kg = 1, T = 1000 and lrG = lrD = 0.0001 in the first 500 iterations, which both
decay to 0 linearly in the following iterations.
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Algorithm 1. Face Image Illumination Processing Based on the Dual
Triplet Loss

Input: Real images x, identity label l, illumination label c and target illumination
label c′. Images with target illumination y′, identity label l′. Max number of
steps T , number of the two discriminator network update per step kd, number
of generative network updates per step Kg, the learning rate of lrG and lrD.

Output: The network parameters
1 for i = 1 : T do
2 for k = 1 : kd do
3 Sample a batch of real images x and target illumination images y′;
4 Get G(x, c′) with current network;
5 If the history buffer is not null, update the batch content with half a

batch images sampling from the buffer;
6 Update network parameters of D1 by taking a Adam step on batch loss

LD1 in Eq. (16);
7 Update network parameters of D2 by taking a Adam step on batch loss

LD2 in Eq. (17);
8 Sample half a batch images from the original G(x, c′) and add to the

history buffer.
9 end

10 for k = 1 : kg do
11 Sample a batch of real images x and target illumination images y′;
12 Get G(x, c′) and G(y′, c) with current network;
13 Reconstruct G(G(x, c′), c) and update network parameters of G by

taking a Adam step on batch loss LG in Eq. (15)
14 end

15 end

3 Experimental Results and Analysis

Experiments were conducted on the CMU Multi-PIE Face Database [1] to verify
the effectiveness of the proposed methods. Notably, all the images in this dataset
are color images, which is always a challenge on illumination normalization for
traditional methods. In our experiments, we restrict our attention merely to the
frontal face images with neutral expression. All images are simply aligned and
resized to 128 × 128 pixels, among which the first 2000 pictures were used for
test and the others used for training.

3.1 Comparisons of the Visual Quality with Other Methods

For convenience, we denote our previous base method in [10] as GAN-base and
denote this paper’s method as GAN-DTL. In Fig. 3, we compare the visual
results of normalized images between the proposed GAN-DTL method, GAN-
base method and two baseline algorithms: NPL-QI [17] and ITI [18]. Same as
other traditional methods, these two baseline algorithms can only process gray
images and require strict alignment of face images. However, even on gray images,
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they don’t work well. For example, the NPL-QI method can’t handle the extreme
illumination conditions such as the first group and the third group. There is a
general loss of detail in face after processing of the ITI method. And these two
methods are not effective in dealing with the self occlusion of nose in the second
groups. In contrast, our GAN-DTL method and GAN-base method achieve the
best normalization performance and preserve more facial details and almost all
appearance information, such as the hairstyle and hair color. At the same time,
our GAN-DTL method provides a higher visual quality of normalization results
on all kinds of test images. Different skin colors were preserved closer to the
original ones, especially obvious on the first group image. And the details of
eyeglass frame and whiskers in the third group are preserved more perfect. The
result indicated that the proposed GAN-DTL method can preserve the details
of generated images better and improve the quality of generated images.

Fig. 3. Quantitative evaluation results comparison between the proposed GAN-DTL
method, GAN-base method and two baseline algorithms.

3.2 Comparisons of the Ablation Study

We conduct ablation studies to show the superiority of our GAN-DTL method.
We carry out the experiment on our 2000 test images. Take the face image of the
same face under the target illumination as benchmark, we calculate the SSIM
value and PSNR value of the original image, the generated image of GAN-base
and the generated image of GAN-DTL respectively. And take the mean value
according to the original illumination category then, which are drawn in black,
blue and red curves in Fig. 4 respectively. As we can see, our GAN-DTL method
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improves the evaluation results to a new height. The total average value of
the SSIM is raised from 0.550 of the GAN-base method to 0.736 and the total
average of the PSNR is raised from 16.048 to 21.324, which is consistent with
the evaluation of the visual effect.

Fig. 4. Comparisons of the ablation study SSIM and PSNR. (Color figure online)

3.3 Test of Face Algorithm Application

We use the online 3D face reconstruction from a single image algorithm [19]
which is put forward by the team of nottingham university in 2017. As is shown
in Fig. 5. As the initial 3D reconstructed image is not a positive angle of view,
the angle and size of the pictures are slightly deviated when they are manually
rotated to the front view. But it obviously does not affect the experimental
comparison. In group (a), as the original image is in the dark light condition
and the skin color of the face is black, the face can not be detected in the 3D
reconstruction. In group (b), due to the uneven illumination of original images,
the location of facial landmarking is not allowed, resulting in partial deletion
of reconstructed 3D models. Similarly, in group (c) and group (d), the face
region segmentation of the original image is inaccurate due to the influence of
illumination on the location of facial landmarking, and the rough edge produced
by the shadow in the chin area. However, in the four sets of images, the 3D model
can be built very well and smoothly for the generated images after our GAN-
DTL and GAN-base method illumination normalization. And our GAN-DTL
method achieve the best results and illustrate the effectiveness of the proposed
method in real-world applications.

4 Conclusion

In this paper, we propose a face image illumination processing method based
on Generative Adversarial Nets with dual triplet loss. Through considering
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Fig. 5. 3D face reconstruction from a single image.

the inter-domain similarity and intra-domain difference between the generated
images and the real images, we put forward the dual triplet loss. At the same
time, we introduce the self-similarity constraint of the target illumination images
and add two image similarity indexes, SSIM and PSNR, to supplement the mea-
sure of similarity. Experiments on the CMU Multi-PIE face datasets demonstrate
that the proposed method preserve the details of generated images and improve
the quality of generated images. The 3D face reconstruction experiment shows
that the face images after our methods processing can eliminate the ill effects
caused by illumination, and illustrates the effectiveness of the proposed methods
in real-world applications.
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