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Abstract. Image semantic segmentation contains two sub-tasks, seg-
menting and labeling. However, the recent fully convolutional network
(FCN) based methods often ignore the first sub-task and consider it as a
direct labeling one. Even though these methods have achieved competi-
tive performances, they obtained spatially fragmented and disconnected
outputs. The reason is that, pixel-level relationships inside the deep-
est layers become inconsistent since traditional FCNs do not have any
explicit pixel grouping mechanism. To address this problem, a multi-step
supervised learning method, which contains image-level supervised learn-
ing step and pixel-level supervised learning step, is proposed. Specifically,
as for the visualized result of image semantic segmentation, it is actually
an image-to-image transformation problem, from RGB domain to cate-
gory label domain. The recent conditional generative adversarial network
(cGAN) has achieved significant performance for image-to-image gener-
ation task, and the generated image remains good regional connectivity.
Therefore, a cGAN supervised by RGB-category label map is used to
obtain a coarse segmentation mask, which avoids generating disconnected
segmentation results to a certain extent. Furthermore, an interaction
information (II) loss term is proposed for cGAN to remain the spatial
structure of the segmentation mask. Additionally, dilated convolutional
networks (DCNs) have achieved significant performance in object detec-
tion field, especially for small objects because of its special receptive field
settings. Specific to image semantic segmentation, if each pixel is seen as
an object, this task can be transformed to object detection. In this case,
combined with the segmentation mask from cGAN, a DCN supervised
by the pixel-level label is used to finalize the category recognition of
each pixel in the image. The proposed method achieves satisfactory per-
formances on three public and challenging datasets for image semantic
segmentation.
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Image semantic segmentation, which aims to parse image into several seman-
tic regions, specifically, attach one of the annotated semantic category labels to
each pixel or super-pixel in the image automatically, is an important task for
understanding objects in a scene. As a bridge towards high-level tasks, image
semantic segmentation is adopted in various applications, such as human pose
estimation [11], visual tracking [9], etc. Even though remarkable efforts [7,12,20]
have been made for image semantic segmentation during the past decades, this
task is still a challenging problem (Fig. 1).

Segmenting Labeling

Fig. 1. The task of image semantic segmentation, which includes two steps: segmenting
and labeling.

Most recent methods for image semantic segmentation are formulated to
solve structured pixel-wise labeling problem on CNNs [1,14,21]. These methods
convert an existing CNN architecture for classification to a fully convolutional
network (FCN) [15]. They obtain a coarse label map from the network by clas-
sifying each local region in the image, and perform a simple deconvolution for
pixel-level labeling. Conditional random field (CRF) [24] is optionally applied
to output map for better segmentation. The main advantage of the FCN based
methods that the network accepts a whole image as an input and performs fast
and accurate inference. Adopting the FCN, many present subsequent methods
have solved the challenging task to a certain extent and achieved even better
performance. However, all of these methods still rely on traditional FCN architec-
ture. As a result, their segmentation maps are spatially fragmented and discon-
nected, because traditional FCNs do not any explicit pixel grouping mechanism
and then pixel-level relationships inside the deepest layers are inconsistent.

Actually, the task of image semantic segmentation includes two sub-tasks:
image segmenting and semantic category labeling, the former focus on the rela-
tionships among different pixels while the latter emphasizes on the labeling for
each pixel. Inspired by the strong image transformation capacity of cGAN [4] and
description capacity for small objects of DCN [13], a multi-step supervised learn-
ing method is proposed for image semantic segmentation in this paper, which
contains image-level and pixel-level supervised learning steps. Specifically, the
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image-level supervised learning step focus on segmenting while the pixel-level
supervised learning step aims to consider the labeling precisely. The details of
the proposed method can be described as follows:

– Image-level supervised learning step. Category label map is considered
as a RGB image, and it is used as the ground truth of the image-level supervi-
sion to train the cGAN model for transforming original images to region-based
ones. Furthermore, in order to remain the spatial structure information of
region-based segmented mask, a novel information interaction (II) loss term
is incorporated in the framework, which enhances the pixel-to-pixel interac-
tion through considering the 2-order information of generated map. Actually,
because the category label map has only few kinds of colors, the generated
image from cGAN owns weak semantic information to a certain extent.

– Pixel-level supervised learning step. Based on the weak semantic image
from cGAN, a DCN is followed to complete the final label recognition of each
pixel or super-pixel in the image. As we introduced before, this part is pixel-
level supervision. Similar to FCN, multi convolutional layers and a softmax
layer are used in this subtask. However, because of the inherent limitation of
FCN aforementioned before, in order to obtain a better segmentation result,
the FCN architecture need to be modified. Inspired by the successful applica-
tion of DCN for small object detection, the second sub-Network for pixel-level
supervision learning is builded up with dilated kernels, which can remain the
spatial information from original image to predicted category label map well.

Even though the proposed method is introduced as two separated parts, the
network guided by our method is still builded as the popular end-to-end fashion.
The loss functions of the two sub-Networks are summed as the final loss of the
overview network, and the parameters of the two sub-Networks are optimized
simultaneously. In summary, the contributions of this work are listed as follows:

1. A multi-step supervised learning based approach is proposed for image seman-
tic segmentation, which divides this challenging task into two much simpler
ones, image-level supervised learning (segmenting) and pixel-level supervised
learning (labeling).

2. A cGAN is used to generated the weak semantic map of the original image.
Additionally, a novel information interaction (II) loss term incorporated to
the cGAN framework, which can enhance the global and detail structure
information of the generated map.

3. A DCN is used to predict the final semantic category label, which has strong
discriminative capacity and can remain the spatial information of the image
well.

The rest of paper is organized as follows: In Sect. 1, we introduce the related
works to image semantic segmentation. Section 2 describes the proposed method.
We report the experiment results in Sect. 3 and conclude the paper in Sect. 4.
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1 Related Work

This section details some related works for the task of image semantic seg-
mentation. First of all, we introduce some previous works for image semantic
segmentation. Additionally, because generative adversarial network and dilated
network are used as the sub-Networks of the proposed method, they are also
introduced in this section.

1.1 Previous Works

In the past years, image semantic segmentation has attract a lot attentions,
because its wide applications. The recent fully convolutional network (FCN) has
led to remarkable results in image semantic segmentation task. However, due to
the operation and many pooling layers, the FCN typically suffers from low spa-
tial resolution predictions, which causes inconsistent relationships between the
neighboring pixels inside the deepest layers. Recently, there has many attempts
to address these problems, all of this subsequent work can be divided into several
groups. The works in [2,3] used FCN learned potentials, in the separated glob-
alization framework to refine the original FCN results. The methods in [5,23]
integrated a CRF-like inference procedure into their network, which allowed
to train such models in an end-to-end fashion and achieve satisfactory perfor-
mances. Even so, these methods did not fix the core problem, such as the lack
of consistent mechanism in the deep layers inside the network.

1.2 Generative Adversarial Network

Generative adversarial networks (GAN) [4] is recently introduced as alterna-
tive frameworks for training generative models in order to sidestep the difficulty
of approximating many intractable probabilistic computations. Adversarial net-
works have the advantages that Markov chains are never needed, only the back-
propagation is used to obtain gradients, no inference is required during learning,
and a wide variety of factors and interactions can easily be incorporated into
the model. Furthermore, as demonstrated in [4], it can provide state-of-the-art
log-likelihood estimated and realistic samples. In an unconditioned generative
model, there is no control on models of the data being generated. However, by
conditioning the model on additional information it is possible to direct the data
generation process. Such conditioning could be based on class labels, on some
part of data for inpainting, or data from different modality.

1.3 Dilated Convolutional Network

Dilated convolution [8,17] was original applied for wavelet decomposition in
signal processing. It supports exponential expanding of receptive filed. Yu and
Koltun developed a convolutional network for dense prediction in [22], in which
dilated convolution was adopted to systematically combine multi-scale contex-
tual information without sacrificing resolution or coverage. The method can be
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mainly attributed to the expansion of receptive field by dilated convolution, and
their work provides a simple yet effective way to enlarge receptive field for CNN.
The dilated convolution operator has been referred to in the past as “convolu-
tion with a dilated filter”. The convolution operator itself is modified to use the
parameters in a different way. The dilated convolution operator can apply the
same filter as different ranges using different dilation factors, and it enlarges the
receptive field without reducing the size of feature map, so it can remain the
spatial resolution of image even though many convolutional layers.

2 Proposed Method

This section details the proposed method with two important components, condi-
tional generative adversarial network (cGAN) and dilated convolutional network
(DCN). The cGAN is used to generate the weak semantic map of the image,
which considers the category label map as another style of the input image, and
this operation is called the image-level supervised learning step. Additionally,
based on the generated map from cGAN, The DCN is used to recognize the real
semantic category label map of the image while remaining the spatial resolution,
which is called the pixel-level supervised learning step. The overview framework
of the proposed method is shown in Fig. 2 and the procedures are described as
follows:
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Fig. 2. The overview of the proposed method, including two important components,
GAN and dilated convolutional neural network.

– Image-level supervised learning. cGAN equipped with a novel information
interaction(II) loss term is used to generate the weak semantic (regional
connected) map of original image.

– Pixel-level supervised learning. Combined with the generated weak semantic
map from cGAN, a dilated convolutional network is used to recognize the
semantic category label of each pixel in the image.

– The aforementioned two supervised learning steps are incorporated into a
whole, and the two sub-Networks are optimized simultaneously in an end-to-
end way.
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2.1 Image-Level Supervised Learning Step

Image-level supervised learning step is mainly to finish the “segmentation” sub-
task of the image semantic segmentation. There are many unsupervised methods
can complete this subtask, such as cluster and super-pixel-based methods. How-
ever, these unsupervised methods are depended on the initial conditions seri-
ously, and the segmentation results are not stable. In this work, we transform
segmentation to a generation problem in an appropriate way. Recently, GANs
have achieved significant performances for image generation task, especially the
successful application of conditional generative adversarial network (cGAN), it
can transform the image from one style to another very well. Actually, the seg-
mented map is another style of the original image, from a pixel-based one to a
region-based one. In this case, cGAN can be used to generate the region based
maps with weak semantic information. The loss function of the conditional cGAN
used in this paper is shown as Eq. 1.

�cGAN = min
G

max
D

{
Ex∼pd(x) [log D (x |y )] + Ez∼pz(z) [log (1 − D (G (z |y )))]

}
,

(1)
where G is the generator and D is the discriminator. G tries to minimize this
objective against an adversarial D that tries to maximize it. For instance, G∗ =
arg min

G
max
D

LcGAN (G,D).

Additionally, specific to the image segmenting subtask, besides the probabil-
ity distribution information, spatial structure information should be considered
in the proposed model as well. To address this issue, we mixed the cGAN objec-
tive with another two loss terms: L1 distance term and the proposed information
interaction (II) loss term. The L1 and II loss terms are shown as Eqs. 2 and 3
respectively,

L1(G) = Ex,y,z [‖y − G (x, z)‖1] , (2)

II(G) = Ex,y,z

[∥∥y2 − G2 (x, z)
∥
∥
1

]
, (3)

where L1 is to ensure the 1st-order information of the generated weak semantic
map. In other words, it aims to estimate the label of each single pixel accurately
as much as possible. II is to ensure the 2nd-order information of the generated
weak semantic map. Specifically, as is shown in Fig. 4, corresponding elements in
two matrices with small L1 distance are closer. As for small II distance, besides
the accurate single pixel information, the similar relationships among different
elements are needed. That is to say, if we incorporate L1 and II distances in
the cGAN loss, the generated map will have the similar intensity and spatial
structure information with the groundtruth. Therefore, the final objective the
cGAN here is shown as Eq. 4,

G∗ = arg min
G

max
D

Ex,y,zLcGAN + λ1 · L1 + λ2 · II, (4)

where λ1 and λ2 are two regulation parameters, which are used to balance the
relationships of three loss terms.
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(a) (b) (c)

Fig. 3. Different receptive fields with different factors in dilated convolutional neu-
ral networks. (a), (b), (c) are 1-dilated, 2-dilated and 3-dilated, respectively, and the
receptive field sizes of them are 3 × 3, 7 × 7 and 15 × 15, respectively.

a b

c d

a cb2 ba db

ca dc 2cb d

Fig. 4. The details of L1 and II. Two matrices with small L1 distance means that
corresponding element-pair is close to each other. For instance, the first element in
another matrix is close to ‘a’ if this matrix has small L1 distance with the left one.
Additionally, II is the 2nd-order of the matrix. Two matrices with small II distance
means that, their structure interaction information is similar. For example, the first
element in another matrix is close to a2 + bc if this matrix has small II distance with
the left one. As can be seen, a2 + bc not only contains the information of the first
element ‘a’ in the left matrix, but also contains the interaction information of ‘b’ and
‘c’.

2.2 Pixel-Level Supervised Learning Step

Pixel-level supervised learning step is mainly to complete the semantic cate-
gory labeling subtask of the image semantic segmentation. Most recent methods
consider the semantic segmentation task as a direct classification one and they
have achieved competitive performance. In order to obtain the global informa-
tion of the image, traditional CNNs pooling layers to enlarge the receptive field,
even though this strategy have gained satisfactory performance for classification
and recognition tasks, the experiment results are not in accordance with our
expectations when we apply this architecture to semantic segmentation task.
Investigate its reasons, the pooling layers result in severe lose spatial informa-
tion of the image when it enlarge the receptive field by narrowing down the size
of the feature map. Even though some FCN-based methods adopt the strategy
of pooling-unpooling to make the output of the network has the same size with
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the original image, the visualized prediction results are still coarse due to the
loss of detailed spatial information.

In this paper, to address the problem aforementioned, we use dilated convo-
lutional kernel (Fig. 3) to replace the traditional kernel, which can enlarge the
receptive field without narrowing down the size of feature map. Additionally, a
softmax layer is followed by several dilated convolutional layers to recognize the
category label of each pixel in the image. The loss function is shown as Eq. 5,

Lc = − 1
n2

⎡

⎣
n2∑

i=1

k∑

j=1

I
{
yi = j

}
log e

θT
j xi

k∑

l=1
eθT

l
xi

⎤

⎦ , (5)

where n is the size of the input image, k is the category number of the dataset.
yi and j are the predicted category label and the real category label of ith image
respectively. I{·} is the indicator function and θ represents the parameters of the
network.

2.3 Network Architecture and Optimization Strategy

The cGAN used in this paper is a traditional encoder-decoder architecture, which
has 10 convolutional layers, 5 layers for encoder and the others for decoder. The
dilated network contains five dilation convolution layers and a softmax classifier
layer. Additionally, the overall loss function for the proposed network is shown
as Eq. 6,

� = LcGAN + λ1 · L1 + λ2 · II + λ3Lc, (6)

where LcGAN is the loss function of the conditional GAN. Lc is the loss func-
tion of the dilated convolutional network. L1 is the 1-norm distance. II is the
proposed interaction information loss term. And λ1, λ2 and λ3 are three formu-
lation parameters to balance these four loss terms. Two sub-Networks used in
this paper are optimized simultaneously in an end-to-end fashion.

Implementation: In order to speed up the convergence, we adopted the “sepa-
rated & combined” training strategy. Specifically, we obtained the initial param-
eters of cGAN and DCN by training them separately. Then, combined these two
sub-Networks together and obtained the final parameters of the model through
joint training in an end-to-end way.

3 Experiments

The section details of the experiment, including datasets, experiment settings,
contrasting methods, evaluation metrics and results & analysis.
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3.1 Datasets

The proposed method is tested on three public and challenging datasets: SIFT
Flow [19], NYUDv2 [18] and SIFT Flow [19] and PASCAL VOC 2012 [6].

NYUDv2 is a RGB-D dataset collected using the Microsoft Kinect, and it has
1449 RGB-D images with pixel-wise labels. This dataset is challenging, because
the additional depth information increases the structure complexity of the image.

SIFT Flow is a dataset of 2,688 images with pixel labels for 33 semantic classes.

PASCAL VOC 2012 dataset for semantic segmentation includes 2913 label
images for 21 semantic categories. Some samples of the dataset is shown in Fig. 5.

Fig. 5. Samples of the PASCAL VOC2012 dataset. The dataset consists of 2913 images
from 20 classes.

3.2 Experiment Settings

In this paper, we choose 80% images of the dataset to train the network, and
use the others to be the testing set. We train the network using mini-batch SGD
with patch size 224 × 224 and batch size 10. The initial learning rate is set to
2.5 × 10−4, weight decay is set to 5 × 10−4, momentum is 0.9 and the network
is trained for 200 epoches. Additionally, the formulation parameters λ1, λ2 and
λ3 are set to 1 in our experiments.

3.3 Contrasting Methods

To verify the effectiveness of the proposed method, four state-of-the-art methods
are used as the contrasting methods: FCN8s, Deconv, cGAN and cGAN+DCN.

FCN8s [15] is one version of the original FCN methods, which achieves the best
performance in this series because it uses more information from lower layers of
the network.
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Deconv [16] is a method based on the encoder-decoder architecture, which
achieves the satisfactory performance for image semantic segmentation with dou-
ble parameters compared to FCN8s.

cGAN [10] is a method which uses conditional generative adversarial network
to generate a continuous fake “label map”, and then discretizes the fake “label
map” as the semantic category label of the image.

cGAN+DCN (Ours1) is a method that uses traditional conditional generate
adversarial network to generate a weak semantic “label map”, then integrates
the original image and weak semantic “label” map information by a dilated
convolutional network to finalize the category recognition of each pixel in the
image. Additionally, this method trains two sub-Networks separately and the II
loss term is not used in the image-level supervised step.

3.4 Evaluation Metrics

Pixel classification accuracy (Pix.acc) and mean intersection over union (Mean
IoU) are used to verify the methods.

3.5 Results and Analysis

This section details the experiments on NYUDv2 [18], SIFT Flow [19] and PAS-
CAL VOC 2012 [6]. The experiment results are shown in Table 1.

Table 1. Experiment results on three datasets (%).

Dataset NYUDv2 SIFT flow PASCAL VOC 2012

Method Pix.acc Mean IoU Pix.acc Mean IoU Pix.acc Mean IoU

FCN8s [15] 66.84 40.91 85.82 44.75 92.56 66.48

Deconv [16] 68.30 42.78 87.43 45.59 92.84 69.37

cGAN [10] 55.76 37.35 74.82 39.40 67.36 43.55

Ours1 69.52 44.84 88.07 47.28 93.43 72.69

Ours2 71.35 47.06 90.53 50.21 94.18 75.82

From Table 1 we can see that, Deconv method achieves better performance
than FCN8s. Specifically, it obtains 1.46% and 1.87% improvement in terms of
pixel.acc and mean IoU on NYUDv2 dataset, respectively. The reason is that,
compared to FCN8s, Deconv uses a strategy by enlarging the prediction map
gradually by a stride of 2 in each step, this avoids the loss of spatial structure
information in a certain extent.

Additionally, the results of cGAN method are not satisfactory as we expected.
The reason is that, even though the result through descretizing the output of
the traditional cGAN have semantic information in a certain extent, it is coarse
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since no classification mechanism is used in this framework. Compared to the
cGAN method, Ours1 (cGAN + DCN) method achieves better performance. For
example, Ours1 method obtains surprising 13.25% Pix.acc improvement and
7.88% Mean IoU improvement on SIFT Flow dataset. This is because Ours1
method divides the complex image semantic segmentation into two simpler ones
with a multi-step supervised learning ones, segmentation supervised by image-
level and category labeling by pixel-level. Specifically, cGAN is used to generate a
region-based weak semantic map of the original image, and based on this weak-
semantic map, a dilated convolutional network is used to predict the precise
category label of each pixel while remaining the spatial information of the original
image well. This also demonstrates the importance of classification mechanism
for image semantic segmentation task.

Finally, Ours2 method gains better performance than Ours1 method. Specif-
ically, our method achieves 0.75% pix.acc improvement and 3.13% mean IoU
improvement on PASCAL VOC 2012 dataset, compared to the Ours1 method.
The reason is that, compared to Ours1 method which uses two sub-Networks sep-
arately, Ours2 method optimizes two sub-Networks simultaneously, this enhances
the joint representation capability of the model. Besides, the novel information
interaction (II) loss term is vital for the image-level supervised step, which con-
siders the interaction information among different pixels and makes the structure
information more precise.

In general, the proposed method achieves the satisfactory performances, and
this demonstrates the effectiveness of the proposed framework for the image
semantic segmentation task.

4 Conclusion

In this work, a cGAN and DCN based multi-step supervised learning method is
proposed for image semantic segmentation task. Specifically, the cGAN used in
image-level supervised learning step is to generate initial weak semantic map, and
the DCN used in pixel-level supervised learning step is to finalize the category
label recognition of each pixel in the image. Additionally, a novel information
interaction (II) loss term is proposed to obtain a segmentation map with more
precise spatial structure in image-level supervised learning step. Finally, the
experiment results on three public and challenging datasets have verified the
rationality and effectiveness of the proposed method.
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