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Abstract. Two-party Secure Function Evaluation (SFE) allows two
parties to evaluate a function known to both parties on their private
inputs. In some settings, the input of one of the parties is the definition
of the computed function, and requires protection as well. The standard
solution for SFE of private functions (PF-SFE) is to rely on Universal
Circuits (UC), which can be programmed to implement any circuit of size
s. Recent UC optimizations report the cost of UC for s-gate Boolean cir-
cuits is ≈ 5s log s.

Instead, we consider garbling that allows evaluating one of a given set
S of circuits. We show how to evaluate one of the circuits in S at the
communication cost comparable to that of evaluating the largest circuit
in S. In other words, we show how to omit generating and sending inac-
tive GC branches. Our main insight is that a garbled circuit is just a
collection of garbled tables, and as such can be reused to emulate the
throw-away computation of an inactive execution branch without reveal-
ing to the Evaluator whether it evaluates active or inactive branch.

This cannot be proven within the standard BHR garbled circuits
framework because the function description is inseparable from the gar-
bling by definition. We carefully extend BHR in a general way, intro-
ducing topology-decoupling circuit garbling. We preserve all existing con-
structions and proofs of the BHR framework, while allowing this and
other future constructions which may treat garbled tables separately
from function description.

Our construction is presented in the semi-honest model.

1 Introduction

Using circuit representation of the evaluated function brings a significant
disadvantage in the SFE world. Indeed, in contrast with the Random-Access
Machine (RAM) model, circuits introduce expensive, often crippling, redundan-
cies to SFE by requiring to generate, send and evaluate all conditional branches,
even if one of the players knows the branch taken. Circuits require unrolling
loops, incur linear costs when accessing an array element, etc. Yet, circuit-
based SFE is currently the highest-performing technique in most settings, due
to extremely high efficiency of the private evaluation of circuit gates.
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Addressing the limitations of the circuit-based representation has focused
mainly on improving random access to memory. A celebrated line of work on
Oblivious RAM (ORAM), started by [GO96], resulted in ORAM being a stan-
dard ingredient in MPC.

Our work. We address the need to pay for inactive throw-away conditional
branches. We propose an extremely simple technique, Free IF, to fully elim-
inate inactive GC branches in scenarios where one of the players knows the
executed branch. This is a natural scenario frequently occurring in practice, as
we will argue next.

We extend the BHR framework [BHR12] to introduce topology-decoupling
circuit garbling and present the construction in general terms. The extended
BHR framework, which treats garbled circuits as strings, is a contribution of
independent interest.

To our knowledge, this is the first such circuit-based technique. We discuss
previous work in Sect. 1.2; most well-known prior work on circuit size reduction
is generic universal circuit (UC) constructions.

1.1 Motivating Applications

We list several practical applications where our approach can be applied.

Evaluating one of several policy options. In Blind Seer [PKV+14,
FVK+15], a GC-based private database (DB) system, private DB search is
achieved by two players jointly securely evaluating the query match function
on the search tree of the data. Blind Seer does not fully protect query privacy:
it leaks the query circuit topology as the full universal circuit is not practical,
as admitted by the authors. Applying our solution to that work would hide this
important information, at (almost) no extra cost. Indeed, say, by policy the DB
client is allowed to execute one of several (say, 50) types of queries. The privately
executed SQL query can then be a represented as a switch of the number of
clauses selected by the querier, each corresponding to an allowed query type.
With our technique, only a GC corresponding to a single branch will need to
be sent instead of the 50 required today. Most of the cost of the Blind Seer
DB system is in running SFE of the query match function at a large scale, so
improvement to the query circuit will directly translate to overall improvement.
We note that the core of the Blind Seer system is in the semi-honest model, but
a malicious client is considered in [FVK+15].

Our work can be viewed as secure evaluation of a circuit universal for a set
of functions S = {C1, ..., Ck} (S-universal circuit, or S-UC) at the cost similar
to that of a single function. The next motivating example provides another
illustration of how our work may improve applications where we want to evaluate
and hide which function/query was chosen by a player (say, which one of several
functions allowed by policy or known because of auxiliary information).

SFE of semi-private functions (SPF-SFE) (see additional discussion in
Sect. 1.2) is a notion introduced in [PSS09], bridging the gap between expensive
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private function SFE (PF-SFE) based on Universal Circuit [Val76,KS08b,KS16,
LMS16], and regular SFE (via GC) that does not hide the evaluated function.
SPF-SFE partially hides the evaluated function; namely, given a set of func-
tions, the evaluator will not learn which specific function was evaluated. (The
GC Generator does know the evaluated function.) Indeed, often only specific
subroutines are sensitive, and it is they that might be sufficiently protected by
S-universal circuit for an appropriate set of circuits S. [PSS09] presents a con-
vincing example of privacy-preserving credit checking, where the check function
itself needs to be protected, and shows that using S-universal circuits as building
blocks is an effective way of approaching this. Further, [PSS09] builds a compiler
which assembles GC from the S-universal building blocks (which they call PPB,
Privately Programmable Blocks). While [PSS09] provides only a few very simple
hand-designed blocks (see our discussion in Sect. 1.2), our work can be viewed
as an efficient general way of constructing such blocks.

CPU/ALU emulation. Extending the idea of SPF-SFE, one can imagine a
general approach where the players privately emulate a CPU evaluating a fixed
sequence of complex instructions from a fixed instruction set (instruction choice
implemented as a GC switch). Additionally, if desired, instructions’ inputs can
be protected by employing the selection blocks of [KS08b]. Such an approach
can be built within a suitable framework (e.g., that of [PSS09]) from S-universal
circuits provided by this work. We note that circuit design and optimization is
tedious, and not likely to be performed by hand except for very simple instances,
such as those considered in [PSS09]. Instead, our approach will result in immedi-
ate performance improvement, reducing the cost of the ALU step implementation
by a large factor.

For example, in a recent work [WGMK16], a secure and practically efficient
MIPS ALU is proposed, where the ALU is implemented as a switch over 37
currently supported ALU instructions evaluated on ORAM-stored data. Tiny-
Garble [SHS+15] also design and realize a garbled processor, using the MIPS I
instruction set, for private function evaluation. Our constructions would work
with [WGMK16,SHS+15] in a drop-in replacement manner, for implementing
straight-line functions known to one party. The ALU step will be correspond-
ingly reduced from containing implementations of all ALU instructions per step
(37 in [WGMK16], of which the output of 36 of them is discarded), to a single
instruction with our approach!

The client-server setting. Our approach is particularly attractive in the
client-server setting. Indeed, the cost of the GC generator for the S-UC of n
circuits, while proportional to n, only involves a simple operation per circuit of
S. The bulk of the cost of the GC generator is in garbling and sending (only)
the active branch. Because of this, the set S of the circuits can be very large
and still scale well allowing the server being able to service many clients. This
is because (essentially) the sole cost of adding more circuits to S is the evalua-
tor having to evaluate each circuit in S. This allows for a variety of trade-offs
between efficiency and the level of hiding of the evaluated function.
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1.2 Background and Related Work

Garbled Circuit, OT and Universal Circuit. Significant part of SFE research
focuses on minimizing the size of the basic GC of Yao [Yao86,LP09], such
as garbled row reduction techniques Free-XOR [KS08a] and its enhancements
FleXOR [KMR14] and half-gates [ZRE15]. In contrast, in this work, we elimi-
nate the need for evaluation (i.e. sending) of all but one subcircuits in a switch.

Asymptotically, Valiant’s Universal Circuit [Val76,LMS16,KS16,GKS17] is
the optimal underlying technique to fully protect the evaluated function in MPC.
Respectively, for sub-circuits of size n, the size of the universal circuit gen-
erated by [Val76,KS08b] is ≈ 19n log n, and ≈ 1.5n log2 n + 2.5n log n. Recent
works [LMS16,KS16,GKS17] polish and implement Valiant’s construction. They
report a precise estimate of the cost (in universal gates) of Valiant’s UC of
≈ 5n log n. We note that UC-based constructions cannot take advantage of Free-
XOR (other than gates on permutation subcircuits), since Free-XOR of course
identifies positions of XOR gates. Thus, the classical universal circuit approach
becomes competitive for a number of clauses far larger than a typical switch.

Another technique for Private Function Evaluation (PFE) was proposed by
Mohassel and Sadeghian [MS13]. They propose an alternative (to the universal
circuit) framework of SFE of a function whose definition is private to one of
the players. Their approach is to map each gate outputs to next gate outputs
by considering a mapping from all circuit inputs to all outputs, and evaluate
it obliviously. For GC, they achieve a factor 2 improvement as compared to
Valiant [Val76] and a factor 3–6 improvement as compared to Kolesnikov and
Schneider [KS08b]. Similarly to [Val76,KS08b], [MS13] will not be cost-effective
for a small number of clauses.

We also mention, but do not discuss in detail, that hardware design considers
circuit minimization problems as well. However, their typical goal is to minimize
chip area while allowing multiple executions of the same (sub)circuit. Current
state-of-the-art in applying to MPC the powerful tool chains from hardware
design is producing 10–20% circuit (garble table) reduction [SHS+15,DDK+15,
DKS+17], while our approach will achieve large factor performance improvement
for the setting it can operate in).

Semi-private function SFE (SPF-SFE) [PSS09]. As discussed above, SPF-SFE
is a convincing trade-off between efficiency and the privacy of the evaluated
function. Our work on construction of container circuits corresponds to that of
privately programmable blocks (PPB) of [PSS09], which were hand-optimized
in that work. In our view, the main contribution of [PSS09] is in identifying and
motivating the problem of SPF-SFE and building a framework capable of inte-
grating PPBs into a complete solutions. They provide a number of very simple
(but nevertheless useful) PPBs, such as SCOMP = {<,>,≤,≥, �=}. Each of these
PPB sets only consists of functions with already identical or near-identical topol-
ogy; this is what enabled hand-optimization and optimal sizes of the containers.
Other than the universal circuit PPB, no attempt was made to investigate con-
struction PPBs of circuits of a priori differing topology.
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In contrast, we can work with any set S of circuits for S-universal circuit
and achieve large factor performance improvement stemming from not having
to transmit inactive branches.

Circuit overlay heuristic [KKW17]. Finally, a recent work of Kennedy et
al. [KKW17] explored a heuristic approach to S-UC circuit generation, based on
alignment and overlay of underlying graphs. The authors were able to demon-
strate significant reduction in the size of a circuit implementing a switch of 32
small circuits. Specifically, for their switch of 32 small chosen circuits of total
size of ≈ 20, 000 gates, they were able to achieve the S-UC of size ≈ 3, 000 gates,
achieving ≈ 6× circuit size reduction.

In contrast, our approach is much simpler and is readily implementable. It is
not a heuristic, and has clean and understandable performance, which will nearly
always beat [KKW17] (often by a significant factor!) in our setting where the
GC generator knows the evaluated function. This is because of the following. In
this case both our and [KKW17] cost consists of GC generator Gen generating
and sending a single GC. However, in our case, this circuit size is equal to
max |Ci|, Ci ∈ S, while the [KKW17] circuit size is |C0|, where C0 is the circuit
universal for all Ci ∈ S. Clearly, |C0| ≥ max |Ci|, but it is difficult to give
a precise comparison since [KKW17] is a heuristic. As reported in [KKW16],
the full version of [KKW17], while overlay algorithm performed well on certain
pairs (groups) of circuits, it did not do well on others. For example, expansion
metric for circuits 29 and 30 (computing functions B · A + 555 and B2 + A2 > 1
respectively on 32 bit values) is reported to be 1.00 (Table 3 in [KKW16]),
which means that heuristic did not improve on simple circuit concatenation. In
contract, our approach will immediately work for these circuits.

The BHR framework [BHR12]. We present our generic protocol in the terminol-
ogy of BHR, which we extend to allow formal discussion of our work. We explain
the very useful BHR framework at length in Sect. 5.

2 Our Contributions

We present Free IF, an extremely simple (and hence easy-to-implement and to
adopt) method of eliminating the generation and transmission of all inactive
branches in a GC computation, when branch is selected by the GC generator.
An additional OT round, transferring secrets of size independent of the circuit
sizes and concretely small, is required.

Our approach works with state-of-the-art garbling schemes, including half-
gates [ZRE15].

We believe that our main idea — viewing GC as a collection of garbled tables
and separating the circuit topology from GC thus hiding the computed function
— will have other exciting applications, such as improved GC constructions.

Our result in very natural in retrospect; it is surprising it was not discovered
earlier, given a substantial body of work on private function evaluation. One
explanation is that we challenge “obvious facts” such as that GC is not reusable



Free IF: How to Omit Inactive Branches and Implement 39

or that “GC is a structure, not a string”. Both are widely accepted and are at
the core of very general BHR framework. Both are challenged in our approach.

As a contribution of independent interest, we carefully extend the BHR
framework to support a separation of circuit topology from the cryptographic
material (such as garbled tables), and to provide convenient formalization for
manipulating output encodings at wire granularity.

3 Technical Overview of Our Approach

Recall, garbled circuit (GC) can be viewed simply as a collection of garbled
(encrypted) gate tables. Specifically, it need not include the specification of the
evaluation topology (i.e. wire connections among the gates). While topology is
needed for the evaluation, it may be conveyed to the evaluator Ev separately
from the garbled tables, or by implicit agreement among the participants Gen
and Ev. Further, GC may, but need not, provide confirmation to Ev that the
obtained garbled label is a valid label.

Let S = {C1, C2, ..., Cn} be a set of Boolean circuits. We assume that all
circuits consist of fan-in-2 gates and have the same number of inputs and outputs.
Let the Generator Gen have nin-x input bits, and the Evaluator Ev have nin-y input
bits (total nin = nin-x + nin-y). Without loss of generality, let players receive the
same output consisting of nout bits. This is a standard and natural setting for
GC and universal circuits.

Recall, in our setting, (only) Gen knows which of the circuits in S =
{C1, C2, ..., Cn} is being evaluated. Let’s imagine for now that all the circuits
in S are of the same size s (i.e. consisting of the same total number of gates); we
will later show this easily generalizes. We do not place any other restrictions on
the topologies of the circuits. Suppose Gen wishes to evaluate its target circuit
Ct ∈ S. Our underlying idea is to have Gen generate a single GC ̂C implementing
Ct and send it to Ev. Ev knows S, but it will not know which of the circuits in S
is the target circuit. Now, for each Ci ∈ S, Ev will interpret ̂C as garbling of Ci

and evaluate it as such, obtaining the garbled output. With a little care in GC
design, it is possible to ensure that Ev will not be able to distinguish which of
the circuits in S is the target circuit Ct. We stress that the fact that circuts in
S have varying topologies is not an issue since GCs only contain garbled tables
which can be used with any topology.

The next step is for Ev to obliviously discard the wire labels which belong
to non-target circuits and to propagate the (encrypted) output of the target cir-
cuit. To be more precise, Gen and Ev will run an output selection (OS) protocol.
Ev will provide as input to the protocol all (active) output labels it obtained in
evaluating |S| circuits, and Gen will provide the indices of the labels correspond-
ing to the target circuit Ct, as well as Ct’s zero labels on output wires. The OS
protocol will output (re-encoded) labels corresponding to the output of Ct.

This step is efficiently implemented via GC. We further observe that provid-
ing full-length output labels (i.e of length of the computational security parame-
ter κ) as input to OS is not needed; statistical security is sufficient and the labels



40 V. Kolesnikov

can be truncated to σ bits for OS input, improving performance. Even further
improvement is possible simply by having Gen ensure the labels on each output
wire of Ct differ in the last bit. Then Ev and Gen can submit only the last bits
of the labels they obtain. Note that it does not affect correctness or security if
the last bits on the active and inactive wires of circuits other than Ct are the
same, since selection is done based on the index t provided by Gen, and further
Ev will not obtain both labels of any wire (and hence won’t detect the mismatch
between ̂C and the interpreted evaluation of Ci).

Free XOR and half-gates. Our construction works with the Free XOR gar-
bling [KS08a].

Using half-gates [ZRE15] also works. Intuitively, this is because its garbled
tables also look like random strings. We show this in Sects. 6 and 6.1. We note
that using half-gates is concretely efficient, since the LSB of labels true and
false is different and hence the garbled output can be cheaply fed into output
selection protocol.

Addressing different circuit sizes in S. It is easy to see that our approach does not
limit us to considering S consisting only of the circuits of the same size. Indeed,
let smax = maxi |Ci| be the maximum circuit size in S. It is sufficient1 for Gen

to garble the target circuit ̂Ct and pad it with randomly generated garbled tables
to obtain ̂C′

t, so as the total number of garbled tables in the produced circuit
̂C′
t is equal to smax. Then, a simple convention can be easily designed to allow

Ev to use only the garbled tables of needed in evaluating each circuit Ci by
appropriately interpreting ̂C′

t.

On the cost of SFE and OT rounds. Our S-UC GC protocol adds a round of com-
munication for each switch statement. We argue that the associated latency cost
is negligible in many practical scenarios. This is because often the latency-related
idling will be productively used for computation and communication in the same
or another SFE instance. This is the case, e.g., in larger-scale SFE deployments,
where many instances will be run in parallel, and where SFE throughput is a far
more important parameter than latency.

Composing our protocol with GC. We note that we additionally design a secret-
shared-output functionality, where the output of the computation is not recon-
structed, but remains shared GC-style. Hence, it can be privately plugged into
another GC.

Nesting switch clauses. Our protocol naturally works for the nested clauses.
One way to implement a nested clause is to bring all choice variables to the
same level, placing us in the non-nested setting.

Figure 1 illustrates how a nested clause (left) can be rewritten to a single-level
branching (right). Again, we note that Gen must know the selection choices.

1 This holds for main schemes, such as classical Yao, Free-XOR and half-gates, as we
show in Sect. 6.1. It is possible to craft garbling schemes where this specific technique
won’t work. See Sect. 5.3 for a formal discussion.
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Fig. 1. switch nesting rewriting. Left: nested. Right: flat.

We note that this nesting management results in no additional communica-
tion rounds due to nesting. In most cases, the nesting would not be deep/wide
enough to overwhelm the computational resource. Indeed, the computation cost
would be less than implementing the same circuit using standard Yao GC.

To illustrate the costs, consider the above example and let’s suppose all
functions are of the same size smax, and Gen’s choice variables are a = 2 and
b = 1. Then our protocol will require Gen to generate and send a single GC ̂C
implementing F21, and Ev to evaluate the received ̂C four times. Standard GC
will require Gen to generate and send four GCs, and Ev to evaluate four GCs.

3.1 Extending the BHR Framework: Decoupling the Topology

An important conceptual contribution of this work is the departure from thinking
of garbled circuits as monolithic objects, but rather, emphasizing that they are
strings representing (separately) the computed function and the cryptographic
material, such as garbled tables. We formalize this approach by extending the
BHR framework to support this vision. We are able to change some of the most
fundamental concepts of the framework while preserving it completely and not
requiring redefining any of its functions. This allows to reuse all existing body
of work in the popular and very useful BHR framework.

Specifically, our main change to BHR is a restriction that the garbled circuit
F must consist of two components, the function topology T and cryptographic
material E. This adjustment does not affect any of the existing BHR functions,
constructions and proofs, but allows us to introduce a new security property
related to obliviousness, which formalizes indistinguishability of GC evaluation
under different topologies.

We state our main result, Free IF, in the new extended BHR framework.

3.2 Outline of the Presentation

We already described at a high level the technical details of our contribution in
Sect. 3. Next, we introduce preliminary notation and definitions. In Sect. 5, we
review the relevant aspects of the BHR framework and introduce its extension
that allows to reason about circuit garblings separately from the function encod-
ing. We present our GC construction in the above extended framework, prove
security and formally discuss suitable garbling schemes, including half-gates, in
Sect. 6. Finally, in Sect. 7, we discuss the performance of our improvement.
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4 Preliminaries

4.1 Notation

Throughout the paper we use the following notation: the computational and
statistical security parameters are denoted by κ and σ, respectively. We will
denote circuits by C and garbled circuits by ̂C. We denote a circuit’s gate by
Gi and a garbled gate by ̂Gi. We denote by S the set S = {C1, C2, ..., Cn} of
circuits with respect to which we design our universal circuit. We denote size of
S by s = |S|. NOT gates are implemented in the standard way by switching the
wire label semantics and we don’t discuss them further. We count the number
of non-XOR gates in a circuit as its size sCi

= |Ci|. We denote the maximal
circuit size in S by smax = maxCi∈S |Ci|. We denote by sTotalCi

= |Ci|Total the size
of the circuit Ci, including/counting XOR gates. We use the notation c= to denote
computational indistinguishability of ensembles of random variables.

4.2 Defining S-Universal GC

We introduce security definitions with which we operate in this work. We are
interested in efficient S-Universal GC evaluation. In Fig. 2 we formalize the func-
tionality FS-UC which will serve as the basic definition.

Intuitively, our goal is simple: we wish to evaluate a function chosen by one
of the players P1 among the known set of functions S.

We additionally define a more convenient functionality FS-UC-s for shared-
output FS-UC. FS-UC-s requires that the players don’t get the output of the
function Ct directly, but rather a GC-style secret sharing of the computed value.
The functionality FS-UC-s is presented in Fig. 3. We will present our construction
for the simpler FS-UC functionality; extension to the more convenient FS-UC-s

functionality is simple, and we briefly discuss it in Sect. 6.

5 Extending the BHR Framework

It is beneficial to present the work in the terminology of garbling
schemes [BHR12], introduced by Bellare, Hoang and Rogaway (BHR). In our
abstraction approach, we aim to find a balance between generality and simplic-
ity, while maximizing the reuse of the thoughtfully designed BHR framework.

We start by reminding the reader of the relevant details of the BHR frame-
work.

5.1 BHR Garbling Schemes

Bellare, Hoang, and Rogaway [BHR12] introduce the notion of a garbling scheme
as a cryptographic primitive. We refer the reader to their work for a complete
treatment and give a brief summary of relevant aspects here. We note that their
definitions apply to any kind of garbling, such as decision trees, automata, etc.
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Fig. 2. S-UC functionality FS-UC

Fig. 3. S-UC-s functionality FS-UC-s

We focus the notation on circuits and circuit garbling, which BHR consider as a
special case, by requiring certain constraints on syntax and semantics of general
object in their framework. A circuit garbling scheme consists of the following
algorithms: Garble takes a circuit f as input and outputs (F, e, d) where F is a
garbled circuit, e is encoding information, and d is decoding information. Encode
takes an input x and encoding information e and outputs a garbled input X.
Eval takes a garbled circuit F and garbled input X and outputs a garbled output
Y . Finally, Decode takes a garbled output Y and decoding information d and
outputs a plain circuit-output (or an error ⊥).

Most relevant in our context are the prv.sim (privacy) and obv.sim (oblivious-
ness) security definitions from [BHR12], which we state below. In the prv.sim and
obv.sim games, the Initialize procedure chooses β ← {0, 1}, and the Finalize(β′)
procedure returns β

?= β′. In both games, the adversary can make a single call
to the Garble procedure, which is defined below. Additionally, the function Φ
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denotes the information about the circuit that is allowed to be leaked by the gar-
bling scheme; the function S is a simulator, and G denotes a garbling scheme.

prv.simG,Φ,S :

Garble(f, x):

if β = 0
(F, e, d) ← Garble(1κ, f)
X ← Encode(e, x)

else (F, X, d) ← S(1κ, f(x), Φ(f))
return (F, X, d)

obv.simG,Φ,S :

Garble(f, x):

if β = 0
(F, e, d) ← Garble(1κ, f)
X ← Encode(e, x)

else (F, X) ← S(1κ, Φ(f))
return (F, X)

We then define the advantage of the adversary in the security games:

Advtgprv.simG,Φ,S (Adv, κ) :=
∣

∣

∣

∣

Pr[prv.simAdv
G,Φ,S(κ) = 1] − 1

2

∣

∣

∣

∣

;

Advtgobv.simG,Φ,S (Adv, κ) :=
∣

∣

∣

∣

Pr[obv.simAdv
G,Φ,S(κ) = 1] − 1

2

∣

∣

∣

∣

.

We say that a garbling scheme satisfies privacy (resp. obliviousness) if for
any polytime adversary Adv, the corresponding advantage Advtg is negligible.
We omit restating here the remainder of the BHR framework, and refer the
reader to the original work.

5.2 Intuition for Topology Decoupling and Composition

Ability to decouple the topology of evaluated GC, highlighted and used in this
work, is related to the standard obliviousness property formalized by BHR. Intu-
itively, BHR obliviousness means that a party acquiring F and X, but not d,
shouldn’t learn anything about f , x, or y beyond that is explicitly allowed in
the leakage function Φ. This is roughly the property we require as well, but with
a different formalization, requiring careful handling.

The following are the technical issues that need to be addressed to enable
discussion of our protocols in the (extended) BHR framework.

1. Let F be a string representing a garbled circuit. Firstly, we need to syntacti-
cally separate the function encoding (e.g., topology) T from the cryptographic
material E included in F , such as garbled tables. That is, we wish to explic-
itly write F = (T,E), thus enabling consideration of a GC (T ′, E). We note
that in the BHR framework, the function description T is either implicit in
Eval or is included in F in an unspecified manner.

2. Secondly, once this syntactic convention is adopted, we need to adjust the
definitions to support evaluation under a “wrong” function encoding, and
further, to require that Eval will not detect whether it operates with a “right”
or “wrong” encoding.

3. Thirdly, the BHR framework naturally treats circuits as “the whole thing,”
and does not provide for a clean interface to discuss shared output (e.g.
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undecoded wire labels which may later be used as encrypted input in another
computation). In particular, the BHR decoding function Decode is required
to output the correct plaintext value of the computation.

We now sketch a suitable formalization approach addressing the above issues
for natural circuit representations. We take the BHR framework as the basis and
adjust it as described next. The formal definitions are presented in Sect. 5.3.

We stress that for concreteness and convenience we next discuss specific ways
to encode a circuit in GC. We note that that the definitions of Sect. 5.3 are more
general, and may use arbitrary encodings.

Topological encoding in GC F . In BHR, Y = Eval(F,X) takes as input the
garbled circuit F and garbled input X. The BHR framework does not discuss
how garbled function F encodes information which allows Eval to proceed with
the evaluation. In BHR, conventional Boolean circuits are viewed as a tuple
(n,m, q,A,B,G). Here n ≥ 2 is the number of inputs, m ≥ 1 is the number of
outputs, and q ≥ 1 is the number of gates. A (resp. B) is a function identifying
a gate’s first (resp. second) incoming wire, and G is a function identifying the
gate function of the gate. BHR introduces the notation of topological circuit
f−, which is defined to be a conventional circuit f without the gate function
component. That is, for a circuit f = (n,m, q,A,B,G), the topological circuit
f− is defined as (n,m, q,A,B).

Let’s consider the question of evaluating a GC, given a list of garbled tables.
It is easy to see that f− contains sufficient topological information to evaluate
classical Yao’s GC, assuming an implicit correspondence between gate id and the
garbled table associated with it. Such a correspondence is typically implemented
by enforcing a canonical ordering of the gates and garbled tables.

At the same time, f− does not have sufficient information to evaluate circuits
garbled with Free-XOR [KS08a]. This is because the ids of XOR gates are not
included in f− and cannot be inferred from a bare list of garbled tables. To
generalize this, we will consider type-topological circuits:

Definition 1. Following the BHR notation, we say that f∗ is a conventional
type-topological circuit, if f∗ = (n,m, q,A,B,G∗), where G∗ specifies the gate
type of each gate. We will often simply say topological circuit or topology instead
of type-topological circuit when clear from the context.

We stress that the topological circuit must provide sufficient information to
the Eval function to enable GC evaluation.

A typical example of gate types referred by G∗ is the set {XOR, non-XOR}.
Topology f∗ with G∗ defined over this type set allows evaluation of Free-XOR
and half-gate garbled circuits. We note that other natural definitions of circuit
topology are possible. One example is to include pointers to the garbled tables
implementing gates. We choose the representation of Definition 1 as a balance of
generality and simplicity which may be convenient to use for known GC schemes.
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Topology Decoupling and Evaluation with Different topology. We need
to enable parsing and evaluation of GC F with varying topology. As outlined
above, for this we need to syntactically decouple the (implicit and determinis-
tically computed) GC topology from the (generated using randomness) crypto-
graphic material, such as encrypted tables. Without loss of generality, we require
parsing the garbled circuit F as F = (T,E), where T is the type-topological cir-
cuit f∗ and E is the cryptographic material, such as a set of encrypted tables. We
set f∗ = (n,m, q,A,B,G∗). We thus require Garble to produce F in the above
format, and Eval(F,X) to accept this format F = (T,E) of garbled circuit.

By extracting the type-topology T out of the GC F we enable evaluating F
with an arbitrary topology T ′. As a security feature of a circuit garbling scheme,
we will require that evaluator is unable to tell whether it is evaluating with the
intended topology T or an arbitrary different one T ′. This will be ensured by
requiring that the ensembles {(T,E),X} and {(T ′, E),X} are indistinguishable,
where X are the (encoded) input labels, T is the matching topology, and T ′ is
any admissible topology. In Sect. 5.3, we define the intuitive notion of admissible
topology (by considering classes of mutually admissible functions) and formalize
the above indistinguishability property.

Again, we stress that different topology representations are possible. While
the type-topology described above is convenient for known GC schemes, our
definitions in Sect. 5.3 do not restrict to using above representation.

Shared Output and Composition in Garbled Circuits. As noted above,
the BHR framework does not naturally handle in generality the composition of
garbled functions. It has the concept of garbled output, which, together with the
decoding information can be seen as the secret-sharing of the function output.
However, this representation is too general, and as one consequence, does not
support discussing manipulation of the undecoded or partial output and feeding
such output into a subsequent execution. In [BHR12], the authors sometimes
handle over-generality by parsing standard BHR objects in a certain way. For
example, faced with the need to discuss circuit input labels and their use in
OT, the authors simply say “parse (X0

1 ,X1
1 , ...,X0

n,X1
n) ← e.” This, of course,

assumes a specific garbling scheme, and represents a trade off between simplicity,
generality and formalism.

One way of formalizing the required secret-shared output bits is by introduc-
ing restrictions on the format of the decoding information Y 2.

It would be convenient to formalize this restriction as an option for circuit
garbling scheme, by requiring that the garbled output Y = (Y1, ...Ynout) is a
vector of garbled wire outputs and allows for syntactic access to any particular
component. Similarly, we require that the decoding information d = (d1, ..., dnout)

2 Indeed, BHR allows arbitrary representation options, including exotic ones such as
Y = AESk(y) being an AES encryption of the multi-bit output y, and d = k being
the AES decryption key. Clearly such a representation, while secure, is inconvenient
for revealing a partial output or providing the unencrypted output for further GC
evaluation.
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is a vector of output wire decodings, such that di allows to decode the garbled
output Yi. We will overload the standard BHR Decode function to take as input
any subsets of garbled wire labels and corresponding decoding information.

5.3 Definition of Topology-Decoupling Circuit Garbling

We now formalize the intuition described in Sect. 5.2.
Recall, in the BHR framework [BHR12], the garbling scheme is a five-tuple

of algorithms GS = (Garble,Encode,Decode,Eval, eval). A BHR circuit garbling
scheme CGS = (Garble,Encode,Decode,Eval, eval) is a garbling scheme with cer-
tain natural syntactic restrictions. To reason about our protocol in generality, we
introduce a further syntactic restriction on the BHR garbled circuits. Namely,
syntactically, we will require the garbled circuit to be specified as F = (T,E).
Here T is a function encoding, such as the conventional type-topologic circuit (cf.
Definition 1), and E is cryptographic material, such as garbled tables. We keep
the syntax of all BHR functions Garble,Encode,Decode,Eval, eval.

In the following we use the standard BHR notation, and we only present
notions and objects different from standard BHR.

Definition 2 (Circuit Garbling Scheme (CGS)). We consider Circuit Gar-
bling Scheme as defined by BHR, with the following difference:

Garbled circuit. We require the garbled circuit F = (T,E) to explicitly define the
function encoding component T . T is implicit in and deterministically obtained
from the computed plaintext circuit f . We will often say topology instead of
function encoding when clear from the context.

Garble. On input (1κ, f), Garble will output (F, e, d), where F = (T,E). Here
T = T (f) is deterministic and hence can be computed by any party, including
the GC evaluator.

Eval. The garbled evaluation function Eval takes garbled input X and F = (T ′, E)
as input. Eval outputs garbled output labels Y or a special failure symbol ⊥.

Reusing BHR machinery. With the above syntactic restriction, we are able
to reuse the existing BHR garbling machinery in defining a generalization of
BHR circuit garbling. Importantly, our notion is a special case of BHR garbling
scheme, and thus we can keep the BHR function definitions and correctness and
security requirements as is. This is because we (so far, with a single exception)
restricted the syntax of the BHR notions. Our only generalization (allowing to
evaluate under different topology), is not exercised in BHR definitions. There-
fore, all BHR notation and definitions retain their meaning and are reused.

In other words, the BHR framework (which we retain in full as the founda-
tion!) is sufficient to handle the case of evaluating a circuit with correct topology.
We only need to define the behavior of circuit garbling in the generalized case
of evaluation under different topology.

Specifically, we only need to define the security properties ensuring that eval-
uation under an admissible topology is indistinguishable from correct evaluation.
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Topology-decoupling circuit garbling schemes. There are several
approaches to defining indistinguishability of garbled circuits with matching
(“right”) and non-matching (“wrong”) topology.

In one approach, we could require the Garble function to take an additional
parameter s, specifying the size of the maximal circuit. Garble then would pro-
duce a garbled circuit implementing the given function f , but which has extra
garbled tables, suitable for implementing any circuit of size up to s. Then we
would require that the output (T,E) of such Garble function is such that ensem-
bles (T,E) and (T ′, E) are indistinguishable. This general approach requires
either overloading syntax of a standard BHR function, or introducing a new
function. In turn, BHR definitions stipulating security guarantees of standard
functions will need to be rephrased and stated second time for the new function.

Another approach could be to define a small-family garbling scheme w.r.t. a
fixed set of circuits which we intend to use as conditional clauses, and then define
generalized obliviousness. This is a natural approach, but it requires showing the
security of the garbling scheme for each set of circuits that might be required.

Our approach. Instead, we will take a cleaner and more general definitional
approach. We consider classes of mutually topologically admissible circuits. Such
a class would be defined by a canonical (for the class) circuit fcan. (For example,
in known schemes, such as Free-XOR and half-gates, the class of circuits will be
defined by the maximal number s of non-XOR gates, and fs

can could be a circuit
consisting of s AND gates.) We stress that multiple circuits could be canonical
for the same class C.

For convenience, we first introduce the following notation.

Definition 3 (Embedding of cryptographic material). We denote by
Embed the procedure of introducing the cryptographic material E of a function f
into the cryptographic material Ecan of the canonical circuit fcan. We will write
Embed(E,Ecan) to denote the output of this procedure.

The idea of the Embed procedure and its use, formalized in the definitions
next, is that the cryptographic material Embed(E,Ecan) can be used to eval-
uate f , but is indistinguishable from embeddings of cryptographic material
Embed(E′, Ecan) of any other function f ′, where f and f ′ belong to the same
class of mutually admissible circuits. The indistinguishability must hold even if
the encoded input is given. Embed will be defined as part of garbling scheme
description.

We stress that circuit encoding details, such as wiring, number of inputs and
outputs, etc., need not be explicitly specified and discussed in the definition.
Instead, this is handled by considering a class C of circuits for which the garblings
are compatible or mutually admissible (defined below).

We now formally define the indistinguishability requirement.

Definition 4 (Topology-decoupling circuit garbling). Let CGS =
(Garble,Encode,Decode,Eval, eval,Embed) be a circuit garbling scheme as dis-
cussed above (Definition 2), with the added Embed function. Let fcan be a circuit,
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Fig. 4. Game topoCGS,C,fcan
.

and let C = Class(fcan) be a set (or class) of circuits. Consider the distinguishing
advantage of the adversary winning the game topo of Fig. 4 (cast in the BHR
setup with Initialize() and Finalize() procedures as in BHR).

We say that CGS is topology-decoupling within C and that fcan is canonical
for C, if for every polytime adversary Adv, the following is negligible:

Advtgtopo,fcan

CGS (Adv, κ) = |Pr[topoAdvCGS,C,fcan
(κ) = 1] − 1

2
| (1)

We note that the topo game of Definition 4 exactly corresponds to our pro-
posed construction, where the circuit’s cryptographic material is evaluated under
different function encodings/topologies with the same garbled input.

Finally, we need to require correct evaluation of a circuit (T,Embed(E,E′)),
where T,E are matching, i.e. produced by F ← Garble(κ). Formally:

Definition 5 (Extended correctness). Let CGS be a circuit garbling scheme
(Definition 2). Let ((T,E), e, d) = Garble(1κ, f) and ((Tcan, Ecan), ecan, dcan) =
Garble(1κ, fcan), where f belongs to a class defined by a canonical function
fcan. We say that CGS has extended correctness, if it always holds that:
Decode(d,Eval[(T,Embed(E,Ecan)),Encode(e, x)]) = eval(f, x).

We note that topology-decoupling does not imply extended correctness, since
the experiment in the topology decoupling definition does not have access to
output encoding.

Notation. Extended correctness is an obvious and default requirement. Therefore,
for convenience of notation, we will say topology-decoupling circuit garbling to
mean “topology-decoupling circuit garbling with extended correctness.”

We will use topology-decoupling circuit garbling schemes. To use them in
constructing S-UC protocols, one will need to first design a topology-decoupling
garbling scheme and then apply the generic construction presented in the next
section. Designing a required garbling scheme can be simply done by starting
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with an existing scheme, such as half-gates, and showing that it meets the addi-
tional requirements (Definitions 4 and 5) or adjust it so that it does. This
approach relies on and reuses the existing body of work of proving security in
the BHR framework.

5.4 Output Manipulation Extension

We introduce the notation for bitwise output manipulation with the goal of
keeping the standard BHR notation intact, while at the same time allowing
formalizations and use in generic protocols.

Definition 6 (Topology-decoupling circuit garbling with bitwise
decoding). Let CGS = (Garble,Encode,Decode,Eval, eval,Embed) be a topology-
decoupling circuit garbling scheme.

We say that a topology-decoupling circuit garbling scheme CGS supports bit-
wise decoding if the following holds:

1. The garbled output Y is a vector of garbled wire outputs Y = (Y1, ...Ynout) and
allows for syntactic access to any particular component by index Yi.

2. The decoding information d is a vector of output wire decodings d =
(d1, ..., dnout) and allows syntactic access to any particular component by index
di.

3. Extended correctness of decoding holds per wire. That is, let ((T,E), e, d) =
Garble(1κ, f) and ((Tcan, Ecan), ecan, dcan) = Garble(1κ, fcan), where f
belongs to a class defined by a canonical function fcan. Let Y =
Eval[(T,Embed(E,Ecan)),Encode(e, x)]. Then we require Decode(di, Yi) =
eval(f, x)|i.
A similar definition is easily constructed for standard BHR framework.

6 S-UC Construction from Topology-Decoupling Circuit
Garbling

We now show a generic S-UC construction built from the generic notion of
topology-decoupling circuit garbling schemes with extended correctness, intro-
duced above. In this section, we exclusively work with such schemes. For con-
venience, we may refer to them in this section simply as circuit garbling, when
clear from context.

Let CGS = (Garble,Encode,Decode,Eval, eval,Embed) be a circuit-garbling
scheme with topology-decoupling garbling (Definition 4) and extended correct-
ness (Definition 5). The construction of Fig. 7 is presented in the generic terms
of such circuit garbling. In reviewing the construction, it may be instructive to
think in terms of a specific garbling scheme, such as the half-gates scheme or
classical Yao, and the class of admissible circuits as all circuits with up to s
non-XOR gates, where the canonical circuit is the s-gate circuit consisting of
AND gates.
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We start with presenting a generalized output selection functionality (Fig. 5).
Here, instead of the specific way of feeding the shared input into the functionality,
we tailor it to work with generic BHR-style sharing, where one party will hold
garbled output, and the other will hold the decoding information. We note that
protocol Πgen-out of Fig. 6 implementing Fgen-out can be refined if circuit garbling
supports bitwise decoding (Definition 6). In the formal construction (Fig. 7), we
omit this and other natural enhancements (such as considering specific bits of the
output labels or producing shared output a-la functionality Fout-s) for simplicity
of presentation.

Fig. 5. Generalized output selection functionality Fgen-out

Theorem 1. Let CGS = (Garble,Encode,Decode,Eval, eval,Embed) be a
topology-decoupling circuit garbling scheme (Definitions 4 and 5) with respect to
a class C and a canonical circuit Ccan. Then the construction of Fig. 7 securely
implements the S-UC functionality of Fig. 2.

Proof. Security against corrupt Gen. This part of the security proof closely
follows the standard Yao GC proof and is omitted. Indeed, the view of Gen only
includes the messages sent by the OT executions and the messages received as
part of the output selection functionality Fgen-out, and is easily simulated (in
part) by plugging in the output of the corresponding simulators.

Security against corrupt Ev. Intuitively, we need to argue that Ev does not
gain additional information from evaluating the same GC ̂C when interpreted as
garblings of different circuits Ci. We exhibit a simulator SimEv and prove that its
output is indistinguishable from the real execution. We will rely on the topology
decoupling property of circuit garbling, as formalized by Definition 4.

Constructing SimEv. Recall, the simulator SimEv(y, z) knows the set of circuits
S = {C1, C2, ..., Cn}, where each Ci ∈ C(Ccan). SimEv(y, z) takes as input the true
input and the output of the real execution and outputs the simulated view
ViewSimEv

.
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Fig. 6. Generalized output selection protocol Πgen-out realizing Fgen-out of Fig. 5.

Fig. 7. S-universal garbled circuit protocol

SimEv starts by emulating the GC ̂C received in Step 1 of Fig. 7. To do
so, SimEv simply runs ((T,E), e, d) ← Garble(1κ, Ccan) and adds E to the view
ViewSimEv

.
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SimEv proceeds to emulate Step 2 by parsing (X0
1 ,X1

1 , ...,X0
nin

,X0
nin

) ← e3. For
each index i of the wire provided by Gen, SimEv adds X0

i , to the view ViewSimEv
.

SimEv emulates the receiver’s view of OT (Step 3) by calling the provided OT
simulator SimOT. SimEv provides input y to SimOT as well as the corresponding
input wire labels Xj

i generated by Garble above. This is intended to simulate
the labels that are output as the result of OT. SimEv appends the Receiver view
generated by SimOT to the view ViewSimEv

.
SimEv emulates the evaluation of all n circuits of Step 4 by honestly executing

Step 4 n times as prescribed in the protocol of Fig. 7. As a result, SimEv obtains
n garbled outputs Yj . These Yj are implicit in the already-generated view and
hence are not formally included in ViewSimEv

.
Next SimEv simulates Step 5 by calling the simulator SimΠgen-out for the pro-

tocol Πgen-out realizing Fgen-out. For this, SimEv calls the simulator with input n
garbled outputs Yj , as well as the vector of the output labels received as SimEv

input. SimEv appends the output of the simulator to its view ViewSimEv
, outputs

its view and terminates.
Indistinguishability of the simulation. It is easy to verify that the simulation

is indistinguishable from the real execution.
Firstly, garbled circuits and the input encoding obtained in Steps 1–3 of the

real protocol are indistinguishable from the corresponding simulated view. This is
because the circuit garbling scheme CGS is topology-decoupling (cf. Definition 4).
Indeed, the real view is ((T,Embed(E,Ecan)),X), and the simulated view is
((Tcan, Ecan),Xcan). The game topoCGS,fcan

of Definition 4 immediately implies
that the above distributions are indistinguishable.

As a result, the view ViewSimEv
up until the call to a realization Πgen-out of

Fgen-out is indistinguishable.
Simulation of Πgen-out step is done by referring to the Πgen-out simulator

SimΠgen-out . We need to take care of two details:

1. ensure that input-output relationship of the call to Πgen-out is consistent with
the ViewSimEv

generated so far. Indeed, this is consistent. SimEv will provide
to SimΠgen-out the output labels it (SimEv) received as input, as well as the
collection of the candidate garbled labels Yj that SimEv had computed.

2. ensure that simulation provided by SimΠgen-out is good, despite the fact that the
P2 input provided to SimΠgen-outdifferent from the input provided to Πgen-out in
the real execution.
This is slightly more involved, and will require looking inside how the stan-
dard simulators work for GC-based secure computation. We show that there
exists a simulator of P2 which works with our proof. Intuitively, this is pos-
sible because Receiver’s real input is only used in the OT component of the
simulation of Πgen-out, where it is not used in an essential manner.
Consider the standard simulators of GC evaluator SimEv−LP of [LP04] and

3 While BHR do not formally require that such a parsing is possible, it is quite unnat-
ural to not permit it, and all current garbling schemes allow it. Futher, in their
examples BHR implicitly assume existence of such parsing.
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of the OT Receiver SimR−IKNP of [IKNP03]. SimEv−LP accepts as input the
player’s input y and the function output f(x, y); it uses y only to pass
it (together with the needed OT output) to the OT Receiver simulator
SimR−IKNP. “Inside” SimR−IKNP of [IKNP03], the simulation succeeds inde-
pendently of what y is.
Finally, even though the input provided to SimΠgen-out is not the same as the
input provided to Πgen-out in the real execution, this is not a problem, as
they are still computationally indistinguishable when considered as part of
the probability ensemble {f1(x, y), S2(y, f2(x, y))}, as argued above.

	


Achieving shared-output functionality FS-UC-s. The protocol of Fig. 7 can be nat-
urally extended to implement FS-UC-s of Fig. 3. This is achieved, e.g., by running
a shared-output version Πgen-out-s of the output selection protocol Πgen-out. In
turn, Πgen-out-s is derived from Πgen-out by not sending the GC decoding informa-
tion to the other player and not reconstructing the plaintext output in the last
stage of Πgen-out.

6.1 Standard Garbling Schemes are Topology-Decoupling with
Extended Correctness

It is easy to verify that standard GC schemes (classical Yao, Free-XOR and
half-gates) satisfy the required notion. For classic Yao, the topology decoupling
is with respect to the class C of circuits with maximal circuit size s. For the Free-
XOR [KS08a] and half-gates [ZRE15] schemes, C is the set of circuits of ≤ s
non-XOR gates. In all three cases, the canonical circuit is the circuit consisting
of s AND gates and can have any number of inputs and outputs.

In our generic treatment of circuit garbling schemes, we ask the scheme to
define the Embed procedure. For the above standard schemes, we define the
Embed procedure as follows:

Construction 1 (Embedfor standard schemes). For classic Yao, Free-XOR
and half-gates, we define Embed to be the syntactic procedure of replacing the
prefix of the cryptographic material E2 with another cryptographic material E1.
For |E1| ≤ |E2|, we say E = Embed(E1, E2), if E is the string equal to E2 whose
first |E1| bits are set to be to be the string E1.

Theorem 2 (Half-gates garbling is topology-decoupling with extended
correctness). Assuming hashing functions used in the half-gates construction
are modeled as a random oracle, the half-gates garbling of [ZRE15] with the above
Embed satisfies Definition 4 with respect to the class C of circuits with the same
number of input and output wires, and with number of non-XOR gates less or
equal to s, where canonical circuit is the circuit consisting of s AND gates. The
half-gates garbling also satisfies Definition 5.
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Proof. We first observe that syntactically the functions defined by the half-gates
scheme will work with switched topology. In particular, the Eval procedure of
the half-gates scheme does not check that there are leftover garbled tables after
completion. We defined the Embed procedure above. No additional syntactic
changes are needed to consider the scheme.

Extended correctness is immediate. Evaluation of the embedded half-gates
GC will proceed identically to the standard half-gates evaluation.

Topology-decoupling. Recall, in the half-gates scheme, the insight is for the
generator Gen to generate a uniformly random bit r, and to transform the original
AND gate vc = va ∧ vc into two half gates involving r:

vc = (va ∧ r) ⊕ (va ∧ (r ⊕ vb))

This has the same value as va ∧vb since it distributes to va ∧(r⊕r⊕vb). Observe
that in the first conjunction (va∧r) the generator Gen knows r, and in the second
conjunction (va ∧ (r ⊕ vb)), the evaluator Ev is allowed to learn (r ⊕ vb). In both
conjunctions one of the players knows one of the inputs in plaintext. ZRE call
them half-gates, a generator half-gate and an evaluator half-gate.

ZRE [ZRE15] then use a standard construction of two-row tables for each of
the half-gates. Further, a standard garbled-row reduction technique is applied to
reduce size of each to a single row. Finally, the vc = va ∧ vc is computed via the
Free-XOR technique. Importantly for our proof, the garbled rows look random
and do not contain any redundant information allowing evaluator to verify that
it is evaluating a correctly garbled circuit.

Specifically, let pa, pb be the random permutation bits selected by Gen, and
Δ is the Free-XOR offset also selected by Gen. The generator half-table row TGen

is set to: TGen ← H(W 0
a ) ⊕ H(W 1

a ) ⊕ pbΔ. The evaluator half-table row TEv is
set to TEv ← H(W 0

b ) ⊕ H(W 1
b ) ⊕ W 0

a . The garbled output wire W 0
c is set to

be W 0
c ← H(W 0

a ) ⊕ paTGen ⊕ H(W 0
b ) ⊕ pb(TEv ⊕ W 0

a ), and the other output
label is set W 1

c = W 0
c ⊕ Δ. It is easy to trace this and to verify that the garbled

tables output by the half-gates Gen are random-looking, assuming H is a random
oracle, even given an input encoding X. That is, given input encoding X, a circuit
consisting from randomly generated garbled tables is indistinguishable from the
correctly generated half-gates GC corresponding to X. This immediately implies
the theorem statement. 	


Similar theorems can be easily proven for Free-XOR, classical Yao, and many
standard constructions. The proof relies on the property that the garbled circuit
generated by Gen looks random, even given an input encoding.

Theorem 3. Assuming hashing functions used in the Free-XOR construction
are modeled as a random oracle, the Free-XOR garbling of [KS08a] with the
above Embed satisfies Definition 4 with respect to the class C of circuits with the
same number of input and output wires, and with number of non-XOR gates less
or equal to s, where canonical circuit is the circuit consisting of s AND gates.
The half-gates garbling also satisfies Definition 5.
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Theorem 4. Assuming hashing function used in the classical Yao construction
are modeled as a random oracle, the standard 4-row Yao garbling of [LP09] with
the above Embed satisfies Definition 4 with respect to the class C of circuits with
maximal circuit size s and with the same number of input and output wires,
where canonical circuit is the circuit consisting of s AND gates. This garbling
also satisfies Definition 5.

7 Performance Calculation and Comparison

It is easy to evaluate performance of our S-UC scheme. For a set S of n circuits
of (non-XOR gate) sizes sCi

, our communication consists of transmitting a single
GC of size smax = max sCi

, plus the communication needed for Πgen-out. Πgen-out

requires nin ·n OTs and sending a circuit implementing Πgen-out, which is a simple
multiplexer and has approximately nout · n gates.

The multiplexer circuit can process each of nout wires at cost n non-XOR
gates, e.g. as follows. The selector boolean input can be a vector of zeros except
with a 1 in target position t. Then, the multiplexer computes XOR of all nout

conjunctions (of the selector bit and branch bit).
In contrast, the standard approach involves evaluating all n circuits, and the

total communication cost will consist of sending
∑n

i=1 |Ci|. We note that a recent
heuristic circuit overlay approach [KKW17] can reduce this cost, sometimes sig-
nificantly. As discussed in Sect. 1.2, our approach is more efficient and much
simpler than [KKW17] in the case considered in this work (where the evaluated
function is known to Gen).

For the special and representative case where all circuits are of the same size,
our approach will require sending approximately max |Ci| gates, while prior work
required sending n · |Ci| gates. (The cost of [KKW17] varies depending on the
effectiveness of the heuristic and is between max |Ci| and n · |Ci| gates sent.) The
auxiliary costs we incur (extra OTs and evaluating Πgen-out circuit) can often be
ignored, e.g. when Ci is large relative to the auxiliary costs.

We note that if the branch clauses are very small circuits, then the cost of
output selection may overweigh the benefit of Free IF. Precise determination of
the break-even point mainly depends on the relative cost of the extra round of
communication we require. Beyond the cost of the extra round, there is little
we pay. Our output selection algorithm involves a circuit size similar to the
multiplexer that would be used in regular GC; because we use OT as input, our
multiplexer requires approximately twice the number of bits as the regular GC
multiplexer.

Computation costs. We stress that the computation cost is reduced for the Gen-
erator (it would generate a single branch). However it remains the same as in
the standard GC for the Evaluator. This is because the Evaluator must evaluate
all branches of the circuit. We stress that in typical GC deployments commu-
nication is by far the most significant bottleneck, and runtime will usually be
proportional to the amount of communication required.
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