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Abstract. Histopathology image diagnostic technique is a quite com-
mon requirement; however, cell nuclei classification is still one of key chal-
lenge due to complex tissue structure and diversity of nuclear morphol-
ogy. Cell nuclei categories are often defined by contextual information,
including central nucleus and surrounding background. In this paper,
we propose a Dual-View Convolutional Neural Networks (DV-CNNs)
that captures contextual contents from different views. The DV-CNNs
are composed of two independent pathways, one for global region and
another for center local region. Noted that each pathway with “multi-
crop module” can extract five different feature regions. Common net-
works do not fully utilize the local information, but the designed cropping
module catches information for more complete features. In experiments,
two pipelines are complementary to each other in score fusion. To verify
the performance in proposed framework, it is evaluated on a colorectal
adenocarcinoma image database with more than 20,000 nuclei. Com-
pared with existing methods, our proposed DV-CNNs with multi-crop
module demonstrate better performance.
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1 Introduction

Histopathology is the most commonly used microscopic research for the diagno-
sis of cancer diseases. The cancer tissues are sampled from the body and then
prepared for observing under the microscope. Stained with the standard hema-
toxylin and eosin (H&E) stain [1] can mark nuclei in histopathology images of
cancer tissues, and pathologists need to identify the type of nuclei. The recog-
nition of cell nuclei in histopathology images become one of the core challenge
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for qualitative and quantitative analysis at cell levels [5]. A single histopathol-
ogy image may contain about thousands of nuclei, and pathologists are inca-
pable of identifying all nuclei precisely. Traditional approach requires experienced
pathologists to manually identify the cell, which is extremely laborious. Conse-
quently, developing an automatic and reliable method [8] for classification tasks
becomes an attractive research topic and automated images classification will
allow pathologists to quickly obtain the specific information which can increase
objectivity and less burden on observers.

Most of the existing automated attribute classification techniques for cells
in histology images include two aspects, i.e., traditional machine learning meth-
ods and convolutional neural network (CNNs) [13]. Kumar et al. proposed a k-
nearest neighbor based method for microscopic biopsy images, and the efficacy of
other classifiers such as SVM, random forest, and fuzzy k-means was examined
[12]. Recently, deep convolutional neural networks appear to be attracting con-
siderable attention due to its excellent performance on visual recognition task.
Different from traditional approaches, CNNs act more dynamically to provide
multilevel hierarchies of features, have been extensively employed for histopathol-
ogy image classification. Malon et al. [9] combined manually designed nuclear
features with the learned features extracted by CNN which handled the vari-
ety of appearances of mitotic figures and decreased sensitivity to the manually
crafted features and thresholds [16].

Different from usual scene classification, cell nuclei classification belongs to
fine-grained image categorization which aims to classify sub-categories, such as
different species of dogs. Therefore, variability in the appearance of the same
type of nuclei is a critical factor that makes classification of individual nucleus
equivalently difficult. Pathologists analyze the cell nuclei of the histopatholog-
ical images, looking for detailed texture around nucleus and the shape of the
nucleus [15,17]. So in cell nuclei recognition, nuclei categories are often defined
by local nuclei and global background around nuclei. But existing classifica-
tion approaches are limited in considering different region of cell nuclei. In this
paper, we present a Dual View convolutional neural networks by employing a
dual network strategy to classify nuclei in routine H&E stained histopathology
images of colon cancer. To be specific, CNNs at global way are able to capture
cell background information, while CNNs at local way are capable of describing
local details of center nucleus. Meanwhile, multi-crop module is added to the two
subnets, which can catch diverse feature regions. DV-CNNs with multi-crop mod-
ule integrate complementary diagnostic criteria of different hierarchy concepts,
allowing them to explore the intrinsic connection between cellular background
and nucleus.

We design different experiments to ensure a fair comparison. And the exper-
imental results demonstrate that multiple feature regions around nuclei and dif-
ferent image views are important for cell nuclei classification in histopathology
images and show superior performance to current methods on the HistoPheno-
types datasets.
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2 Nuclei Classification Framework

Cell nuclei classification always couples global background with local part in
a diagnosis. We need to consider this contextual information of histopathology
images during building models. In order to address these challenges, we utilize
the CNNs to propose an effective architecture that dual views of images are first
conducted and then send to two branches for attaining multiple feature regions.
In this section, we first describe the framework of DV-CNNs and then discuss
multi-crop module.

2.1 Dual View Convolutional Neural Networks

To derive an efficient classifier in cell nuclei images, we need to overcome the
challenge posed by variability in the appearance of the same type of nuclei [10].
Pathologists analyze the cell nuclei by looking for detailed texture around nucleus
and the shape of the nucleus and then determine the possible nuclei type. Fol-
lowing the pathologist’s experiences [11], we propose DV-CNNs as illustrated in
Fig. 1.
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Fig. 1. The overall flowchart of the proposed Dual View CNNs.

The proposed model offers a dual view of images, with one pathway consid-
ering information from the larger area around the nucleus and another pathway
focusing on local, nucleus level information. We observe contexts in the cell nuclei
imagery, where nucleus is relatively small and it is easy to include larger region as
input. If we focus only on larger region, the specific attributes of the nucleus will
be ignored, and vice versa. The proposed approach is based on multiple cues
extracted from a dual view of images such as the background and the center
nuclei features, and then, they provide each other with complementary features
to avoid missing important diagnostic information.
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In this framework, two pathways process images in parallel. Then, two indi-
vidual networks are concatenated to combine extracted features. As illustrated
in Fig. 1, they are designed to describe cell nuclei at different views for con-
textual understanding. We feed larger view patches 36 × 36 and smaller view
patches 27 × 27 to two sub-network to extract different features, respectively.
For two sub-networks, each 3×3 convolution layer is followed with the Rectified
Linear Unit activation layer and Batch Normalization layer [4]. A 2 × 2 max
pooling operation with stride 2 for reducing half. Multi-cropping modules are
added to two pathways, and next section will have detailed introduction about
this module. Finally, the prediction results of our models are complementary to
each other by fusing scores.

2.2 Multi-cropping Module

After feature extraction in both larger region and center local region, multi-
crop module is discussed as shown in Fig. 2. There are two reasons by utilizing
multi-crop module. The first reason is uncertainty of the central location of the
nucleus. Input images with the same size but of different central location of the
nucleus display different feature representations. Combinations of different loca-
tion features help understanding image contents better. So compound features
usually have better representation ability. The second advantage is robustness
to variable appearance of the nucleus. Cropping patches from feature maps and
fusing these feature patches are robust to diversity of nuclear morphology.

The multi-cropping module captures multiple local information from different
regions in feature maps, while those previous works all rely on a fix feature size.
Meanwhile, the multi-region crop is complementary to each other. The basic
architecture as shown in Fig. 1 starts with convolutional layers and max pooling
layers. After a series of convolutional layers, feature map P is obtained and send
to multi-cropping module, then four different regions of feature are cropped
around central nucleus, i.e., top-left, top-right, bottom-left, and bottom-right
(denoted as TL, TR, BL, BR). Each region is about three quarters of the image
P, where cropping patches are able to cover the majority area of a nucleus. Then,
network is divided into five subnets for four region features (i.e., TL, TR, BL,
BR) and the original feature map P. Each region is followed by one convolutional
layer and a global average pooling layer. Batch Normalization layer is applied
to the activations of convolutional layers, following by the ReLU layer for non-
linearity. Those five networks produce five output as FTL, FTR, FBL, FBR, FP ,
respectively. Finally, those five outputs are concatenated as,

Z = FTL ⊕ FTR ⊕ FBL ⊕ FBR ⊕ FP , (1)

where Z combines comprehensive information derived from different regions.
Suppose the number of categories is N , then z is expanded to N × 1 vector,
named as z̃. The probability of each category is calculated as follows,

σ(z̃)j =
ez̃j

∑N
k=1 ez̃k

, (2)
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Fig. 2. Multi-cropping module in detail.

where z̃j is the j-th value of N × 1 vector. After a softmax layer, σ(z̃global)j and
σ(z̃local)j are obtained. Finally, the prediction results of σ(z̃global)j and σ(z̃local)j
are complementary to each other by fusing them. And the losses between out-
puts and label is computed through categorical cross entropy loss function. In
the nuclei classification framework, the proposed DV-CNNs model is based on
multiple cues extracted from dual views of images, plus multi-region features of
the branch networks. As illustrated in Figs. 1 and 2, they are designed to describe
cell nuclei at different regions for contextual understanding. At this final level, it
is expected that the nuclear interaction with its background reaches the purpose
to avoid missing important diagnostic information. It also leverages the idea of
multi-region locations in features that effect the recognition of nuclei, making it
suitable for building cell nuclei recognition networks.

3 Experiment Results and Analysis

The proposed CNNs are implemented in Keras, on Tensorflow backend. The
training data are augmented by rotating and flipping all the images. In order
to achieve effective fusion, two networks are trained to the best performance,
respectively, and then dual CNNs are trained on this basis. We update param-
eters with Adam strategy [6]. All network models are trained for 80 epochs. A
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batch size of 256 images is used. In the designed sub-network, the initial learn-
ing rate is 0.001, and is divided by 10 at 50 epochs. In the proposed Dual-View
network, combination of two branches are fine-tuned by setting learning rate
0.00001.

3.1 The Experimental Data

HistoPhenotypes is a public database which involves 100 H&E stained histology
images of colorectal adenocarcinomas. There are 22444 nuclei that classified into
four class labels: 7722 epithelial, 5712 fibroblast, 6971 inflammatory and 2039
others. Figure 3 illustrates some examples of the nuclei in the dataset. Note that
the dataset contains complex and wide variety shapes of nuclei where overlap
is also present. As reported in [2,14], 27 × 27 pixel nucleus-center patches are
cropped to feed one of the networks. 36×36 pixel patches are extracted, including
more contextual information to feed the another compensation branch.

Epithelial

Fibroblast

Inflammatory

Others

Fig. 3. Example patches of different types of nuclei found in the dataset. Each row
corresponds to a cell nuclei class.

3.2 Classification Performance

Experiment One. First of all, experiments are conducted to compare with
results in [14], where four classes are considered, i.e., epithelial, fibroblast, inflam-
matory and others. We employ 2-fold cross-validation the same as [14] for param-
eter tuning. And then, we calculate the F1 average score for all the classes, an
area under the receiver operating characteristic curve for multiclass classification
(multiclass AUC) [3] and overall accuracy.

Classification performance of the proposed DV-CNNs with or without multi-
crop module is provided as listed in Table 1. × represents the sub-network with-
out multi-crop module(denoted as MC.module) and vice versa. From comparison
of “without multi-crop module” and “with multi-crop module”, it is observed
that network with this module trained from different images patches (27× 27 or
36 × 36) both yield better performance than “without multi-crop module” net-
works. Thus, multi-crop module actually contains more local details and richer
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Table 1. Comparative results about DV-CNNs with or without multi-crop module for
four-classes classification.

Input +MC.module Average F1 score Multiclass AUC Overall accuracy

36 × 36 × 0.827 0.939 82.63%√
0.835 0.945 83.75%

27 × 27 × 0.798 0.930 80.48%√
0.815 0.936 81.86%

Table 2. Comparative results about DV-CNNs and other classification approaches for
four-classes classification.

Model Average F1 score Multiclass AUC

Softmax CNN+SSPP 0.748 0.893

Softmax CNN+NEP 0.784 0.917

Superpixel descriptor 0.687 0.853

CRImage 0.488 0.684

Dual-View CNNs 36× 36 branch+MC.module 0.835 0.945

27× 27 branch+MC.module 0.815 0.936

Score fusion 0.843 0.947
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Fig. 4. Comparative results for nucleus four-classes classification stratified with respect
to class label.

information of multi-region feature content. After verifying effectiveness of this
extra module, an experiment is performed to investigate the proposed DV-CNNs.

Experimental results are listed in Table 2, where also includes the strategies
of Standard Single-Patch Predictor (SSPP), Neighboring Ensemble Predictor
(NEP), superpixel descriptor and CRImage proposed in [14]. From the results, it
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is obvious that the existing methods are both lower than any single branch of the
proposed CNNs. Furthermore, the larger input branch learned on whole images
yields better results than the smaller input branch (i.e., 0.835 vs. 0.815 overall
accuracy) by comparing the performance of CNNs at different views. This phe-
nomenon indicates that the global branch has more discriminative information
which may compensate for the lack of local branch. Finally, we fuse prediction
scores of dual networks, and obtain the final performance with weighted F1 aver-
age score of 0.843 and multiclass AUC of 0.947. We obtain an improvement of
6% F1 scores over the CNN + NEP. Figure 4 further illustrates the class specific
accuracy for the proposed method compared with existing methods. Generally,
the proposed one produces higher accuracy for each class.

Experiment Two. Experiments are also designed to compare with results
in [2], where only three classes are considered, i.e., epithelial, fibroblast and
inflammatory. Others category consists of mixed cell nuclei; therefore, authors
in [2] have excluded it from their study. The split of the training and testing set
is the same; that is, there are 17004 training images and 3401 testing images.

Table 3. Comparative results about DV-CNNs with or without multi-crop module for
three-classes classification.

Input +MC.module Overall accuracy

36 × 36 × 87.34%√
88.98%

27 × 27 × 86.34%√
88.06%

Table 4. Comparative results about DV-CNNs for three-classes classification.

Model Overall accuracy

Fine-tuned VGG-16[2] 88.03%

Our CNN 36 × 36 branch+ MC.module 88.98%

27 × 27 branch+ MC.module 88.06%

Score fusion 90.40%

Classification performance of DV-CNNs with or without cropping module
is provided as listed in Table 3. It is also proved that network with multi-crop
module trained from different images patches (27 × 27 or 36 × 36) both yield
better performance than “without module networks”. In [2], authors employed
very deep architectures like GoogleNet, AlexNet [7] and VGG-16 trained with
transfer learning, which applied a pre-trained model to fine-tune on this dataset.
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It achieved the best result with the VGG-16 architecture with an overall accuracy
of 88.03%. After fusing prediction scores of dual networks, we obtain the final
performance with overall accuracy of 90.40% as listed in Table 4. From another
point of view, DV-CNNs have much less parameter than the deep network VGG-
16, but it can also reach the accuracy of the very deep network.

Through the above experiments, they demonstrate the efficiency of our meth-
ods in two aspects:

– Multi-crop module actually contains more local details and richer information
of multi-region feature content. It is obvious that the multi-crop operation
for training data has a direct influence for classification task; for example,
evaluation metrics achieved with multi-crop module are higher than those
without cropping module.

– As mentioned in Sect. 2, existing methods for histopathology images do not
consider the global and local context. For the proposed DV-CNNs, we realize
the best results compared with state-of-the-art work using four or three classes
experimental data. These excellent results in Tables 1 and 2 demonstrate the
effectiveness of the proposed method for cell nuclei recognition which allows
us to hypothesize that joint global and local information is more beneficial to
variability in the appearance of nuclei.

4 Conclusion

In this paper, we proposed an interesting Dual View CNNs with multi-crop
module which are able to capture contextual information from different regions
for nucleus classification in routine stained histology images of colorectal adeno-
carcinomas. The extracted features integrate complementary diagnostic criteria
of different hierarchy concepts, allowing them to explore the intrinsic connec-
tion between cellular background and nucleus. We conducted experiments on a
large dataset with more than 20000 annotated nuclei. The encouraging results
compared with other approaches on cell nuclei classification demonstrated its
effectiveness of the proposed method.
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