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Abstract. Recent works have shown that Convolutional Neural Net-
works (CNNs) with deeper structure and short connections have
extremely good performance in image classification tasks. However, deep
short connected neural networks have been proven that they are merely
ensembles of relatively shallow networks. From this point, instead of
traditional simple module stacked neural networks, we propose Pyrami-
dal Combination of Separable Branches Neural Networks (PCSB-Nets),
whose basic module is deeper, more delicate and flexible with much
fewer parameters. The PCSB-Nets can fuse the caught features more
sufficiently, disproportionately increase the efficiency of parameters and
improve the model’s generalization and capacity abilities. Experiments
have shown this novel architecture has improvement gains on benchmark
CIFAR image classification datasets.
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1 Introduction

Deep Convolutional Neural Networks (DCNNs) have obtained a number of sig-
nificant improvements in many computer vision tasks. The famous LeNet-style
models [10] mark the beginning of the CNNs era. Nevertheless, AlexNet [8], pos-
sessing more convolutional layers stacked with different spatial scales, makes a
big breakthrough in ILSVRC 2012 classification competition.

1.1 Inception and Xception Module

Following this trend, some new branchy models have been emerged, for instance,
the family of Google Inception-style [6,12,13] and Xception [1] models. In funda-
mental Inception module (see Fig. 1(a)), where all input channels are embedded
into a low dimension space through “1 × 1” convolution (also called “point-
wise convolution” operation). Then the embedding feature maps will be equally
divided into several branches as the corresponding input of the same number
convolutional operations respectively. Specially, this operation can also be called
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“grouped convolutions”, which is first used in AlexNet and implemented by
such as Caffe [7]. At last, output feature maps from all groups are concatenated
together. An “extreme” version of Inception module is shown in Fig. 1(b). In
this basic module, the first layer also adopts “point-wise convolution” operation,
but at the second stage, the convolutions with the same size filters are used
on per input channel (also called “depth-wise convolution” in Tensorflow) and
concatenate all output feature maps. This lack communication required between
different branches before being merged. Moreover, feature information from sep-
arable paths can’t be sufficiently fused resulting in catching poor features.

Fig. 1. Inception module and Xception module.

1.2 Short Connected Convolutional Neural Networks

With these models going deeper, it is increasingly difficult to train because of
the vanishing gradient. As for this point, a novel kind of architectures with skip
connections ResNets [3] have been designed, who employ identity mapping to
bypass layers contributing to obtaining great gradient flow and catching better
features from objects. Following up this style of architectures, DenseNets [4] are
proposed, where each basic module obtains additional inputs from all preceding
modules and passes on its own feature maps to all subsequent modules. Although
these models seem to have more layers, they have been proven that they don’t
increase the depth actually but are only ensembles of relatively shallow networks
[9]. Furthermore, the basic residual block is mainly composed of some traditional
operation layers stacks, despite they can add more layers to the block to make
it deeper, it will have much more parameters at the same time and can’t deal
with input message delicately.

Given the importance of these issues of above models, we introduce a novel
basic module called Pyramidal Combination of Separable Branches module. And
the corresponding networks, referred to PCSB-Nets, are constructed by repeating
this new module multiple times. Specially, as shown in Fig. 2, we equip several
layers in one PCSB module, and every layer is composed of some branches.
Furthermore, the number of branches in every layer decreases exponentially from
the input layer to the output layer, accordingly, the shape of these basic novel
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modules constructed in this way looks like an inverted pyramid. Moreover, in
every branch, the corresponding input features are firstly projected into a low
dimension space to reduce the model’s parameters.

Fig. 2. PCSB module.

Our architecture’s superiorities are notable. It can make every module more
deeper and utilizes much fewer parameters more efficiently, because of both
the branchy structure and the low-dimension embedded information of every
branch. Additionally, in the feed-forward phase, every small branch only needs
to deal with little information at the bottom layer. Then, these small branches
are combined gradually to catch a larger spatial information until they become
only one branch. This structure can make the features be fused sufficiently and
the global task will be assigned to different branches smoothly. Therefore, the
small task can be readily fulfilled by each branch. Meanwhile, in the backward
phase, the gradient information from upper layers will guide every branch to
update the parameters efficiently.

2 PCSB-Nets

2.1 Pyramidal Combination of Separable Branches

The structure of the PCSB-Net’s module is shown in Fig. 2(a). In the next illus-
tration, we define a module possessing a specific number of regular operational
layers, such as convolutional and nonlinearity activation layers, and it can have
several same operational layers. Suppose the module M has L layers. x0 and
xl−1 refer to the input of M and the lth layer (or the output of the (l − 1)th
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layer) respectively. The number of branches (can also be called groups) in lth

layer denoted by Gl is calculated as bellow:

Gl = αL−l, l = (1, 2, ..., L) (1)

where α (α ≥ 1) is the combination factor of branches. Then the non-linear trans-
formation function which consists of a series of operations including Batch Nor-
malization (BN) [6], Rectified Linear Units (ReLU) [2] and Convolution (Conv)
of ith branch in the lth layer can be represented as F i

l . We assume the convo-
lutions contain “point-wise convolution” and ordinary convolutional operations
and perform the former first by default. Consequently, the output xl of the lth

layer can be obtained by Eq. 2.

xl = Concati F
i
l (x

i
l−1), i = (1, 2, ..., Gl) (2)

where xi
l−1 refers to the input of the ith branch in the lth layer, which means the

input channels of the lth layer are split to Gl parts equally. Furthermore, Concat
is the concatenation of all output feature maps from the lth layer’s branches. At
last, the output of the module M is Concat{x0,xL}.

From Eq. 1, when α > 1, the number of branches grows exponentially with the
number of α. When α = 1, it will become the traditional residual module with
merely one branch in every layer. More interestingly, when L = 1, it degrades
to bottleneck [3] architecture, which consists of a “point-wise convolution” and
a regular convolutional layer.

In every layer, all the convolutional operations have the same filter size of each
branch, so that they can be implemented by “grouped point-wise convolution”
and “grouped convolution” operations, when the filter size is equal to 1, the
former will become the special case of the latter, therefore, our module can
be also equivalently represented as Fig. 2(b). Specially, the groups of residual
and Xception module are equal to 1 and the number of feature map channels,
respectively. However, there is a notable difference between our module and
traditional module in the way of embedding input information. That is our
module “grouped point-wise convolution” at every layer. While in traditional
modules, they conduct “point-wise convolution” operation first for all the input
feature map channels to mix information.

2.2 Network Architecture

Following DenseNet (see Fig. 3), the PCSB-Net is similar to the overall struc-
ture of it with dense connections and repeating PCSB modules multiple times.
Furthermore, we have always obeyed the rule that our model’s parameters are
fewer than or equal to DenseNet. Since the bottom block mainly processes the
detail information, there will be more layers in every module in the first dense
block contributing to more branches existing at the first layer in each module
(e.g., α = 2, L = 3 and G1 = 4), then in the second block, the number of layers
will decrease (e.g., α = 2, L = 2 and G1 = 2) leading to fewer branches. Finally,
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in the last dense block, there will be only one layer with only one branch left in
each module resulting in bottleneck structure, for the reason that it will catch
the high-level features. Figure 4 shows the final detail structure of the PCSB-Net.

Fig. 3. DenseNets architecture.

Fig. 4. PCSB-Net architecture: “1× 1” and “3× 3” represent the convolutional opera-
tions, every convolutional operation is followed by the number of output channels. S1,
S2 and S3 denote the number of accumulating output feature maps at the end of every
dense block.

2.3 Implementation Details

DenseNet, and the mini-batch size is 64. Also, the number of training epochs
is 300. Additionally, all the PCSB-Nets are trained by the stochastic gradient
descent (SGD) method. Finally, Nesterov momentum [11] with 0 dampening is
employed to optimize. The initial learning rate starts from 0.1, which is divided
by 10 at 150 and 225 training epochs. The momentum is 0.9 and weight decay
is 1e − 4.
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3 Experimental Results and Analysis

3.1 Datasets

CIFAR datasets includes CIFAR-10 (C10) and CIFAR-100 (C100). They both
have 60, 000 colored nature scene images in total and the images’ size is “32×32”.
There are 50, 000 images for training and 10, 000 images for testing in 10 and
100 classes. Data augmentation is the same with the common practices. The
augmented datasets are marked as C10+ and C100+, respectively.

3.2 Comparisons with State-of-the-Art Models

Performance. We place special emphasis on verifying PCSB-Nets have a better
performance in spirit of utilizing fewer or same parameters than all the compet-
ing architectures. Since DenseNets have much fewer parameters than other tra-
ditional models, the PCSB-Nets are implemented based on DenseNets to make
smaller networks. First of all, the number of parameters of DenseNets and the
PCSB-Nets is set equally to test the capability of this novel architecture and
the results are listed in Table 1. Compared with NiN, FratalNets and different
versions of ResNets, the PCSB-Nets achieve relatively better performance on all
the datasets, especially on C10 and C100 datasets. Besides that, the proposed
models have much fewer parameters than them.

Table 1. Test error rate (%) on CIFAR datasets: α denotes the combination factor and
K denotes the number of output feature map channels in every basic module. Results
that are better than all competing methods are marked bold and the overall best
results are blue. “+” indicates the data augmentation (translation and/or mirroring)
of datasets. “∗” indicates results obtained by our implementations. All the results of
DenseNets are run with Dropout. The proposed models (e.g., tiny PCSB-Net) achieve
lower error rates while using fewer or equal parameters than DenseNet.

Method Version and structure settings Depth Params C10 C10+ C100 C100+

ResNet [3] 110 1.7M - 6.61 - -

Reported by [5] 110 1.7M 13.63 6.41 44.74 27.22

With Stochastic Depth [5] 110 1.7M 11.66 5.23 37.80 24.58

1202 10.2M - 4.91 - -

Pre-activation (reported by [4]) 164 1.7M 11.26 5.46 35.58 24.33

1001 10.2M 10.56 4.62 33.47 22.71

Wide ResNet [14] 16 11.0M - 4.81 - 22.07

DenseNet K = 12 40 1.0M 7.11∗ 5.82∗ 29.26∗ 26.96∗
58 2.2M 5.80∗ 5.08∗ 26.86∗ 25.46∗

PCSB-Net α = 2, K = 20 150 1.0M 5.62 5.56 24.73 24.32

α = 2, K = 28 150 1.86M 5.44 5.08 25.12 22.36

α = 3, K = 27 150 1.6M 5.08 4.96 24.56 22.76

α = 4, K = 32 150 2.2M 5.12 3.92 24.16 21.80

α = 2, K = 28, with inter-active 150 1.86M 5.32 4.88 22.60 21.76

tiny PCSB-Net - 150 0.44M 6.12 5.96 26.12 25.45
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Then the PCSB-Nets are compared with DenseNets. For the models with
1.0M parameters, the PCSB-Net (α = 2, K = 20) achieves relatively better
performance than DenseNet (e.g., the error rate is 5.62% vs 7.11% on C10,
5.56% vs 5.82% on C10+, 24.73% vs 29.26% on C100, and 24.32% vs 26.96% on
C100+). Furthermore, when the number of parameters increases to 2.2M , the
PCSB-Net (α = 4, K = 32) has a better performance on the reduction of error
rate than DenseNet (e.g., the error rate is 5.12% vs 5.80% on C10, 3.92% vs
5.08% on C10+, 24.16% vs 26.86% on C100 and 21.80% vs 25.46% on C100+).
Especially, the other PCSB-Nets all have obtained better results on some relevant
datasets, for example, compared with DenseNet (2.2M parameters), the PCSB-
Net (α = 2, K = 28, 1.86M parameters), utilizing intermediate activation (we
will talk about its effect later), has error rate reduction of 4.26% and 3.70% on
C100 and C100+ with fewer parameters.

Parameter Efficiency. In order to test the efficiency of parameters, a tiny
PCSB-Net is designed, which has a little difference from PCSB-Net (α = 2,
K = 20). To design a tiny model using fewer parameters and obtain a competitive
result, the output channels of the last layer’s bottleneck in each module is set
to K/2, and the two transition module’s output is respectively set to 160 and
304. This tiny network has only 0.44M parameters and obtains a comparable
performance (the error rate is shown in Table 1) to that of DenseNet (with 1.0M
parameters). In addition, in comparison with other architectures, although some
PCSB-Nets have much fewer parameters, they all get better performance.

Since the pyramidal combination of separable branches implemented by “gro-
uped convolution” operation is utilized in every module, fewer parameters can
be used to learn the object features, so that the parameters’ ability of catching
information is largely improved. From these contrast experiments, the novel
models have significantly improved the capability of parameters.

Computational Complexity. As shown in Fig. 5, the complexity of computa-
tions is compared between DenseNets and the PCSB-Nets. The error rates reveal
that the PCSB-net can achieve generally better performance than DenseNets
with likely times of flop operations (“multiply-add” step). Especially in Fig. 5(b),
the PCSB-net with fewest flops obtains the lower C100 error rate than DenseNet
with most Flops ((1.8 × 108, 26.12%) vs (5.9 × 108, 26.86%)). The less compu-
tational complexity is attributed to our branchy structure in the basic module.
This branchy structure results in the input feature maps and convolutional fil-
ters are all divided into a specific number of groups. In other words, each filter
only performs on much less input channels in the corresponding group, which is
contributing to much fewer flop operations.

Model’s Capacity and Overfitting. As the increasing of α and K, our model
can achieve a better performance, which may result from more parameters. Espe-
cially, this trend can be evidently seen from the Table 1, compared with PCSB-
Net (α = 2, K = 20), the error rate obtained from PCSB-Net (α = 4, K = 32)
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Fig. 5. Computational complexity comparison.

decreases by 1.64% and 2.52% on the C10+ and C100+ datasets respectively.
Based on these different PCSB-Nets’ results, our model can catch the features
better when the model has more branches and output feature maps in every
module at the first and second dense blocks.

In addition, it also suggests that the bigger networks do not get into any
troubles of optimization and overfitting. Due to C100 and C100+ datasets have
an abundance of object classes, who can validate the performance of models
more strongly. The error rate and training loss are plotted in Fig. 6, which are
obtained by DenseNets and PCSB-Nets on these two datasets in the course of
the training. From Fig. 6(a) and (c), our models have lower error rate converges
than DenseNets, despite the tiny PCSB-Net has only 0.44M parameters. And
with the increase of the number of parameters, the model will have a lower error
rate. However, in Fig. 6(b) and (d), the training loss obtained by PCSB-Net
(with 1.0M parameters) converges lower than DenseNet (with 1.0M parame-
ters). While to the models with 2.2M parameters, PCSB-Net and DenseNet
have reached an almost identical training loss converges, especially, PCSB-Net
converges even slightly higher than DenseNet on C100, which implies our model
can avoid overfitting problem better, when the model has a bigger size with-
out adequate training data. We argue although the bigger networks have much
more parameters, they also have many branches in every module leading to dis-
tributing the parameters to these branches. Accordingly, this architecture can
be regarded as an ensemble of many small networks from both horizontal and
vertical aspects contributing to alleviating the trouble of overfitting well.

3.3 Affected Factors of PCSB-Nets’ Optimization

In this part, we will discuss some affected factors by selecting appropriate hyper-
parameters and some regular techniques to optimize the PCSB-Nets.

Effect of Combination Factor. In order to explore the efficiency of the PCSB-
Net’s module, we observe the results of different PCSB-Nets with combination
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Fig. 6. Training profile on C100 and C100+: comparison of error rate and training loss
in the process of training about different models with different number of parameters
on C100 and C100+.

factor α = 2, α = 3 and α = 4 (shown in Table 1). Because of the limitation of
the implementation of “grouped convolution”, the number of output channels
must be the integer times of groups, hence we set K = 28, K = 27 and K = 32
respectively. These three PCSB-Nets are without the intermediate activation
operation. Finally, in Fig. 7, we find that with the increase of combination factor
α, the error rate approximately displays a decline trend, for instance, the PCSB-
Net with α = 4 achieves a much better performance on C10+, C100 and C100+.
It also gets a comparable error rate on C10, most probably in that this model is
the most complex one and C10 dataset merely has 10 object classes without any
data augmentation. Furthermore, the model with α = 3 is also superior to the
networks with α = 2 except on C100+. This is because these two architectures
have almost the same output feature map channels of every module and the
former has much more branches at the bottom layer, which results in PCSB-Net
(α = 3) has smaller parameters and obtains better performance on those less
abundant datasets. However, in Fig. 7(b), C100+ is the most abundant dataset,
consequently, PCSB-Net (α = 3) has a relatively poor generalization, but it also
has a competitive result (22.76% vs 22.36%). On account of the comparison of
these three networks, the models with more branches will gain a better accuracy
and improve the efficiency of parameters, since the networks with more branches
will catch the images’ information from much more perspectives and fuse the
information more thoroughly and carefully.
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Fig. 7. Effects of combination factor α.

Effect of Intermediate Activation. In the process of the implementation
of the above PCSB-Net, we didn’t utilize any intermediate activations between
the “grouped point-wise convolution” and “grouped convolution” operations.
But traditional models always take advantage of this operation to improve per-
formance and we discover that using the intermediate activation properly can
obtain surprising results. For example, PCSB-Net (α = 2,K = 28) with interme-
diate activation can drop the error rate to 21.76% on C100+ dataset. This model
has fewer parameters and gets even slightly better performance than PCSB-Net
(α = 4,K = 32) without intermediate activation.

However, not all the models are suitable for this operation, in order to use
it more reasonably, we perform four different sizes of networks with the same
number of branches (α = 2) and different output feature maps in every module
on C100 dataset, and the results have been shown in Table 2. From the results,
similar to traditional models, when the model has intermediate activation, the
error rate will decrease as the increasing of output channels. But, when the
model doesn’t have intermediate activation, the error rate will decrease first and
increase at the next stage as the growth of the output channels, for example,
(K = 20, error = 24.74%) is the turning point. Furthermore, when the number
of output channels is small, the model utilizing this operation will obtain a lower
accuracy than the model without this operation, however, when the number of
output channels is relatively large, the model with intermediate activation will
perform much better in the experiments.

Table 2. Intermediate activation effect on different sizes PCSB-models.

Model With inter-active C100 err. Without inter-active C100 err.

PCSB-Nets (α = 2, K = 16) 26.08 25.84

PCSB-Nets (α = 2, K = 20) 25.62 24.74

PCSB-Nets (α = 2, K = 24) 23.76 25.08

PCSB-Nets (α = 2, K = 28) 22.60 25.12



Pyramidal Combination of Separable Branches 85

As being shown by Chollet in [1], Xception model doesn’t utilize the interme-
diate activation, since in shallow deep feature spaces (one channel per branch),
the non-linearity may be detrimental to the final performance most probably
because of the loss of information. For PCSB-Net, a very small number of out-
put feature maps will lead to every branch also with fewer feature maps, which
can be seen close to the Xception model, accordingly, our models have nearly
same properties with it and don’t need the intermediate activation. Moreover,
when the number of output feature maps increases in a small range, the perfor-
mance will be improved because the capacity growth of networks brings more
positive impact than the negative impact from not utilizing intermediate activa-
tion to the final results. On the contrary, when every branch has relative more
input channels, it is best to employ this operation in the model, since every
branch will have much ampler information.

4 Conclusions

A novel kind of network architecture, PCSB-Net, is introduced in this paper. This
architecture can deal with bottom information from many aspects and fuse the
features gradually by the exponentially pyramidal combination structures. Addi-
tionally, we also explore some affected factors of the PCSB-Net’s optimization,
such as the combination factor and intermediate activation operation. This kind
of structures are evaluated on CIFAR datasets. The experimental results show
that even the tiny PCSB-Net can achieve a relatively better and competitive
performance with just 0.44M parameters (about half of the parameters of the
smallest DenseNets). In comparison with other models, all the PCSB-Nets obtain
better performances with much fewer parameters. Consequently, the PCSB-Nets
can largely improve the parameters’ efficiency without performance penalty.
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