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Abstract. One of the time-consuming routine work for a radiologist is
to discern anatomical structures from tomographic images. For assisting
radiologists, this paper develops an automatic segmentation method for
pelvic magnetic resonance (MR) images. The task has three major chal-
lenges (1) A pelvic organ can have various sizes and shapes depending on
the axial image, which requires local contexts to segment correctly. (2)
Different organs often have quite similar appearance in MR images, which
requires global context to segment. (3) The number of available anno-
tated images are very small to use the latest segmentation algorithms. To
address the challenges, we propose a novel convolutional neural network
called Attention-Pyramid network (APNet) that effectively exploits both
local and global contexts, in addition to a data-augmentation technique
that is particularly effective for MR images. In order to evaluate our
method, we construct fine-grained (50 pelvic organs) MR image segmen-
tation dataset, and experimentally confirm the superior performance of
our techniques over the state-of-the-art image segmentation methods.
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1 Introduction

Medical doctors routinely identify the anatomical structure of human body from
tomographic images, which is extremely time-consuming. In order to assist these
doctors to understand tomographic images efficiently, it is one of the key research
in medical imaging to develop a method to automatically segment tomographic
images into anatomical categories [6,9,11,15]. Among various tomography tech-
niques, magnetic resonance (MR) imaging is often preferred for the purpose of
radiotherapy planning due to the better soft-tissue contrast for organs involved
in radiation therapy.
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In this paper, we are particularly interested in automatically segmenting
pelvic MR images into 50 anatomical categories, which is much larger than pre-
vious work. The fine-grained segmentation results can greatly help radiologists
to quickly identify pelvic structures, and be used for high-quality anatomical 3D
reconstruction. In addition, the precise segmentation can help the doctors with
follow-up diagnosis of relevant diseases such as sarcopenia. These are the pri-
mary motivations that we want to develop a system that automatically segment
pelvic structures.

Our method is based on convolutional neural networks (CNNs), which is the
backbone of state-of-the-art methods for image segmentation. However, segment-
ing pelvic MR images is more challenging than standard image segmentation due
to its own characteristics. In fact, it is often not an easy task, even for experienced
doctors, to correctly segmenting pelvic MR images, especially when the images
have unusual anatomical structures. The task requires a thorough comprehension
of the pelvic anatomy, knowledge in the pelvic diseases that cause the unusual
structure, and the ability to recognize patterns in the scanned images. We col-
laborate with doctors in radiology department who actually segment pelvic MR
images, and identify the three challenges for training CNNs. To address the chal-
lenges, we propose a novel CNN architecture called Attention-Pyramid network
(APNet) and train it with a domain specific data augmentation. The challenges
and our strategies are discussed in the following paragraphs.

Fig. 1. An exemplar series pelvic MR images belongs to one patient, each image pre-
senting separate scanning sessions of different axial. Taking an image and its ground
truth (GT) as a pair, the correct reading order is from top to bottom, from left to right.
To stress our challenge, the magnified part of the image shows the characteristics of
MR images.

The first challenge is that a pelvic structure varies greatly in size and shape
on different axial images, often with blurry boundaries caused by patient’s belly
movement when breathing. For example, Fig. 1 shows a series of MRI from a
patient, where femur-left has two different shapes in the second and fourth
columns of the last row. Moreover, there is no clear boundary between muscle



APNet: Semantic Segmentation for Pelvic MR Image 261

of the gluteus medius-left and muscle of the gluteus minimus-left in the middle
row. For these cases, doctors often rely on multiple local contexts about the
position of organ (e.g. a particular organ should have two neighboring organs
at bottom and right). In order for CNNs to effectively use these local contexts
as doctors do, we adapt a layer that is particularly designed for multiple-level
contexts aggregation, which is called a spatial pyramid pooling (see Sect. 3.1).

The second challenge is that different pelvic organs have similar appearances
in MR images. For example, in Fig. 1, sartorius-left and rectus femoris-left look
very similar, the key to distinguish them is their positions: one on top and one
on bottom. For these cases, doctors usually depend on global contexts such as
absolute positions of structures (e.g. a particular organ should be always at the
bottom-right of the image). To equip the similar ability for CNNs, we adopt
an mechanism that is designed to gather global level context, which is called
attention mechanism (see Sect. 3.2).

Third, the number of annotated images is limited. The annotation cost for
the segmentation is much higher than other typical computer vision tasks such
as image classification (i.e., tag annotation) or object detection (i.e., bound-
ing box annotation). Furthermore, unlike the natural images where we can use
crowdsourcing for annotation, the medical task demands professional knowledge,
which is not easily accessible. Our dataset is composed of only 320 MR images
from 14 patients. To address this problem, we apply elastic deformation to the
annotated images, which is a type of data augmentation. This is an effective way
especially for MR image segmentation, because image deformation often occurs
in real MR images and thus realistic deformations can be simulated easily (see
Fig. 4).

Our extensive experiments show that each technique (pyramid module, atten-
tion mechanism, and data augmentation) contributes to the better performance
for pelvic MR image segmentation (see Sect. 4).

Overall, the main contributions of our work are:

– We propose an automatic pelvic MR image segmentation method, which is
the first one that completes pixel-level segmentation for a large number of
structures (50 bones and muscles) on pelvic MR images.

– We equip the network with a spatial pyramid pooling layer for aggregating
the multiple level of local contexts.

– We build an attention-mechanism that effectively gathers global level of con-
texts.

– We adopt a data augmentation strategy with image deformation to increase
realistic training images.

– We conduct extensive experiments to show the effectiveness of our proposed
method.

The rest of the paper is organized as follows. Section 2 reviews relevant lit-
erature. Section 3 introduces the proposed model. Section 4 presents the experi-
mental results, and Sect. 5 concludes the paper.
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2 Related Work

Pelvic Segmentation. Various methods for medical image segmentation have
been developed over the past few years. Dowling et al. [6] use an atlas-based
prior method to detect the edges of hip-bone, prostate, bladder and rectum, and
the Mean Dice Similarity Coefficient (DSC) of the four organs reached 0.7. Ma
et al. [15] use a shape-guided Chan-Vese model, exploit the difference between
pelvic organs’ intensity distribution and simultaneously detect the edges of four
organs. In [9], MRI is used together with CT images to identify muscle structures,
and the CycleGAN [23] is extended by adding a gradient consistency loss to
improve the accuracy of boundary. Kazemifar et al. [11] use an encoder-decoder
network called U-Net to segment male pelvic images, and it achieved 0.9 in Mean
DSC. However, they segment sparsely distributed organs into four categories
only. To the best of our knowledge, our work is the first that classify each pixel
in pelvic MR images into the fine-grained categories (50 bones and muscles)
that are densely distributed, which is more challenging than previous work that
typically segments sparsely distributed organs into a few categories.

Semantic Segmentation in Deep Learning. Semantic segmentation is a task
to classify every pixel in an image. Fully convolutional network [14] is the model
that modifies image classification CNNs into semantic segmentation, and is a de
facto backbone model for the state-of-the-art image segmentation. A problem in
adopting CNN for segmentation is the existence of pooling layers. The pooling
layer increases the receptive field by discarding the position information, but
semantic segmentation requires pixel-wise classification, the position information
needs to be preserved.

Researchers proposed two forms of methods to address this problem. The first
is an encoder-decoder architecture such as U-Net [17] or SegNet [2]. The encoder
uses the pooling layer to gradually reduce spatial dimensions of input data, and
the decoder gradually recovers the details of target and the corresponding spatial
dimensions through a network layer such as a deconvolution layer. It usually
has a direct connection to pass information from encoder to decoder for better
recovery of the position information.

Another method is multi-scaling, which is the idea to use multiple sizes of
input images (i.e., sharing network), convolutional filters (i.e., dilated convolu-
tion), or pooling layers (i.e., spatial pyramid pooling). The sharing network [5,16]
adjusts the size of input image to several proportions and passes them through
a shared deep network. Then the final prediction result is from the fusion of
the resulting multi-scale features. Dilated convolution [3,20,21] uses filters with
multiple dilation (or atrous) factors, which can increase the receptive field with-
out changing the size of feature map. Spatial pyramid pooling (SPP) [8,13,22]
divides input image into subregions, aggregates the characteristics of each sub-
region, and finally concatenates features of all subregions to form a complete
feature. This is an effective way to gather multiple levels of local contexts so we
adapt it in our network.
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Attention Mechanism. Attention mechanism has been widely used in image
processing. Xu et al. [19] introduce spatial visual attention mechanisms which
extracts image features from the middle CNN layer. Jing et.al [10] propose an
attention mechanism that learns the weights of both visual and semantic fea-
tures, to define abnormal locations in medical images and generate relevant
description sentences. While these methods apply attention mechanism in two-
dimensional space or time dimension, we apply an attention mechanism for the
scaling factors. Inspired from [10], we propose an attention mechanism of joint
learning, which combines predictions from multi-scale features when predicting
the semantic label of a pixel. The final output of our model is generated by the
maximum response of all scale predictions. We show that the proposed attention
model effectively uses features at different locations and scales, which is crucial
for identifying pelvic anatomical structures from global contexts.

Fig. 2. Pelvic parsing issues we observe on our testset. FCN can only describe the
structures roughly.

3 Model

This section describes our Attention-Pyramid Network (APNet) as illustrated
in Fig. 3, which is designed to capture both local and global contexts. Our archi-
tecture engineering started from observing the segmentation results from FCN,
which is a basic CNN for segmentation. In Fig. 2, we show samples from FCN
and our APNet that we propose in this section. We can see that FCN fails to
segment the boundary of muscle of the gluteus minimus-left and muscle of the
gluteus medius-left. To segment this correctly, we need to care the local contexts
of the two organs’ boundaries. To equip this ability to CNN, we introduce spatial
pyramid pooling that can capture multiple level of local contexts (See Sect. 3.1).
Moreover, we can also see FCN fails to distinguish vastus intermedius muscle-
right and adductor magnus-right, which is due to the lack of the global context
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Fig. 3. Illustration of the proposed APNet. First we resize input image into 3 scales
with portion of {1, 0.75, 0.5}, and use CNN separately to get feature maps of 3 sizes from
last convolutional layer. Then a pyramid pooling layer, each for a feature map, forms
pooled representation with bin sizes of 1 × 1, 2 × 2, 3 × 3, 6 × 6 respectively. Followed
by convolution, upsampling and concatenation, the four sub-region representations are
concatenated with original feature map into a score map. Then score maps of 3 scales
are upsampled to the maximum size, and the weighted sum of them gets the final
score map. Finally, the representation is fed into a convolutional layer to get the final
pixel-level prediction.

that vastus intermedius muscle-right should be at lower place on this axial image.
To recognize global context effectively, we introduce attention mechanism (see
Sect. 3.2). After technically describe the pyramid module and attention module,
we finally describe the whole APNet architecture.

3.1 Pyramid Pooling Layer

Spatial Pyramid Pooling (SPP) [8] is to gather multiple levels of local contexts
by pooling with multiple kernel sizes. Zhao et al. [22] apply the SPP for FCN
based segmentation to aggregate information across subregions of different scales
(i.e., different level of local contexts). We adopt this SPP module for our pyramid
pooling layer. The layer firstly separates feature map into different sub-regions
and forms pooled representation for different positions. Assuming that a pyramid
pooling layer has L levels, in each spatial bin, it pools the responses of each
filter of input feature map under L level scales from course to fine. Assuming
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the input feature map has the size of n × n, for one pyramid level of l × l
bins, we implement this pooling level as a sliding window pooling, where the
window kernel size = [1, n/l, n/l, 1], stride = [1, n/l, n/l, 1], where [·] denotes
ceiling operations. Each level reduces the dimension of feature map size to 1/l of
the original one with level bin size of l× l. Then we apply bilinear interpolation
to upsample the low dimension features to the same size as the original feature
map, and concatenate these features from multiple local contexts to form the
final output of the pyramid pooling layer (See Sect. 3.3).

3.2 Attention

Our attention mechanism is to capture the global contexts efficiently, and help
the network to find the optimal weighting scheme for multiple input image sizes.
We apply the attention mechanism for the output of pyramid pooling layer.
Assuming we use S scales (i.e., input image sizes), for ecah scale, the input
image is resized and fed into a shared CNN that outputs a score map. The score
maps from multiple scales are upsampled to the same size of the largest score
map by bilinear interpolation. The final output is the weighted sum of score maps
from all scales, where the weight reflects the importance of feature for each scale.
The weighting scheme is initialized equally but, is updated by back-propagation
in the training phase, so that it captures the global contexts effectively.

Furthermore, to better merge discriminative features for the final convolu-
tional layer output, we add extra supervision [12] for each scale in this attention
mechanism. Lee et al. [12] point out that distinguished classifiers trained with
distinguished features demonstrate better performance in classification tasks.
Particularly, the loss function for attention contains 1 + S cross entropy loss
functions(one for final output and the other for each scale):

F =
S∑

i=1

λi · Fi (1)

λi = exp(Fi)/
S∑

t=1

exp(Ft) (2)

Loss = min(H(F, gt)) +
S∑

i=1

min(H(Fi, gti)) (3)

where F denotes the final output, gt denotes the original ground truth. Fi is
the score map of scale si and gti is the corresponding ground truth. The ground
truths are downsampled accurately to the same size of corresponding outputs
during training. λi is the weight of scale si. H is cross entropy formula.

3.3 Attention-Pyramid Network Architecture

With the attention mechanism on top of the pyramid pooling module, we propose
our Attention-Pyramid network (APNet), as shown in Fig. 3. We use the three
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scales {0.5, 0.75, 1}, resize the input image for each scale, and feed the resized
images to a shared CNN. We specifically use the ImageNet pre-trained ResNet [7]
with dilated network strategy [20] to extract a feature map from conv5 layer,
which is 1/8 of the input image in size. We feed the feature map into the pyramid
pooling layer to gather multiple local contexts. The pooling window sizes are the
whole, half, 1/3, and 1/6 of the feature map. Then we upsample the four pooled
feature maps to the same size of original feature map, and concatenate them
all. The pyramid pooling layer is followed by a convolutional layer to generate a
score map for each scale. The weighted sum of three score maps will be the final
segmentation results, where the weights are learned by the attention mechanism.

APNet effectively exploits both local and global contexts for pixel-level pelvic
segmentation. The pyramid pooling layer can collect local information and is
more representative than the global coordinator [13]. It learns local features and
can adapt to the deformation of a structure on different axial images, but it
sometimes confuses the categories (i.e., category confusion [22]) due to the lack
of global contexts. This naturally calls for the attention mechanism that provides
global contexts. The attention mechanism makes the model adaptively find the
optimal weight for multiple scaled (or resized) images. Resizing does not change
the relative size and position of organs, but smaller images helps CNNs to capture
global contexts more easily than the high resolution images. Therefore, jointly
training the attention mechanism and the spatial pooling layer is an effective
way to gather both local contexts (by spatial pooling layer) and global contexts
(by attention mechanism).

We note that the global contexts include the absolute position of pelvic struc-
tures (left-right symmetry, up-and-down order) in the image. In other words,
some organ categories are determined by the (global) position in the MR image.
For example, a hint to recognize sartorius-right is to check if it is on the left side
of the image or not, which is exactly what radiologists do.

4 Experiments

4.1 Datasets

We prepare 320 MR images from 14 female patients, and professional doctors
annotated them. The dataset covers image sizes of 611 × 610, 641 × 640, and
807 × 582. Images belong to one patient is called a series. Each series has 24 or
20 images of same size presenting separate scanning sessions of different axes.
We use 240 MR images from 10 patients for training, 60 images from 3 patients
for validation, and 20 MR images from a patient as test set.

4.2 Data Augmentation

For data augmentation, we originally tried random mirror, random resize, ran-
dom rotation, and Gaussian Blur, which are effectively used in the state-of-the-
art methods for natural scene parsing [3,22], but these conventional methods did
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Fig. 4. Example of image deformation. Blue circles are control points. (Color figure
online)

not perform well. We call it common data augmentation (CDA) in the exper-
iment section. In our work, we adopt image deformation using moving least
squares [18]. This is much more effective than the conventional methods, and
can simulate one of the most common variation in MR images, because image
deformation often occurs in real MR images. An example of data augmentation is
shown in Fig. 4. We perform random deformation multiple times on the dataset
to get a training set with 30k MR images, a validation set with 2k MR images.
We make sure that images from a patient are not in multiple sets.

4.3 Evaluation Metrics

Following [14], we use the pixel wise accuracy and region intersection over union
(IoU) between the segmentation results and ground truth to evaluate perfor-
mance. Let TPi (true positive) be the number of pixels of class i predicted to
belong to class i, FPi (false positive) be the number of pixels of any other classes
but i predicted to be class i, FNi (false negative) be the number of pixels of
class i predicted to belong to any other classes but i. Then we compute IoUi for
class i and mean IoU for all classes:

– IoUi = TPi/(TPi + FPi + FNi)
– Mean IoU =

∑n
i=1(TPi/(TPi + FPi + FNi))

– Pixel Accuracy =
∑n

i=1 TPi/(TPi + FNi)

4.4 Implementation Details

We use the Resnet-101 network pre-trained on Imagenet that is adapted for
semantic segmentation as described in Sect. 3.2. To improve model speed, we
reduce kernel size of resent101 conv5 from 7 × 7 to 3 × 3. Following [3], we
implement dilated convolution with atrous sampling rate 12. For training, we
adapt the poly learning rate policy [3] where current learning rate is multiplied
by (1 − iter

maxiter
)power. We set initial learning rate of 2.5 × 10−5, power to 0.9

respectively. With iteration number of 110K in max, momentum and weight
decay are set to 0.9 and 0.0005 respectively. We use Tensorflow [1] for imple-
mentation.
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Table 1. Per-class IoU(%) on test set. CDA refers to common data augmendation. DA
refers to the deformation data augmentation we performed, levels of attention indicates
how many different sizes we adjust for the input image.

No. Class name FCN+

DA

DeepLab-

v2+

DA

PSPNet+

DA

PSPNet+

CDA

APNet (2

levels of

attention)+

DA

APNet (3

levels of

attention)+

DA

1 vastus

lateralis-right

56.73 90.31 91.44 82.04 91.12 92.68

2 vastus

lateralis-left

16.06 74.75 72.66 57.27 75.71 77.81

3 adductor

brevis-right

61.71 88.01 85.94 70.07 87.46 87.85

4 adductor

brevis-left

45.22 82.35 84.87 74.76 88.51 87.26

5 adductor

magnus-right

69.21 87.72 87.30 73.70 89.48 89.48

6 adductor

magnus-left

53.39 88.55 87.71 79.94 91.23 90.99

7 quadrauts

femoris-right

50.78 74.77 76.60 60.17 77.77 81.85

8 quadrauts

femoris-left

23.40 69.65 70.32 52.37 72.85 73.75

9 pectineus-

right

69.05 80.29 81.10 62.90 84.30 85.99

10 pectineus-left 52.95 77.62 75.88 62.13 79.98 79.28

11 muscle of the

tensor fasciae

latae-right

70.74 91.47 91.18 77.45 94.68 94.30

12 muscle of the

tensor fasciae

latae-left

31.96 72.28 71.73 56.84 76.05 74.08

13 rectus

femoris-Right

58.38 91.34 92.02 80.44 94.86 94.77

14 rectus

femoris-left

35.62 76.76 77.33 62.59 79.25 80.18

15 obturator

externus-right

69.18 88.16 87.11 71.61 87.16 88.34

16 obturator

externus-left

65.64 88.86 87.71 74.13 89.68 90.56

17 urinary

bladder

92.15 96.30 95.26 87.97 96.36 96.52

18 muscle of the

obturator

internus-right

56.49 74.51 72.89 53.95 73.68 75.66

19 muscle of the

obturator

internus-left

51.02 65.15 61.87 47.45 65.70 66.62

20 piriformis-

right

71.52 88.19 87.30 74.10 89.01 89.10

21 piriformis-left 72.00 72.13 67.69 52.45 71.63 74.27

22 sartorius-

right

51.58 81.98 86.69 73.75 89.59 89.40

23 sartorius-left 27.23 68.60 69.33 53.45 72.97 72.89

24 muscle of the

gluteus

minimus-right

55.44 87.44 89.62 79.94 91.97 92.82

(continued)
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Table 1. (continued)

No. Class name FCN+

DA

DeepLab-

v2+

DA

PSPNet+

DA

PSPNet+

CDA

APNet (2

levels of

attention)+

DA

APNet (3

levels of

attention)+

DA

25 muscle of the

gluteus

minimus-left

29.01 53.50 53.19 39.59 58.28 58.3

26 muscle of the

gluteus

medius-right

74.86 93.20 93.88 85.31 94.94 95.28

27 muscle of the

gluteus

medius-left

48.44 76.29 74.55 59.10 77.59 77.84

28 muscle of the

gluteus

maximus-

right

86.61 91.19 91.25 78.87 91.76 93.65

29 muscle of the

gluteus

maximus-left

81.25 84.06 82.12 65.75 84.02 84.70

30 erector

spinae-right

69.41 77.64 76.07 56.49 77.43 83.24

31 erector

spinae-left

62.81 71.16 69.88 50.68 72.35 73.26

32 rectus

abdominis-

right

80.10 81.52 81.07 68.65 88.45 86.69

33 rectus

abdominis-

left

77.56 84.69 81.63 68.76 87.89 87.55

34 iliacus-right 67.93 90.30 92.20 80.61 93.61 93.23

35 iliacus-left 48.71 69.02 64.92 52.40 69.34 71.25

36 psoas

major-right

66.03 87.22 84.47 72.77 88.90 88.9

37 psoas

major-left

48.53 66.97 64.74 49.70 69.72 69.72

38 femur-right 80.97 91.95 91.70 79.35 92.51 93.99

39 femur-left 72.57 84.85 83.72 68.90 85.10 86.35

40 hip

bone-right

73.26 87.67 86.92 73.59 88.67 89.70

41 hip bone-left 62.82 68.51 64.85 48.57 68.52 70.13

42 sacrum 73.07 79.82 82.38 72.16 84.60 84.73

43 semiten-

dinosus-right

21.18 65.73 64.80 49.30 63.22 70.94

44 semiten-

dinosus-left

24.17 56.17 52.36 44.85 61.87 63.25

45 gracilis-right 6.37 46.88 43.58 29.04 57.89 63.04

46 gracilis-left 6.40 43.25 38.82 30.77 50.13 50.18

47 vastus

intermedius

muscle-right

9.82 80.23 79.06 70.98 85.42 86.46

48 vastus

intermedius

muscle-left

3.08 63.02 64.77 55.44 67.53 70.22

49 adductor

longus-right

50.87 81.07 83.32 69.88 89.58 89.18

50 adductor

longus-left

48.44 78.53 82.20 72.67 87.90 87.19
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4.5 Baselines and Experimental Setup

We compare APNet with three existing neural network architectures: FCN [14],
Deeplab-v2 [3], and PSPNet [22]. FCN is based on VGG architecture while others
including ours are based on Dilated [21] Resnet-101 [5]. PSPNet is the state-of-
the-art in natural image segmentation. Both APNet and PSPNet have spatial
pyramid pooling [8] with the level of 4 [22]. For APNet, we use two different levels
of attention: {1, 0.75, 0.5} and {1, 0.75} where each number is a scaling factor
for input image resizing. We intentionally use the factor more than 0.5 because
it is known that scale portion less than 0.5 leads to unsatisfactory results [4].
The experiments with more levels of scaling factors are future work.

All methods are trained with data augmentation strategies, as we describe
in Sect. 4.2. To demonstrate the effectiveness of our data augmentation strategy,
we also train PSPNet with common data augmentation (CDA) such as random
mirror, random resize, and random rotation, and call it PSPNet+CDA.

4.6 Results and Discussions

We show our experimental results on test set in Table 1. APNet performs the
best among FCN, DeepLab-v2, and PSPNet. Of the two variants of APNet, 3
levels ({1, 0.75, 0.5}) yields the best performance. With attention mechanism, our
network has the highest score of 80.27% mIOU and 87.12% mean pixel accuracy.
We can also see the benefit of our data augmentation (DA) strategy over the
common data augmentation (CDA). When we train PSPNet with CDA, it only
has 64.72% mIOU and 74.39% mean pixel accuracy but with DA, it has 76.08%
mIOU and 84.10%, which is 10% better results (Table 2).

Table 2. Test mIOU and mean pixel accuracy for each method. DA refers to deforma-
tion data augmentation based on image deformation. CDA refers to the common data
augmentation.

mIoU(%) Pixel Acc(%)

FCN + DA 52.58 72.03

DeepLab-v2 + DA 76.70 84.90

PSPNet + DA 76.08 84.10

PSPNet + CDA 64.72 74.39

APNet (2 levels of attention) + DA 79.38 86.20

APNet (3 levels of attention) + DA 80.27 87.12

We also show sample images from the test set in Fig. 5. APNet is designed to
capture both local contexts and global contexts. The samples tell that DeepLab
often fails to capture local contexts, and PSPNet does not perform satisfactorily
in capturing global context, but APNet captures both. For example, in the first
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Fig. 5. Improvements on test set. APNet captures more global context than PSPNet,
and more local context than DeepLab-v2.

row, PSPNet misclassified a little part of obturator externus-left to obturator
externus-right. APNet is able to fix the error due to the global context captured
by attention mechanism. For another example, in the second row, we see that
DeepLab-v2 failed to segment sarcrum precisely while APNet captured local
context to describe its contour. Similarly in the third row, DeepLab-v2 failed to
capture the local context when segmenting the connected area of muscle of the
gluteus minimus-right while APNet can segment it precisely.

5 Conclusion

In this paper, we automatically segment MR pelvic images, with the goal to
help medical professionals discern anatomical structures more efficiently. Our
proposed methods address the three major challenges: high variation of organs’
sizes and shapes often with the ambiguous boundaries, similar appearances of
different organs, and small number of annotated MR images. To cope with these
challenges, we propose Attention-Pyramid network and adopt a data augmen-
tation strategy with image deformation. We experimentally demonstrate the
effectiveness of our proposed methods over the baselines.
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