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Abstract. The performance of traditional image quality assessment
(IQA) methods are not robust, due to those methods exploit shallow
hand-designed features. It has been demonstrated that deep neural net-
work can learn more effective features compared with the traditional
methods. In this paper we propose a multi-scale recursive deep neural
network to accurately predict image quality. In order to learn more effec-
tive feature representations for IQA, many deep learning based works
focus on using more layers and deeper network structure. However,
deeper network layers introduce large numbers of parameters, which
causes huge difficulty in training. The proposed recursive convolution
layer ensures both the depth of the network and the light of parame-
ters, which guarantees the convergence of training procedure. Moreover,
extracting multi-scale features is the most prevalent approach in IQA.
Based on this criteria, we using skip connection to combine information
among layers, and it further enriches the coarse and fine features for
quality assessment. The experimental results on the LIVE, CISQ and
TID2013 databases show that the proposed algorithm outperforms all
of the state-of-the-art methods, which verifies the effectiveness of our
network architecture.
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1 Introduction

Image quality assessment (IQA) aims to evaluate image quality in various types
of distortion during image acquisition, compression, transmission and restora-
tion [23,29,34]. Typical ways of IQA include subjective quality assessment and
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objective quality assessment. The former requires manual intervention, which is
usually time consuming. In this case, image quality should be automatically gen-
erated and consistent with human perception. Therefore, objective image quality
assessment obtains great attention in research. However, objective IQA has been
a challenging issue in computer vision due to the variety of image distortion types
and the difficulty in understanding the visual mechanisms of human perception.

Generally, objective IQA methods could be divided into three categories:
full-reference (FR) IQA, reduced-reference (RR) IQA and no-reference (NR)
IQA. FR-IQA methods are based on the full accessibility of raw image, and
use this information to evaluate how much the distorted image has deviated
from the origin one. The state-of-the-art FR-IQA methods include SSIM [24],
MS-SSIM [26], FSIM [32], VIF [19] and GMSD [28]. The RR-IQA methods,
including [25] and [22], extract only partial information of the reference image
to predict the target image quality. However, in most cases, raw image is not
available, therefore the NR-IQA methods that do not require a reference image
becomes very necessary. Therefore, the NR-IQA method becomes very attractive
in practical applications. Nevertheless, the lack of prior information has forced
NR-IQA methods to work in different manners, making it the most challenging
one among the three categories.

Early NR-IQA researches focus on extracting features from distorted
images [11–14,17], based on the observation that some features are distinguish-
able from the distortion free images. Although huge efforts have been devoted in
designing feature forms, the performance improved rather slow, which shows
the limitations and drawbacks of these hand-crafted features. On the other
hand, deep learning methods have shown great ability in many computer vision
[3,7,18,30,33], it also can be applied in NR-IQA research field, being expected
to achieve better performances. Deep learning methods can use convolutional
layer and pooling layer to extract features for IQA, and fully connected layers
are used to mapping features to quality score. Based on the superiority that
image features could be trained automatically instead of manually designed,
deep learning frameworks are supposed to extract more capable features with
higher efficiency. Not surprisingly, many deep learning based IQA works have
achieved good performances following [6].

The motivation of our method is that learning the complex relationship
between visual content and the perceived quality via a novel recursive convo-
lutional neural network. In [21], it has been demonstrated that deep convolu-
tional neural networks (CNNs) with more layers outperform shallow network
architectures. Based on this, we train a deep neural network with 7 convolu-
tional layers (including recursive layer) and 3 pooling layers for IQA feature
extraction. Since the learned features are based on a data-driven approach, they
are able to describe the changes in local image which are relevant to quality
perception.

In this paper we propose a new framework for IQA. The contributions of this
work are summarized as follows. First, we propose a deep convolutional neural
network to obtain effective features from different distortions types for the esti-
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mation image quality based on training samples. Second, our network repeatedly
applies the same convolutional layer as many times as desired. The convolution
layers have drawback which will introduce more parameters and the pooling
layers discard too much information. Since the parameters are shared in our
network, the number of parameters does not increase. Third, we employ a skip-
connection between layers to combines coarse and fine information. Extracting
multi-scale feature is the most prevalent approach in IQA. How to fusion differ-
ent scale information is the problem should be considered in quality assessment.
The experimental results show that the proposed network is accurate compared
with the existing IQA methods.

2 Related Work

NR-IQA methods can be generally classified into two groups: natural scene statis-
tic (NSS) approaches and learning based approaches. NSS approaches are based
on the observation that statistic features of an image changes with the pres-
ence of distortion. These approaches first extract the features from the query
image, and then a regression model, which is learned previously to map the
features with corresponding subjective perception scores, is used to predict the
final quality score. In [14], BIQI was proposed to first estimate the distortion
type, then a distortion-associated metric is applied to evaluate image quality.
Later, Moorthy et al. improved BIQI into DIIVINE [13] by extracting features
in wavelet domain. However, these distortion-specific methods may not perform
well dealing with a generalized problem, since only certain types of distortions
are considered. In [17], Saad et al. came up with an approach, called BLINDS-
II, solve the problem by combining contrast and structure information in DCT.
After realizing the potential of spatial features, BRISQUE [11] was proposed to
capture the statistics of locally normalized illumination coefficients. NIQE [12]
works in spatial domain as well, but uses a multivariate model (MVG) to fit the
local features.

For learning approaches, image features are learned to map with subjective
scores directly. To capture the relevant features, lots of training samples are
needed. In [31], spatial features of training images are extracted to construct
a codebook, and the raw image quality is estimated via encoding and pooling.
In [27], FR-IQA method was used to build a training database, where image
patches of similar quality are clustered to evaluate the target image quality.
In [10], a generalized regression neural network was deployed to train the IQA
model. Inspired by the recent success of CNNs for classification and detection
tasks, Kang [6] proposed a shallow CNN consisting of a convolutional layer with
max and min pooling and contrasting the normalized image patches as input.
Gu [4] introduced sparse autoencoder based Image Quality Index (DIQI) for
blind quality assessment. Bianco [1] estimated the image quality by average-
pooling the scores predicted on multiple sub-regions of the original image. But
those networks cannot make full use the information of different layers. Hou [5]
learned qualitative evaluations directly and outputs numerical scores for general
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utilization. Actually, images are represented by natural scene statistics features,
some information is lost in this method. Bosse [2] constructed a network con-
sisting of 10 convolutional layers and 5 pooling layers for feature extraction, and
2 fully connected layers for regression. Because it is more deeper than other
networks, more parameters are introduced. In contrast, the proposed method
considers taking the various advantages of different layer features while reducing
the number of parameters.
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Fig. 1. The framework of our recursive convolutional neural network. Features are
extracted from the distorted patch image by a convolutional neural network in order
to generate the score of distortion image. The dashed-boxed represents a recursive
convolution layer which share the same parameters. The layers with different colors
capture different information of distorted patch images.

3 Deep Neural Network for NR-IQA

The proposed network takes an RGB image as input. Given a distortion image,
our goal is to get the quality score by estimating the mapping from the images to
numerical ratings. The framework of our convolutional neural network is shown
in Fig. 1. We sample non-overlapping patches from a given image, then the qual-
ity score of each patch can be estimated by multi-scale network with skip con-
nection. The score of full size image is calculated by average the patch scores.

3.1 Network Architecture for NR-IQA

The proposed network consists of 12 layers as shown in Fig. 1. The layers are
organized as conv7-32, max pool, conv5-32, max pool, conv3-32, conv3-32, conv3-
32, conv3-32 (four layers have same parameters), concatenate, conv3-128, FC-
512, FC-1. This makes about 34 thousand trainable parameters in the network.

The convolution layers consist of filter banks. The response of each con-
volution layer is given by f l+1

n =
∑

m(f l
m ∗ kl+1

m,n + bl+1
n ), where kl+1

m,n is the
convolution kernel of the l layer m-th feature map to the l+1 layer n-th feature
map, f l

m denotes the m-th feature of the l layer, and similar for f l+1
n . The net-

work use convolutional to learn effective feature representations. The first part
of network is conv7-32, max pooling, conv5-32 and max pooling to capture the
effective semantic information, then further refined by the recursive convolution
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layer. In order to obtain an output of the same size as the previous input in
recursive convolution layer, padding is used for convolutions layers.

Instead of traditional sigmoid or tanh neurons, all convolutional layers are
activated through the rectified linear unit (ReLU) activation function:

g = max(0,
∑

n=1

wnfn) (1)

where g, wn, fn denote the output of the ReLU, the weights of the ReLU and the
output of the previous layer, respectively [15]. ReLUs enable the network to train
several times faster compared tanh units. The input is 32×32 image patches. All
the max pooling layers have 2 × 2 pixel-sized kernels in network. The network
is trained end-to-end, the last layer is a linear regression with one output which
is the quality score of the image patches. More detail will be explained in the
following subsection.

3.2 Recursive Convolution Layer

Recursive convolution layer [8] takes the input matrix R0 (after conv7-32,
max pool, conv5-32 and max pool layer) and computes the matrix output
R1, R2, R3, R4. The same weight Wr and bias br are used for all operations
in this step. For example, R1 is calculated by

R1 = max(0,Wr ∗ R0 + br) (2)

Similar operation are performed in the following layers. The recurrence relation
is

Rd = max(0,Wr ∗ Rd−1 + br) (3)

where, d = 1, 2, 3, 4. Then, we will get four feature matrices with different kinds
of information. The concat layer is used to concatenate R1, R2, R3, R4 with skip
structure in order to fuse coarse and fine information. As we can see, recursive
convolution layer increases the depth of network and reduces the number of
parameters simultaneously.

3.3 Training

Due to training need more samples for network, We train our network on non-
overlapping 32 × 32 patches taken from large images, thus we have numbers of
patches for training. However it may cause one problem that we only have the
ground truth score of full image. Fortunately, the dataset of training images in
our experiments have homogeneous distortions, we put the source images quality
score to each patch of image. In the process of testing, the full size images quality
score calculated by average the predicted patch scores.

q =
1
Np

Np∑

i=1

f(xi;w) (4)
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where, xi denotes the input patch, f(xi;w) represents the predicted score of
patch xi with parameters w and Np is the number of patches sampled from the
image.

Learning the mapping between distortion images and scores are achieved by
minimizing the loss between the predicted score f(xi;w) and the corresponding
ground truth yi. We adopt a similar objective function as [6]:

minw
1
N

N∑

i=1

‖f(xi;w) − yi‖l1 (5)

where N is the number of images in the training set. We optimize the regression
objective using the mini-batches gradient descent method based on the back-
propagation learning rule. We implement our model using the Chainer package.

Table 1. LCC on LIVE dataset. The best two results are presented with bold face and
italic fonts.

Method JP2K JPEG WN GBlur FF ALL

PSNR 0.896 0.860 0.986 0.783 0.890 0.824

SSIM 0.937 0.928 0.970 0.874 0.943 0.863

IFC 0.903 0.905 0.958 0.961 0.961 0.911

VIF 0.962 0.943 0.984 0.974 0.962 0.950

NSS 0.929 0.427 0.835 0.597 0.895 0.504

BIQI 0.942 0.922 0.945 0.941 0.856 0.902

BLIINDS-II 0.963 0.979 0.985 0.948 0.944 0.923

DIIVINE 0.922 0.921 0.988 0.923 0.888 0.917

SRNSS 0.936 0.939 0.940 0.936 0.947 0.932

BRISQUE 0.936 0.937 0.958 0.935 0.898 0.917

CORNIA 0.915 0.902 0.952 0.940 0.913 0.903

DLIQA 0.953 0.948 0.961 0.950 0.892 0.934

CNN 0.953 0.981 0.984 0.953 0.933 0.953

SOM 0.952 0.961 0.991 0.974 0.954 0.962

Proposed 0.977 0.980 0.994 0.949 0.972 0.971

4 Experiments and Results

4.1 Datasets and Evaluation

Datasets: The following image quality datasets LIVE [20], TID2013 [16] and
CSIQ [9] are used in our experiments. The LIVE dataset comprises 779 dis-
torted images with five different types of distortions JPEG 2000 compression
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(JP2K), JPEG compression (JPEG), White Gaussian Noise (WN), Gaussian
blur (GBlur) and Fast Fading (FF) based on 29 source reference images. Dis-
tortion types have 7–8 degradation levels. Quality ratings were captured use a
single-stimulus methodology. Differential Mean Opinion Scores (DMOS) of each
image quality score is in a range of [0 100], where a higher DMOS means lower
quality of the image.

The TID2013 image quality dataset include 3000 distorted images by 24
different distortions which derived from 25 reference images at 5 degradation
levels each. The distortion types cover a wide range for real world, which makes
TID2013 to be a challenging database. Each image is associated with a Mean
Opinion Score (MOS) values lie in the range [0, 9], where a lower MOS denotes
bad visual quality.

The CSIQ image quality dataset also contains of a corresponding set of
866 distorted images based on 30 reference images from 35 different observers
reported in the form of DMOS. For the proposed Deep Quality system, the
DMOS scores are mapped into 5 different levels of image quality for evaluation
purposes. After alignment and normalization the DMOS values range in [0 1],
where a higher DMOS presents lower quality.

Evaluation: Random segmentation of the data set was repeated 10 times to
eliminate bias from individual data. For each repetition we calculate the Linear
Correlation Coefficient (LCC), Root Mean Square Error (RMSE) and Spearman
Rank Order Correlation Coefficient (SROCC) between the predicted quality
score and the ground truth, then compute the average of metrics. The value
of correlation metrics close to 1, or RMSE close to 0 indicates high performance.

Table 2. RMSE on LIVE dataset.

Method JP2K JPEG WN GBlur FF ALL

PSNR 7.187 8.170 2.680 9.772 7.516 9.124

SSIM 5.671 5.947 3.916 7.639 5.485 8.126

IFC 6.972 6.813 4.574 4.360 4.528 6.656

VIF 4.449 5.321 2.851 3.533 4.502 5.024

NSS 8.911 21.25 12.13 17.22 9.821 19.69

BIQI 8.213 9.233 7.005 6.566 11.38 9.849

BLIINDS-II 7.257 9.103 6.825 7.894 9.709 8.800

DIIVINE 9.660 12.25 5.310 7.070 12.93 10.90

SRNSS 7.892 7.948 7.971 7.591 7.157 7.618

BRISQUE 8.150 9.230 7.273 7.516 9.536 9.538

CORNIA 9.666 10.32 6.541 7.689 8.917 9.935

DLIQA 7.250 7.596 5.881 6.570 9.540 8.149

Proposed 4.785 4.793 2.288 6.749 5.129 5.514
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Table 3. SROCC on LIVE dataset.

Method JP2K JPEG WN GBlur FF ALL

PSNR 0.890 0.841 0.985 0.782 0.890 0.820

SSIM 0.932 0.903 0.963 0.894 0.941 0.851

IFC 0.892 0.866 0.938 0.959 0.963 0.913

VIF 0.953 0.913 0.986 0.973 0.965 0.953

NSS 0.882 0.247 0.852 0.644 0.859 0.339

BIQI 0.940 0.915 0.971 0.947 0.831 0.903

BLIINDS-II 0.951 0.942 0.978 0.944 0.927 0.920

DIIVINE 0.913 0.910 0.984 0.921 0.863 0.916

SRNSS 0.928 0.931 0.938 0.933 0.941 0.930

BRISQUE 0.910 0.919 0.955 0.941 0.874 0.920

CORNIA 0.903 0.889 0.958 0.946 0.915 0.906

DLIQA 0.933 0.914 0.968 0.947 0.857 0.929

CNN 0.952 0.977 0.978 0.962 0.908 0.956

SOM 0.947 0.952 0.984 0.976 0.937 0.964

Proposed 0.966 0.949 0.989 0.963 0.973 0.965

4.2 Consistency Experiment

In this subsection, we consider how the proposed network corresponds to human
assessment on the LIVE database. We train and test on images of all five distor-
tions (JP2K, JPEG, WN, BLUR and FF) together without providing a distortion
type. Since machine learning requires training samples, we randomly divide into
several groups and the rest are used as test sets. To eliminate effects from the
separated data, the random division of the data set was repeated 10 times. Other
learning-based BIQA approaches are all executed in this way.

We employ four traditional full-reference IQA methods as the benchmarks,
including PSNR, SSIM, IFC, and VIF. In addition, there are 10 kinds of BIQA
methods for comparison: (1) NSS; (2) BIQI; (3) BLIINDS-II; (4) DIIVINE;
(5) SRNSS; (6) BRISQUE; (7) CORNIA; (8) DLIQA; (9) CNN; (10) SOM.
All of these methods are based on machine learning and can be found in [5] and
[2]. The results are evaluated by using 90% of the data for training, then testing
on the other 10% of the data.

Tables 1, 2 and 3 show the experimental results of different methods on the
LIVE dataset with different distortion types. The best two results are shown in
bold face and italic fonts. Our proposed network outperforms all previous NR-
IQA methods. From LCC and SROCC we can see that the proposed network
works well on the entire database, especially on JP2K, WN and FF. SOM method
ranks second in the entire database. In particular, our RMSE is significantly
reduced compared to other methods. This phenomenon comes from recursive
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convolution and skip structure. We have reason to believe that the proposed
network can obtain more useful features for describing image quality.
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Fig. 2. Performance of the proposed network versus the percentage of training sets

Figure 2 shows the relationship between the percentage of training sets and
the performance of proposed network. The random split of the LIVE II dataset
is repeated 10 times, each group include training and testing data. The average
score of LCC, RMSE and SROCC are calculated according this datasets. As can
be seen, the RMSE curve decreases slowly with the increases of the training set.
The trend of LCC and SROCC curves is consistent. The new network can get
better results even when the training sets are fewer.

4.3 Extensibility Experiment

To evaluate the performance of generalization we perform a cross-dataset eval-
uation as shown in Table 4. The subset of CSIQ and TID2013 includes only
four types of distortions that are shared with LIVE dataset. Unfortunately, no
results are available for the other methods. All models are trained on the full
LIVE dataset and evaluated on subset of CSIQ and TID2013 or full set. We
can see that our network is superior to previous state of the art methods on full
dataset.

Table 4. SROCC results of the cross-dataset evaluations.

Method Subset Full

CSIQ TID2013 CSIQ TID2013

DIIVINE - - 0.596 0.355

DLIINDS-II - - 0.577 0.393

BRISQUE 0.899 0.882 0.557 0.367

CORNIA 0.899 0.892 0.603 0.429

CNN - 0.920 - -

Proposed 0.897 0.889 0.609 0.412
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5 Conclusion

This paper develops a CNN for no-reference image quality assessment. Our app-
roach describes a deep recursive neural network which predict image quality
accurately by learning the mapping between images and their corresponding
scores. Recursive convolution layer increases the depth of net and reduces the
number of parameters simultaneously. The experimental results prove its effi-
ciency and robustness to different standard IQA datasets, and verifies the high
consistency between the designed network and human perception.
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