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Abstract. Epilepsy afflicts nearly 1% of the world’s population, and is
characterized by the occurrence of spontaneous seizures. It’s important
to make prediction before seizures, so that epileptic can prevent seizures
taking place on some specific occasions to avoid suffering from great
damage. The previous work in seizure prediction paid less attention to
the time-series information and their performances may also restricted
to the small training data. In this study, we proposed a Long Short-
Term Memory (LSTM)-based multi-task learning (MTL) framework for
seizure prediction. The LSTM unit was used to process the sequential
data and the MTL framework was applied to perform prediction and
latency regression simultaneously. We evaluated the proposed method in
the American Epilepsy Society Seizure Prediction Challenge dataset and
obtained an average prediction accuracy of 89.36%, which was 3.41%
higher than the reported state-of-the-art. In addition, the input data
and output of middle layers were visualized. The visual and experiment
results demonstrated the superior performance of our proposed LSTM-
MTL method for seizure prediction.
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1 Introduction

Epilepsy is a common brain disorder characterized by intermittent abnormal
neuronal firing in the brain which can lead to seizures [15]. Seizure forecasting
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systems have the potential to help epileptic to lead a more normal lives [20,22].
With these systems, epileptic could avoid to do dangerous activities like driving
or swimming and medications could be administered before impending seizures.
Therefore, predicting epilepsy before seizure it’s very important for building the
seizure forecasting systems [15].

Intracranial EEG (iEEG) is a chronological electrophysiological record of
epileptic. Seizure prediction from iEEG has been extensively studied in the pre-
vious work. Most work to date relies on spectral information and pays atten-
tion to traditional machine learning methods like k-nearest neighbors algorithm
(KNN), SVM, Random Forest and XGBoost [4], etc. On the other hand, iEEG
also contains a lot of timing information except spectral information. Most of
the previous work doesn’t utilize the sequential information of iEEG data [16].

Inspired by the success of deep recurrent neural networks (RNNs) for speech
feature learning and time series prediction [8,9], we intend to build an effective
seizure prediction model based on deep Long Short-Term Memory (LSTM) net-
work. The applications of LSTM remain a challenge in neuroimaging domain.
One of the reasons is the limited number of samples, which makes it difficult
for training large-scale networks with millions of parameters [1]. This problem
can be alleviated by applying sliding window approach over the raw data, which
would increase the amount of training samples hundreds of times [7,11,19].

Actually, most of the seizure datasets focus on the classification between
preictal state (prior to seizure) and interictal state (between seizures, or base-
line) [12,13]. The preictal data are recorded with the latency before seizure,
which can be utilized as additional information for seizure prediction. Multi-
task learning (MTL) [3] aims to improve generalization performance of multiple
tasks by appropriately sharing relevant information across them. Some studies
showed that the MTL method performed better than methods based on indi-
vidual learning [5,17,21]. Therefore, the additional latency information can be
integrated by multi-task learning.

In this paper, we proposed a novel Long Short-Term Memory based multi-
task learning framework (refer to LSTM-MTL) for seizure prediction. The LSTM
network can inherently process the sequential data, and the multi-task learn-
ing framework performs prediction and latency regression simultaneously to
improve the prediction performance. We evaluated our proposal on public seizure
dataset and showed that the LSTM-MTL framework outperformed the KNN and
XGBoost methods. The LSTM-MTL model showed the prediction AUC up to
89.36%, which is 3.41% higher than the reported state-of–the-art and 2.5% higher
than the LSTM model without MTL. The results demonstrated the effectiveness
of our proposed LSTM based multi-task learning framework.

In addition, the input data and the output of middle layers of the multi-task
LSTM network are visualized for intuitive perception. The visual results demon-
strated that the representation learning ability of the network is remarkable. The
linearly inseparable original data become linearly separable gradually through
layer-by-layer process.
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Fig. 1. The overall preprocessing flowchart. Step 1: Sliding Window Approach with
window length of S and 50% overlapping. Step 2: Feature extraction (see Sect. 2.1)
over each sample for traditional classifier input. Step 3: Sliding Window Approach with
window length of S/n and no overlapping. Step 4: Feature extraction (see Sect. 2.1)
over the sequential subsamples for LSTM networks.

The rest of this paper is organized as follows: Sect. 2 introduces the method
we adopted and the framework we proposed. Section 3 describes the experiments
in detail. Section 4 shows the experiment result and some discussion about it.
Section 5 is the conclusion of this work.

2 The Proposed Method

In this section, we introduce the feature extraction, sliding window approach,
training and testing strategies and the proposed LSTM based multi-task learning
architecture.

2.1 Feature Extraction

Typically, given an iEEG record segment r ∈ R
C×S , where C denotes the num-

bers of channels, S denotes the time steps, the feature vector x ∈ R
1×(C2+8∗C)

are extracted with following components:
One part of the features are the average spectral power in six frequency

bands of each channel and the standard deviation of this six powers, resulting
a vector with length of C ∗ 7. The six frequency bands are delta (0.1–4 Hz),
theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), low gamma (30–70 Hz) and
high gamma (70–180 Hz).

Another part of the features are the correlation in time domain and frequency
domain (upper triangle values of correlation matrices) with their eigenvalues,
resulting a vector with length of C ∗ (C + 1). Therefore, the length of feature
vector x is C2 + 8 ∗ C .
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2.2 Sliding Window Approach

We preprocess the raw data to obtain more samples for training deep networks.
The overall preprocessing flowchart of our proposed method is shown in Fig. 1.

Typically, the given datasets can be denoted as
Di = {(E1, y1, L1), ..., (ENi , yNi , LNi)},
where Ni denotes the total number of recorded segments for patient i. The

input matrix Ej ∈ R
C×T of segment j, where 1 ≤ j ≤ Ni, contains the signals

of C recorded electrodes and T discretized time steps recorded per segment. The
corresponding class label and latency of segment j are denoted by yj and Lj ,
respectively. Lj is defined as the beginning timesteps of the sequential segment.

The sliding window approach is applied to divide the segment data into
individual samples, which are used for later processing. Each sample has a fixed
length S, with 50% overlapping between continuous neighbors.

For traditional classifier, a sample can be denoted as follow:

rjk ∈ R
C×S , (1)

yj
k = yj (2)

where 1 ≤ j ≤ Ni and 1 ≤ k ≤ [ T
(S/2) ] − 1.

By feature extraction, rjk is converted into xj
k ∈ R

1×(C2+8∗C), which can be
used as the input to traditional classifiers.

For sequential deep learning models, a sample rjk is clipped into n non-
overlapping sequential records and can be denoted as follow:

rsjk ∈ R
n×C×S

n , (3)

yj
k = yj , (4)

ljk =

{
Lj + S/2

T , if yj
k = 1

0, if yj
k = 0

(5)

where 1 ≤ j ≤ Ni and 1 ≤ k ≤ [ T
(S/2) ] − 1.

In the same way, rsjk is converted into xsjk ∈ R
n×1×(C2+8∗C), which can be

used as the input to sequential deep learning models.

2.3 Training and Testing Input

In training, using samples {(r11, y
1
1), ..., (r

1
k, y

1
k), ..., (r

Ni
1 , yNi

1 ), ..., (rNi

k , yNi

k )} and
{(rs11, y

1
1), ..., (rs

1
k, y

1
k), ..., (rs

Ni
1 , yNi

1 ), ..., (rsNi

k , yNi

k )} as input to traditional clas-
sifiers and LSTM-based models, respectively.

In testing, we evaluated the models with sample data rjk or rsjk, used the
mean rule to fuse k predicted sample label probabilities pred pjk into predicted
segment label probability pred pj and computed the segment-wise Area Under
Curve (AUC).
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2.4 Long Short-Term Memory Network

RNN is a class of neural network that maintains internal hidden states to model
the dynamic temporal behaviour of sequences through directed cyclic connec-
tions between its units. LSTM extends RNN by adding three gates to an RNN
neuron, which enable LSTM to learn long-term dependency in a sequence, and
make it easier to optimize [10]. There is sequential information containing in the
iEEG data and LSTM is an excellent model for encoding sequential iEEG data.

Fig. 2. A block diagram of the LSTM unit (there are minor differences in comparison
to [6], with phi symbol after cell element and some annotation about the dimension of
each state inside the red box). (Color figure online)

A block diagram of the LSTM unit is shown in Fig. 2, and the recurrence
equations is as follows:

it = σ (Wxixt + Whiht−1 + bi) , (6)
ft = σ (Wxfxt + Whfht−1 + bf ) , (7)
ot = σ (Wxoxt + Whoht−1 + bo) , (8)
gt = φ (Wxcxt + Whcht−1 + bc) , (9)
ct = ft � ct−1 + it � gt, (10)
ht = ot � φ (ct) . (11)

A LSTM unit contains an input gate it, a forget gate ft, a cell ct, an output
gate ot and an output response ht. The input gate and the forget gate govern
the information flow. The output gate controls how much information from the
cell is passed to the output ht. The memory cell has a self-connected recurrent
edge of weight 1, ensuring that the gradient is able to pass across many time
steps without vanishing or exploding. Units are connected recurrently to each
other, replacing the usual hidden units of ordinary recurrent networks.

2.5 LSTM Based Multi-task Learning

While class label yj
k only provides hard and limited information, the latency ljk

can show much softer and more plentiful details about the seizure. To improve
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Fig. 3. The architecture of Multi-task LSTM network. One task for seizure prediction
and another for latency regression (green block). (Color figure online)

the accuracy and robustness of seizure prediction, we propose a LSTM based
multi-task learning (LSTM-MTL) framework as shown in Fig. 3 and describe in
detail as follow.

The LSTM-MTL model takes sequential data xsjk as input. Two LSTM layers
are cascaded to encoding the sequential information of input. The last timestep
output of the second LSTM layer is followed by a dense layer for learning rep-
resentation further. For prediction task, the dense layer is followed by another
dense layer with two nodes, which used a sigmoid activate function to generate
the final prediction. Simultaneously, for latency regression task, a dense layer
with one node is utilized to regress urgency degree from the output of first dense
layer.

The loss function of prediction task Lpred is sigmoid cross-entropy and the
loss function of latency regression Lreg is mean square error. For multi-task
learning, we define a loss function to combine above loss functions as follow:

L = αLpred + (1 − α)Lreg, (12)

where α is a hyper-parameter between 0 and 1.

3 Experiments

This section first describes the dataset used for evaluation, and then describes
the experimental setup of the proposed method. Then, we briefly describe the
details and parameter settings of the comparison models.

3.1 Dataset

We validated the effectiveness of our method on a public seizure prediction com-
petition dataset [12]. Seizure forecasting focuses on identifying a preictal (prior
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to seizure) state that can be differentiated from the interictal (between seizures,
or baseline), ictal (seizure), and postictal (after seizures) states, especially the
interictal state. The goal of the dataset is to demonstrate the existence and
accurate classification of the preictal brain state in humans with epilepsy. It’s
a binary classification. The dataset contains 2 patients (263 and 210 samples,
respectively). Every 10 min of the data is intercepted as a sample. For detailed
information, please refer to the website of Kaggle [12].

3.2 Implementation Details

The whole neural networks were implemented with the Keras framework and
trained on a Nvidia 1080Ti GPU from scratch in a fully-supervised manner.
The Adam algorithm was used to optimize the loss function with a learning
rate of 0.5 ∗ 10−4. The dropout probability was 0.5. The hidden states number
of the LSTM cell was 32. There were 128 nodes in the first dense layer. The
hyperparameter α in loss function was tuned to balance the magnitude of two
types of loss.

3.3 Comparison Models

Then, we compared our approach with two baseline methods k-nearest neigh-
bors algorithm (KNN) and the eXtreme Gradient Boosting (XGBoost) algorithm
which were widely used, as well as the LSTM network without multi-task learn-
ing for component evaluation. Here we briefly describe some of the details and
parameter settings used in these methods.

KNN. The k-nearest neighbors algorithm (KNN) is one of the simplest and
most common classification methods based on supervised learning which is
classified as a simple and lazy classifier due to its lack of complexity. In
this algorithm, k is the number of neighbors, which may largely affects the
classification performance. k was selected by cross-validation on training set
(k = 1, 2, 3, ..., 18, 19, 20, 25, 30, 35, 40).

XGBoost. The eXtreme Gradient Boosting (XGBoost) algorithm is a well-
designed Gradient Boosted Decision Tree (GBDT) algorithm, which demon-
strates its state-of-the-art advantages in the scientific research of machine learn-
ing and data mining problem.

Two hyperparameters of XGBoost for preventing overfitting was adjusted
through cross-validation on training set(max depth = 3, 4, 5, ..., 8, 9, 10 and
subsample = 0.5, 0.6, 0.7, 0.8).

LSTM Network with Single-Task Learning. To evaluate the performance
of LSTM-MTL framework strictly, LSTM network with single-task learning
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(LSTM-STL) is used in the experiment. The LSTM-STL performs seizure pre-
diction without latency regression task, as shown in Fig. 3 with blue blocks.
That is to say, the hyperparameter α of LSTM-MTL framework is equal to 1.
For comparison purpose, we kept all the hyper-parameters of LSTM-STL the
same with LSTM-MTL.

4 Results and Discussion

In this section, the prediction AUC of different models were showed in Table 1.
In addiction, we give some visualization figures to explore into the model and
have some discussions about the results.

Table 1. Prediction AUC of different models

Patient 1 Patient 2 Average

KNN 41.14 52.78 46.96

XGB 85.93 66.49 76.21

LSTM-STL 89.66 84.06 86.86

LSTM-MTL 92.37 86.34 89.36

4.1 Compared with Baseline Performance

Overall, our proposed LSTM-MTL method significantly outperformed the KNN
and XGBoost algorithms.

KNN algorithm performed badly, showing an average AUC score even below
50%. This algorithm is very sensitive to local distribution of features and may
not work well. In general, no determinate comment can be made about the
performance of the KNN classifier in EEG-related problems [18].

XGBoost performed relatively better with an AUC of 76.21%, but there was
a gap between its performance and the state-of-the-art 85.95% [2]. Actually,
the reported state-of-the-art was achieved by an ensemble of different features
and different classical classifiers. Using only XGBoost algorithm is hard to get a
comparable performance.

LSTM networks utilized the same types of features with KNN and XGBoost
algorithms but achieved comparable or better performance against state-of-the-
art, which illustrated that the LSTM networks can learn useful information from
sequential iEEG features.

4.2 Compared with LSTM-STL

LSTM-STL network achieved an average AUC of 86.86%, which was compara-
ble with the state-of-the-art. LSTM-MTL outperformed LSTM-STL with AUC
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Fig. 4. The T-SNE feature visualizations of input data and output of middle layers. (a)
The visualization of input data. (b) The visualization of the output feature of the first
lstm layer. (c) The visualization of the output feature of the first lstm layer. (d) The
visualization of the dense layer output. The figure is best viewed under the electronic
edition.

improvement of 2.5%. This results demonstrated the necessity of adding latency
regression as an additional task.

The latency of segments can provide urgency degree information about the
seizure. Through combining the latency information, the LSTM network can take
full advantage of limited data and performed better in prediction task. LSTM-
MTL can not only improve the prediction accuracy but also report an urgency
degree about seizure, which is important for patients to take nichetargeting
action.

4.3 Visualization

Finally, we visualized the input data as well as the output of LSTM layers and
the dense layer of LSTM-MTL by t-distributed Stochastic Neighbor Embed-
ding (T-SNE) [14]. T-SNE is a tool to visualize high-dimensional data, con-
verting similarities between data points to joint probabilities and tries to min-
imize the Kullback-Leibler divergence between the joint probabilities of the
low-dimensional embedding and the high-dimensional data. The visual results
showed that the data became increasingly linearly detachable along with the
layer-by-layer process. An visualization example of Patient 1 is shown in Fig. 4.
Two classes of the input data are aliasing. Through the first LSTM layer, the
data clustered and one cluster contained nearly only one class of data. Through
the second LSTM layer, two classes of data could be separated by a simple
quadratic function in two-dimension space. Through the dense layer, the data
became more linearly detachable.

5 Conclusion and Future Work

In this paper we presented a novel LSTM based multi-task learning framework
for seizure prediction. The proposed multi-task framework performed predic-
tion and latency regression simultaneously and the prediction performance was
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improved through this way. Overall, the average AUC score of LSTM-MTL was
89.36%, which was 3.41% higher than the state-of-the-art.

The visualization of middle layers output illustrated the sequential repre-
sentation ability of the proposed LSTM-MTL network. In the future, we will
visualize the weight map of the LSTM units to explore the significations of each
channel and each feature, which can be helpful for channel reduction or feature
selection.
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