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Abstract. We apply Scholten’s construction to give explicit isogenies
between the Weil restriction of supersingular Montgomery curves with
full rational 2-torsion over Fp2 and corresponding abelian surfaces over
Fp. Subsequently, we show that isogeny-based public key cryptography
can exploit the fast Kummer surface arithmetic that arises from the the-
ory of theta functions. In particular, we show that chains of 2-isogenies
between elliptic curves can instead be computed as chains of Richelot
(2, 2)-isogenies between Kummer surfaces. This gives rise to new possi-
bilities for efficient supersingular isogeny-based cryptography.
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1 Introduction

Public key cryptography based on supersingular isogenies is gaining increased
popularity due to its conjectured quantum-resistance. In November 2017, an
actively secure key encapsulation mechanism called SIKE [22], which is based on
Jao and De Feo’s supersingular isogeny Diffie-Hellman (SIDH) protocol [16,23],
was submitted to NIST in response to their call for quantum-resistant public
key solutions [34]. When compared to other proposals of quantum-resistant key
encapsulation mechanisms, SIKE currently offers an interesting bandwidth ver-
sus performance trade-off; its keys are appreciably smaller than its code- and
lattice-based counterparts, but the times required for encapsulation and decap-
sulation are significantly higher. This performance drawback of supersingular
isogeny-based cryptography is the main practical motivation for this paper.

This Work. 15 years ago, Scholten [31] showed that if E is an elliptic curve
defined over a quadratic extension field L of a non-binary field K, and if its entire
2-torsion is L-rational, then a genus-2 curve C can be constructed over K such
that its Jacobian JC is isogenous to the Weil restriction ResL

K(E). Fortuitously,
supersingular isogeny-based cryptography currently uses elliptic curves that pre-
cisely meet these requirements. In particular, state-of-the-art implementations
(e.g., [14,15]) of SIDH fix a large prime field K = Fp with p = 2i3j − 1 for
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i > j > 100, construct L = Fp2 , and work in the supersingular isogeny class of
elliptic curves over Fp2 whose group structures are all isomorphic to Zp+1×Zp+1.
This necessarily means that all curves in the supersingular isogeny class have
full rational 2-torsion, can be written in Montgomery form, and that for any
such curve E/Fp2 , Scholten’s construction can be used to write down the curve
C/Fp whose Jacobian JC is isogenous to the Weil restriction of E with respect
to Fp2/Fp.

In Proposition 1 we use Scholten’s construction to write down a curve whose
Jacobian is isogenous to the Weil restriction of any supersingular curve that
satisfies the above requirements. Although the existence of this isogeny is guar-
anteed by his construction, Scholten does not provide the isogeny itself, and as is
pointed out in [6, Sect. 2], the construction does not guarantee that this isogeny
is efficiently computable. In our supersingular setting, however, we are able to
derive simple explicit isogenies between the two varieties; these turn out to be
dual (2, 2)-isogenies whose compositions are, by definition, the multiplication-
by-2 morphism on the corresponding varieties.

The application of Scholten’s construction and the derivation of the explicit
maps above allows us to study SIDH computations on abelian surfaces over Fp,
rather than on elliptic curves over Fp2 . In particular, rather than using Vélu’s
formulas [35] to compute secret 2e-isogenies as chains of 2- and/or 4-isogenies
on elliptic curves over Fp2 [16], we show that the same secret isogenies can
instead be computed as a chain of (2, 2)-isogenies on Jacobian varieties over Fp.
While computing isogenies on higher genus abelian varieties is, in general, much
more complicated than Vélu’s formulas for elliptic curve isogenies, the special
case of (2, 2)-isogenies between genus-2 Jacobians dates back to the works of
Richelot [29,30] from almost two centuries ago. Subsequently, the computation
of Richelot isogenies is already well-documented in the literature (cf. [10,33]),
and this allows us to tailor the explicit formulas to our scenario of computing
chains of (2, 2)-isogenies on supersingular Jacobians.

Crucial to the efficacy of this work is that we are able to compute (2, 2)-
isogenies on the Kummer surfaces associated to supersingular Jacobians, rather
than in the full Jacobian groups. This allows us to leverage the fast Kummer
surface arithmetic arising from the classical theory of theta functions, which was
first proposed for computational purposes by the Chudnovsky brothers [12], and
which was brought to life in cryptography by Gaudry [19]. In his article [19,
Remark 3.5], Gaudry points out that the fast (pseudo-)doublings on Kummer
surfaces are the result of pushing points back and forth through a (2, 2)-isogenous
variety, i.e., that the corresponding (2, 2)-isogenies split the multiplication-by-2
map on the associated Kummer surface. This observation plays a key role in
deriving efficient isogenies on fast Kummer surfaces.

Related Work. This paper relies on the results of several authors:-

– The construction in Scholten’s unpublished manuscript [31] is at the heart of
this work. It gives rise to Proposition 1 which paves the way for the rest of
the paper.
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– In 2014, Bernstein and Lange [6] revived Scholten’s work when they proposed
using his construction in the context of (hyper)elliptic curve cryptography
(H)ECC to convert keys back and forth between elliptic and hyperelliptic
curves, in such a way so as to exploit advantageous properties of both set-
tings. They were also the first to explicitly derive instances of the isogenies
alluded to by Scholten, and to show that they can be efficient enough to be
used in online cryptographic computations. The setting considered in [6] has
the advantage of having a single elliptic-and-hyperelliptic curve pair that is
fixed once-and-for-all (meaning the back-and-forth maps also remain fixed),
while in our scenario we will need general-purpose maps that can handle
any supersingular Montgomery curves efficiently at runtime. However, in the
supersingular setting, we have the advantage that our Jacobians have a fixed
embedding degree of k = 2, and we can therefore exploit the existence of
an efficiently computable trace map; this allows us to derive much simpler
back-and-forth isogenies than those presented in [6].

– Renes and Smith [28] recently introduced qDSA: the quotient digital signature
algorithm. In order to instantiate their scheme on fast Kummer surfaces,
they deconstructed the pseudo-doubling map into the explicit (2, 2)-isogenies
alluded to by Gaudry [19, Remark 3.5]; this deconstruction (depicted in [28,
Fig. 1]) plays a key role in this paper. Indeed, it was their explicit treatment of
the dual Kummer surface and subsequent illustration of simple (2, 2)-isogenies
between fast Kummer surfaces that, in part, inspired the present work.

– Being able to study Kummer surface arithmetic as a viable alternative in
the supersingular isogeny landscape is made easier by virtue of the fact that
state-of-the-art SIDH implementations already work entirely in the Kummer
variety, E/{±}, of a given supersingular elliptic curve E. In their article
introducing SIDH, Jao and De Feo [23] showed that, in addition to its widely
known application of computing scalar multiplications, fast Montgomery x-
only style arithmetic [25] could also be used to push points through isogenies.
In more recent work, Costello, Longa and Naehrig [14] exploited a similar
optimisation when computing the isogenous curves in SIDH, observing that
isogeny arithmetic is twist-agnostic in SIDH in a similar fashion to point
arithmetic being twist-agnostic in Bernstein’s Curve25519 ECC software [3].
Subsequently, in the SIKE proposal [22], all elliptic curve points are only ever
represented up to sign and all elliptic curves are only ever represented up to
quadratic twist. Ultimately, this means that when we move to genus 2, we
are able to work in the pre-existing SIDH infrastructure and replace abelian
surfaces with Kummer surfaces and points on abelian surfaces with points on
these Kummer surfaces.

– One significant hurdle to overcome in order to exploit fast isogenies on our
Kummer surfaces it that the (2, 2)-isogeny that splits pseudo-doublings1 cor-
responds to a special kernel, and in SIDH computations we need isogenies that

1 By definition, every (2, 2)-isogeny will give the multiplication-by-2 map when com-
posed with its dual, but here we are referring to the specific (2, 2)-isogeny alluded
to in [19, Remark 3.5], and made explicit by the dualising procedure in [28, Fig. 1].
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work identically for general kernel elements, or at least identically for all of the
kernel elements that can arise in a large-degree supersingular isogeny routine.
This was achieved in the elliptic curve case by De Feo, Jao and Plût [16], who
use an isomorphism to move the general Montgomery 2-torsion point (α, 0)
with α �= 0 to the special 2-torsion point (0, 0). However, in our case, the ker-
nels of Richelot isogenies are non-cyclic, and finding the isomorphism to move
general kernels to special kernels is less obvious. Our overcoming this hurdle
on Jacobians (see Sect. 4) is aided by the use of quadratic splittings intro-
duced by Smith in his treatment of Richelot kernels [33, Chap. 8], and our
overcoming this hurdle on fast Kummer surfaces (see Sect. 5) employs the
technique of [16, Sect. 4.3.2], which uses higher order torsion points (lying
above the kernel) to avoid square root computations.

Roadmap. Section 2 provides background and sets notation. Section 3 defines
the abelian surfaces corresponding to supersingular Montgomery curves (by way
of Proposition 1), and gives the back-and-forth maps between these two objects.
Section 4 then studies (2, 2)-isogenies on supersingular abelian surfaces and, in
particular, it shows how to replace even-power elliptic curve isogenies defined
over Fp2 with chains of (2, 2)-isogenies inside full Jacobians defined over Fp.
This lays the foundations to move to Kummer surfaces in Sect. 5, where the
(2, 2)-isogenies simplify and become much faster. Implications for isogeny-based
cryptography are discussed in Sect. 6.

There are many constants, variables and formulas in this work, so the risk of
typographical error is high. Thus, for readers wanting to verify or replicate this
work, illustrative Magma source files can be found at

https://www.microsoft.com/en-us/download/details.aspx?id=57309.

Before going any further, we stress that this paper in no way changes the security
picture of isogeny-based cryptography, and that using Kummer surfaces over
Fp instead of elliptic curves over Fp2 can be viewed as a mere implementation
choice. The efficient back-and-forth maps in Sect. 3 show that any conceivable
hard problem that can be posed in one setting can be efficiently ported over to
the other setting.

2 Preliminaries

This section gives the necessary background for the remainder of the paper. We
start with a brief summary of some jargon for non-experts. An abelian variety is
a general term for a projective algebraic variety that possesses an algebraic group
law. When we quotient an abelian variety by the map that takes elements to their
inverses, we get the associated Kummer variety. There are two examples that are
relevant in this paper. An elliptic curve is an abelian variety of dimension 1, and
its quotient by {±1} gives the associated Kummer line; if E is a short Weierstrass
or Montgomery curve, then a geometric point P ∈ E can be parameterised on

https://www.microsoft.com/en-us/download/details.aspx?id=57309
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the Kummer line E/{±1} by its x-coordinate, x(P ), which is why it is often
called the x-line. An abelian surface is an abelian variety of dimension 2, and
all such instances in this work occur as Jacobian groups of genus-2 hyperelliptic
curves; if C is a genus-2 curve and JC is its Jacobian, then the quotient JC/{±1}
is called a Kummer surface.

Supersingular Montgomery Curves. State-of-the-art SIDH implementa-
tions (cf. [14,15]) currently employ large prime fields of the form p = 2i3j − 1
with i > j > 100, so that, over Fp2 , the supersingular isogeny class consists
entirely of curves whose abelian group structure is isomorphic to Zp+1 × Zp+1.
This necessarily means that all of the curves in the isogeny class have full Fp2 -
rational 2-torsion, and moreover, that they can be written in Montgomery form
over Fp2 as By2 = x3+Ax2+x. Rather than parameterising Montgomery curves
in this way, we will make an arbitrary choice of one of the two rational 2-torsion
points (α, 0) with α /∈ {−1, 0, 1} (the other is (1/α, 0)), and from hereon will use
Eα to denote the curve

Eα/K : y2 = x(x − α)(x − 1/α), (1)

the j-invariant of which is

j(Eα) = 256
(α4 − α2 + 1)3

α4(α2 − 1)2
.

Note that the j-invariant is the same for Eα as it is for the curve δy2 = x(x −
α)(x − 1/α); this is because δ only helps fix the quadratic twist, i.e., only fixes
the curve up to K̄-isomorphism. As mentioned in Sect. 1, point and isogeny
arithmetic is independent of δ, so our curves need only be defined up to twist.

Throughout the paper we will often be making implicit use of the following
result, which is essentially due to Auer and Top [1].

Lemma 1. If Eα/Fp2 : y2 = x(x−α)(x−1/α) is supersingular, then α ∈ (F×
p2)2,

and α2 − 1 ∈ (F×
p2)8.

Proof. The group structure of Eα implies that at least one of the three 2-torsion
points (0, 0), (α, 0) and (1/α, 0) must be in [2]E(Fp2), so α ∈ (F×

p2)2 by [1,
Lemma 2.1]. Thus, there exists ε ∈ Fp2 such that ε2 = −α3, and it follows
that E is isomorphic over Fp2 to the curve Ẽ : y2 = x(x − 1)(x + α2 − 1) via
(x, y) �→ (−αx+1, εy). Applying [1, Proposition 3.1] yields that α2−1 ∈ (F×

p2)8. ��

Abelian Surfaces. Over a field K of characteristic not 2, every genus-2 curve
is birationally equivalent to a curve of the form C : y2 = f(x), where f(x) ∈ K[x]
is of degree 6 and has no repeated factors. In this work we will only encounter
such curves where f(x) splits completely in K[x], so we will often be writing
them in the form

C/K : y2 = (x − z1)(x − z2)(x − z3)(x − z4)(x − z5)(x − z6), (2)
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where zi ∈ K for i ∈ {1, . . . , 6}, and where we write y2 instead of δy2 for the
same reason as for the elliptic curve case above.

Denote the difference zi − zj by (ij). Following Igusa [21, p. 620], define the
quantities

I2 :=
∑

(12)2(34)2(56)2,

I4 :=
∑

(12)2(23)2(31)2(45)2(56)2(64)2,

I6 :=
∑

(12)2(23)2(31)2(45)2(56)2(64)2(14)2(25)2(36)2,

I10 :=
∏

(12)2, (3)

where the sums and product above run over all of the distinct expressions
obtained by permuting the index set {1, . . . , 6}. The invariants I2, I4, I6, and
I10 are called the Igusa-Clebsch invariants, and they play an analogous role to
the j-invariant of an elliptic curve: two curves C and C ′, with respective Igusa-
Clebsch invariants (I2, I4, I6, I10) and (I ′

2, I
′
4, I

′
6, I

′
10), are isomorphic over K̄ if

and only if

(I2 : I4 : I6 : I10) = (I ′
2 : I ′

4 : I ′
6 : I ′

10) ∈ P(2, 4, 6, 10)(K̄),

i.e., if and only if there exists a λ ∈ K̄× such that

(I ′
2, I

′
4, I

′
6, I

′
10) = (λ2I2, λ

4I4, λ
6I6, λ

10I10).

Observe that, as in the elliptic curve case, the invariants here are independent
of δ, i.e., are twist-independent. For a, b, c, d ∈ K with ad �= bc and e ∈ K×, the
map

κ(a,b,c,d) : C → C ′, (x, y) �→
(

ax + b

cx + d
,

ey

(cx + d)3

)
(4)

is a K-rational isomorphism to the curve C ′. Up to isomorphism and quadratic
twist, and by abuse of notation, we can write C ′ as C ′ : y2 =

∏6
i=1(x − z′

i),
where z′

i = (azi + b)/(czi + d). Let {�0, �1, �∞, �λ, �μ, �ν} = {z1, . . . , z6} be some
relabeling of the roots of the sextic in (2). Setting

a = �1 − �∞, b = �0(�∞ − �1), c = �1 − �0, and d = �∞(�0 − �1)

in (4) yields a map κ(a,b,c,d) : C → Cλ,μ,ν , where

Cλ,μ,ν : y2 = x(x − 1)(x − λ)(x − μ)(x − ν)

is the so-called Rosenhain form of C. Under κ(a,b,c,d), the points (�λ, 0), (�μ, 0)
and (�ν , 0) on C are respectively sent to (λ, 0), (μ, 0) and (ν, 0) on Cλ,μ,ν , while
the points (�0, 0), (�1, 0) and (�∞, 0) are respectively sent to (0, 0), (1, 0), and the
point at infinity on Cλ,μ,ν . There are 6! = 720 possible relabelings of the six zi,
and as such there are 720 possible (ordered) triples (λ, μ, ν) of Rosenhain invari-
ants. In this work we can identify the Jacobian variety, JC , of the curve C/K with
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the degree zero divisor class group of C, i.e., with Pic0K(C) = Div0
K(C)/PrinK(C)

(cf. [18, Sect. 7.8]). In this way a point in the affine part of JC (see [18, p. 204])
is represented using the Mumford representation of the corresponding divisor
D ∈ Pic0K(C); if D is reduced and non-zero, then the effective component of the
support of D either contains 1 or 2 (not necessarily unique) K̄-rational points on
C. In the first (so-called degenerate) case, if (x1, y1) is the only such point (and
its multiplicity is 1) in the support of D, then (x1, y1) ∈ C(K), and its Mumford
representation is (x − x1, y1) ∈ K[x] × K[x]. In the general case, when (x1, y1)
and (x2, y2) with x1 �= x2 are the two K̄-rational points on C in supp(D), then
the corresponding Mumford representation is

(x2 + u1x + u0, v1x + v0) ∈ K[x] × K[x],

where

u1 = −x1 − x2 , u0 = x1x2 , v1 =
y2 − y1
x2 − x1

, and v0 =
y1x2 − x1y2

x2 − x1
. (5)

Note that, in general, the Mumford representation of a point in JC(K) can
always be written in K[x] × K[x], but this does not imply that the underlying
points on C(K̄) are K-rational.

If (x2+u1x+u0, v1x+v0) is a generic point in JC , then the map κ(a,b,c,d) : C →
C ′ in (4) induces a map between their Jacobians, where, for elements with �1 =
c2u0 − cdu1 + d2 and �2 = ad − bc such that �1�2 �= 0, we have (x2 + u1x +
u0, v1x + v0) �→ (x2 + u′

1x + u′
0, v

′
1x + v′

0), with

u′
1 = �−1

1 ((ad + bc)u1 − 2acu0 − 2bd) , u′
0 = �−1

1

(
a2u0 − abu1 + b2

)
,

v′
0 = −e(�21�2)

−1
(
ac2(u0u1v1 − u2

1v0 + u0v0) − c(2ad + bc)(u0v1 − u1v0)

− d(ad + 2bc)v0 + bd2v1

)
, (6)

and v′
1 = e(�21�2)

−1
(
c2(cu1 − 3d)(u0v1 − u1v0) + cv0(c2u0 − 3d2) + d3v1

)
.

Weil Restriction of Scalars. The Weil restriction of scalars is the process
of re-writing a system of equations over a finite extension L/K as a system of
equations in more variables over K – we refer to [18, Sect. 5.7] for a more general
discussion. In this work it can be considered as merely a formality to increase
dimension so that speaking of isogenies makes sense. The Weil restriction of our
one-dimensional varieties Eα/Fp2 (with respect to the extension Fp2 = Fp(i)
with i2 + 1) is the two-dimensional variety

Wα := Res
Fp2

Fp
(Eα) = V

(
W0(x0, x1, y0, y1),W1(x0, x1, y0, y1)

)
,

where

W0 = (α2
0 + α2

1)
(
α0(x

2
0 − x2

1) − 2α1x0x1 + δ0(y
2
0 − y2

1) − 2y0y1δ1 − x0(x
2
0 − 3x2

1 + 1)
)

+ α0(x
2
0 − x2

1) + 2α1x0x1 and

W1 = (α2
0 + α2

1)
(
α1(x

2
0 − x2

1) + 2α0x0x1 + δ1(y
2
0 − y2

1) + 2y0y1δ0 − x1(3x2
0 − x2

1 + 1)
)

+ α1(x
2
1 − x2

0) + 2α0x0x1
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are obtained by putting x = x0 + x1 · i, y = y0 + y1 · i as well as α = α0 + α1 · i
and δ = δ0 + δ1 · i (with x0, x1, y0, y1, α0, α1, δ0, δ1 ∈ Fp) into (1). In terms
of dimension, it now makes sense to speak of isogenies between Wα and the
two-dimensional abelian surfaces described in the next section.

We make the disclaimer that oftentimes we will speak loosely and refer to
isogenies and maps between Eα, intermediate curves, and abelian surfaces, but
that from hereon it should be clear that, technically speaking, these maps are
only well-defined when speaking of the corresponding Weil restrictions of these
elliptic curves with respect to Fp2/Fp.

Power-of-2 Elliptic Curve Isogenies in SIDH. Understanding how 2e-
isogenies are computed in SIDH is key in understanding the directions we take
in Sects. 4 and 5. Recall the three 2-torsion points on Eα as (0, 0), (α, 0) and
(1/α, 0); in general, each of these corresponds to a different 2-isogeny emanating
from Eα. Following [16, Sect. 4.3.2] and [27, Sect. 4.2], when the kernel is gener-
ated by the special point (0, 0), applying Vélu’s formulas [35] to write down the
isogeny allows us to (re)write the image curve in Montgomery form2. However,
when the kernel is generated by one of the other two points, direct application of
Vélu’s formulas makes writing the image curve in Montgomery form much less
obvious. This was achieved in [16,27] by using an isomorphism to move these two
kernel points to (0, 0) on an isomorphic curve (which differs depending whether
the kernel is 〈(α, 0)〉 or 〈(1/α, 0)〉), prior to invoking Vélu.

In our case we follow an analogous path. From the work in [28], we have a
very simple Kummer surface isogeny that corresponds to a special kernel O, and
we use an isomorphism to move our two more general kernels, Υ and Υ̃ , prior to
applying the isogeny (see Sects. 4 and 5 for the definitions of O, Υ and Υ̃ ).

We point out that this analogue is not a coincidence, and is made concrete
in Lemma 2. Moreover, just like in the elliptic curve case where (0, 0) cannot
arise as the kernel of a repeated isogeny in SIDH (because it gives rise to the
dual isogeny – see [16]), in our case it is O that corresponds to the dual so our
kernel will, with the possible exception of the very first (2, 2)-isogeny, only ever
correspond to Υ and Υ̃ .

3 Abelian Surfaces Isogenous to Supersingular
Montgomery Curves

This section links supersingular Montgomery curves defined over Fp2 with
abelian surfaces defined over Fp. We start with Proposition 1, which writes down
the genus-2 curve Cα/Fp arising from Scholten’s construction; its proof is post-
poned until after we have derived the back-and-forth (2, 2)-isogenies between
the given Weil restriction and abelian surface. We point out that the exposition

2 The importance of the codomain curve sharing the same form as the domain curve
is a result of our need to repeat many small isogeny computations (which we want
to be as efficient and uniform as possible).
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below is simplified by assuming3 p ≡ 3 mod 4 so that Fp2 = Fp(i) with i2+1 = 0,
but treating the complimentary or general case is analogous. The only impactful
restriction made in addition to Scholten’s requirements is that of supersingular-
ity. As mentioned in Sect. 1, this gives rise to simpler maps than those in [6] by
way of the trace map, but several of our intermediate steps may still be useful
beyond the supersingular scenario.

Proposition 1. Let p ≡ 3 mod 4, let Fp2 = Fp(i) with i2 + 1 = 0, and let

Eα/Fp2 : y2 = x(x − α)(x − 1/α)

be supersingular with α �∈ Fp. Write α = α0 + α1 · i with α0, α1 ∈ Fp. The Weil
restriction of scalars of Eα(Fp2) with respect to Fp2/Fp is (2, 2)-isogenous to the
Jacobian, JCα

, of

Cα/Fp : y2 = f1(x)f2(x)f3(x), (7)

where

f1(x) = x2 +
2α0

α1
· x − 1,

f2(x) = x2 − 2α0

α1
· x − 1, and

f3(x) = x2 − 2α0(α2
0 + α2

1 − 1)
α1(α2

0 + α2
1 + 1)

· x − 1.

Remark 1 (Singular quadratic splittings and split Jacobians). We immediately
point out that the fi(x) in Proposition 1 are linearly dependent; namely, f3(x) =
1/(N+1)·f1(x)+N/(N+1)·f2(x), where N = NFp2/Fp

(α) = α2
0+α2

1. Oftentimes
in the literature, this is referred to as the singular scenario, where the Jacobian
of Cα is reducible, or split (e.g., [10, Theorem 14.1.1(ii)] and [33, Proposition
8.3.1]). However, we stress that those results do not necessarily imply that this
splitting occurs over Fp; Cassels and Flynn assume that they are working in the
algebraic closure [10, p. 154] and Smith’s construction of the linear polynomials
on [33, p. 119] also requires a field extension in the general case. Indeed, if all of
the elliptic curves in our isogeny graph were (2, 2)-isogenous to a Jacobian that
is split over Fp, this would have serious implications on the quantum security
of SIDH (see [11]). We conjecture that the Jacobian of Cα only splits over Fp

when the j-invariant of Eα is itself defined over Fp, and note that adhering to
the constructions in [10] and [33] (over the algebraic closure) yields an isogeny
between JCα

(Fp2) and E2
α(Fp2), which manifests JCα

being supersingular [26,
Theorem 4.2].

3 In the current landscape of isogeny-based cryptography, the assumption of p ≡
3 mod 4 is standard [14–16,22].
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Fixing Roots of the Sextic. Following Lemma 1, let γ, β ∈ Fp2 be such that

γ2 = α and β2 = (α2 − 1)/α, (8)

and write β = β0 + β1 · i and γ = γ0 + γ1 · i for β0, β1, γ0, γ1 ∈ Fp. The curve
Cα/Fp from Proposition 1 will henceforth be written as

Cα/Fp : y2 = (x − z1)(x − z2)(x − z3)(x − z4)(x − z5)(x − z6),

where

z1 :=
β0

β1
, z2 :=

γ0
γ1

, z3 := −γ0
γ1

, z4 := −β1

β0
, z5 := −γ1

γ0
, z6 :=

γ1
γ0

, (9)

and where we note at once that

z3 = −z2 , z4 = −1/z1 , z5 = −1/z2 , and z6 = 1/z2.

Furthermore, observe that any combination of the choices of roots for γ and β
in (8) gives rise to the same values of the zi in (9).

Mapping from Eα (Fp2) to JCα
(Fp). The (2, 2)-isogeny from (the Weil restric-

tion of) Eα(Fp2) to the Jacobian JCα
(Fp) will be derived as the composition of

maps between intermediate curves. We start by defining the curve

Ẽα/Fp2 : y2 = (x − r1)(x − r2)(x − r3),

with

r1 := (α − 1/α)p−1, r2 := αp−1, and r3 := 1/αp−1.

Fix β̂ such that β̂2 = r3 − r2 (it is easy to see that β̂ always exists over Fp2),
and define an isomorphism between Eα and Ẽα as

ψ : Eα → Ẽα, (x, y) �→
(
(β̂/β)2 · x + r1 , (β̂/β)3 · y

)
.

Following [31, Lemma 2.1], define C̃α/Fp2 as the hyperelliptic curve

C̃α/Fp2 : y2 = (x2 − r1)(x2 − r2)(x2 − r3),

where we have the map

ω : C̃α → Ẽα, (x, y) �→ (x2, y).

Observing that r1, r2 and r3 are all square in Fp2 , let W be the set of x-
coordinates of the six Weierstrass points of C̃α. A key step in Scholten’s con-
struction is to choose a map φ that, restricted to x-coordinates, leaves φ(W )
invariant under the action of Galois. With Fp2 = Fp(i), our choice is

φ : C̃α(Fp2) → Cα(Fp2),

(x, y) �→
(

−i · x − 1
x + 1

,
y

w

(
1 − x − 1

x + 1

)3
)

,
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where w := r3(1 − r1)(r2 − 1)2 and Cα is the curve from Proposition 1. An
important observation here is that Cα is defined over Fp, while C̃α is defined
over Fp2 , and the map φ is between the Fp2 -rational points on these curves.

Composing the image of the pullback ω∗ (see [18, Definition 8.3.1]) with φ
(which is extended linearly into JCα

(Fp2) via the Abel-Jacobi map as in (5)),
induces the map

ρ : Ẽα(Fp2) → JCα
(Fp2),

(x̃, ỹ) �→ (x2 + u1x + u0, v1 + v0),

where

u1 = 2i ·
(

x̃ + 1
x̃ − 1

)
, u0 = −1, v1 = −4i · ỹ(x̃ + 3)

w(x̃ − 1)2
, v0 =

4ỹ

w(x̃ − 1)
.

Since JCα
is defined over Fp and is supersingular with embedding degree

k = 2, we can use the trace map T to move elements from JCα
(Fp2) into JCα

(Fp),
i.e.,

T : JCα
(Fp2) → JCα

(Fp),

P �→
∑

σ∈Gal(Fp2/Fp)

σ(P ),

which for generic elements in JCα
(Fp2), becomes

T : (x
2
+ u1x + u0, v1x + v0) �→ (x

2
+ u1x + u0, v1x + v0) ⊕J (x

2
+ u

p
1x + u

p
0 , v

p
1x + v

p
0 ),

where ⊕J denotes the addition law in JCα
(Fp2), explicit formulas for which are

in [20, Sect. 5].
Finally, we can now define the map from (the Weil restriction of) Eα(Fp2)

to JCα
(Fp) as

η : Eα(Fp2) → JCα
(Fp),

P �→ (T ◦ ρ ◦ ψ)(P ).

Mapping from JCα (Fp) to Eα (Fp2). We start by writing down φ−1, the
inverse of φ, as

φ−1 : Cα(Fp2) → C̃α(Fp2),

(x, y) �→
(

−x − i

x + i
, −i · yw

(x + i)3

)
.

Extending φ−1 linearly to Div
Fp

(Cα) (and recalling our identification of JCα
(K)

and Pic0K(Cα) – see Sect. 2) induces a map ρ̂, defined for generic elements in the
affine part of JCα

(Fp) as

ρ̂ : JCα
(Fp) → Ẽα(Fp2) × Ẽα(Fp2),

P �→
(
(ω ◦ φ−1)(x1, y1)), (ω ◦ φ−1)(x2, y2)

)
,
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where the Mumford representation of P ∈ JCα
(Fp) is exactly as in (5), with

(x1, y1), (x2, y2) ∈ Cα(Fp2).
We can now define the full map from JCα

(Fp) to Eα(Fp2) as

η̂ : JCα
(Fp) → Eα(Fp2),

P �→
(
ψ−1 ◦ ⊕Ẽ ◦ ρ̂

)
(P ),

where ⊕Ẽ : Ẽα × Ẽα → Ẽα is the addition law on Ẽα, and the inverse of the
isomorphism ψ is

ψ−1 : Ẽα → Eα, (x, y) �→
(
(β/β̂)2 · (x − r1) , (β/β̂)3 · y

)
.

Kernels and Group Structures. Let OEα
be the point at infinity on Eα.

The kernel of the map η : Eα(Fp2) → JCα
(Fp) is

ker(η) = Eα[2] = {OEα
, (0, 0), (α, 0), (1/α, 0)} ,

which is isomorphic to Z2 × Z2.
Let OJ be the identity in JCα

. The kernel of the map η̂ : JCα
(Fp) → Eα(Fp2)

is

ker(η̂) = {OJ , ((x − z1)(x − z4), 0) , ((x − z3)(x − z6), 0) , ((x − z2)(x − z5), 0)} ,

a maximal 2-Weil isotropic subgroup of JCα
[2], which is also isomorphic to Z2 ×

Z2. It is readily verified that, up to isomorphism, we have (η̂ ◦ η) = [2]Eα
, where

[2]Eα
is the multiplication-by-2 map on Eα. Similarly, up to isomorphism, we

have (η ◦ η̂) = [2]J , where [2]J is the multiplication-by-2 map on JCα
. Thus, η

and η̂ are the (unique, up to isomorphism) dual isogenies of one another.
As abelian groups, we have

Eα(Fp2) ∼= Zp+1 × Zp+1,

and

JCα
(Fp) ∼= Z2 × Z2 × Z p+1

2
× Z p+1

2
. (10)

Proof (of Proposition 1). This follows from [31]. Eα is isomorphic to Ẽα under
ψ (indeed, Ẽα is a monic version of the second curve in [31, Lemma 3.1], when
Eα is the first). Thus, under ω : (x, y) �→ (x2, y), Ẽα and JCα

have the same L-
polynomial and are therefore isogenous [31, Lemma 2.1]. It remains to show that
η is a (2, 2)-isogeny, which is an immediate consequence of ker(ω∗) ⊆ Ẽα[2] [18,
Exercise 10.5.2] and the definition of ρ. ��

4 Richelot Isogenies on Supersingular Abelian Surfaces

This section studies Richelot (2, 2)-isogenies whose domain is the Jacobian, JCα
,

of the curve Cα defined in Proposition 1. This lays the foundations for the
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following section, where we will study these isogenies as they are pushed down
onto a corresponding Kummer surface Kα = JCα

/{±1}. Readers should rest
assured that, as is usual in the genus-2 landscape, the situation looks much
more complicated on the full Jacobian (e.g., in (13)) than it does once we move
to a well-specified Kummer surface.

In general, there are 15 Richelot isogenies emanating from JCα
, but we will

be restricting our focus to the three that correspond to the 2-isogenies on Eα.

Kernels of (2, 2)-Isogenies as Quadratic splittings. Recall the labeling of
the roots z1, . . . , z6 ∈ Fp of the sextic f(x) ∈ Fp[x] in (9). As an abelian group,
the 2-torsion of JCα

, JCα
[2], is isomorphic to (Z/2Z)4; it consists of the zero

element, OJ , together with the 15 points whose Mumford representations are
((x − zi)(x − zj), 0), where i, j ∈ {1, . . . 6} and i �= j. We will use Gi,j to denote
the quadratic polynomial (x− zi)(x− zj) ∈ Fp[x] and write Pi,j ∈ JCα

[2] for the
non-zero 2-torsion point whose Mumford representation is Pi,j = (Gi,j , 0).

Following [33, Sect. 8.1], kernels of (2, 2)-isogenies are called (2, 2)-subgroups,
and these correspond to the maximal 2-Weil isotropic subgroups of JCα

[2].
Smith [33, Sect. 8.2] formalises this connection by introducing quadratic split-
tings. In our case, a quadratic splitting is simply a choice of factorisation
of the sextic polynomial f(x) in Proposition 1 into three quadratic factors
in Fp[x]; one such choice was already illustrated in (7). Henceforth, for any
{i, j, k, l,m, n} = {1, 2, 3, 4, 5, 6}, we use the notation (Gi,j , Gk,l, Gm,n) ∈ Fp[x]3

to denote the corresponding quadratic splitting of f(x) = Gi,j ·Gk,l ·Gm,n. There
are 15 choices of splittings, and each corresponds to a unique (2, 2)-subgroup:
the quadratic splitting (Gi,j , Gk,l, Gm,n) corresponds to the (2, 2)-subgroup of
JCα

[2] generated by any two of the three points in {Pi,j , Pk,l, Pm,n} (the third
point is the sum of the other two). In this way, we see that (2, 2)-subgroups are
isomorphic to (Z/2Z)2.

(2, 2)-Subgroups Corresponding to the Montgomery 2-Torsion. Out
of the 15 possible splittings described above, there are three splittings we are
interested in; those where the subsequent (2, 2)-isogenies on JCα

correspond to
the three 2-isogenies on Eα. We make these splittings concrete in the following
lemma.

Lemma 2. Let Eα̂/Fp2 , Eα′/Fp2 and Eα′′/Fp2 be three Montgomery curves that
are respectively Fp2-isomorphic to Eα/〈(0, 0)〉, Eα/〈(α, 0)〉, and Eα/〈(1/α, 0)〉,
and let Cα̂/Fp, Cα′/Fp and Cα′′/Fp be the corresponding hyperelliptic curves (as
in Proposition 1). Furthermore, fix the three quadratic splittings O, Υ , and Υ̃ ,
as

O = (O1, O2, O3) := (G2,3, G5,6, G1,4),
Υ = (Υ1, Υ2, Υ3) := (G4,5, G1,2, G3,6), and

Υ̃ = (Υ̃1, Υ̃2, Υ̃3) := (G1,6, G3,4, G2,5).
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Then, up to isomorphism, the image curves CO, CΥ and CΥ̃ of the Richelot
(2, 2)-isogenies (with respective kernels corresponding to O, Υ and Υ̃ ) are such
that

CO = Cα̂, and {CΥ , CΥ̃ } = {Cα′ , Cα′′}.

Proof. Direct substitution of (9) gives

O1 = x2 − γ2
0

γ2
1

, O2 = x2 − γ2
1

γ2
0

, O3 = x2 +
(

β2
1 − β2

0

β0β1

)
x − 1, (11)

Υ1 = x
2 +

(
β1γ0 + γ1β0

β0γ0

)
x +

β1γ1

β0γ0
, Υ2 = x

2 −
(

β0γ1 + γ0β1

β1γ1

)
x +

β0γ0

β1γ1
, Υ3 = x

2 +

⎛
⎝ γ2

0 − γ2
1

γ0γ1

⎞
⎠ x − 1,

and

Υ̃1 = x
2 −

(
β0γ0 + γ1β1

β1γ0

)
x +

β0γ1

β1γ0
, Υ̃2 = x

2 +

(
β0γ0 + γ1β1

β0γ1

)
x +

β1γ0

β0γ1
, Υ̃3 = x

2 +

⎛
⎝ γ2

1 − γ2
0

γ0γ1

⎞
⎠ x − 1.

In each case, if the splitting is written as

S =
(
x2 + g1,1x + g1,0, x

2 + g2,1x + g2,0, x
2 + g3,1x + g3,0

)
,

then the curve with the corresponding (2, 2)-isogenous Jacobian (cf. [10, Sect.
9.2]) is isomorphic to

CS : y2 = h(x) = h1(x)h2(x)h3(x),

where

h1(x) = (g1,1 − g2,1)x2 + 2 (g1,0 − g2,0) x + g1,0g2,1 − g2,0g1,1,

h2(x) = (g2,1 − g3,1)x2 + 2 (g2,0 − g3,0) x + g2,0g3,1 − g3,0g2,1, and

h3(x) = (g3,1 − g1,1)x2 + 2 (g3,0 − g1,0) x + g3,0g1,1 − g1,0g3,1. (12)

Now, following Sect. 2, and using (8), we first write α̂ = (α + 1)/(1 − α), α′ =
2α(α + βγ) − 1 and α′′ = (2 − α2 + 2βγ · i)/α2, and then write each of these
constants in terms of its two Fp components (under the basis {1, i} for Fp2/Fp

as usual). We can then apply Proposition 1 to write down Cα̂, Cα′ and Cα′′ .
Using (3), lengthy but straightforward calculations show that the result follows
from comparing the Igusa-Clebsch invariants of these three curves to those of
the curves CO, CΥ and CΥ̃ obtained above. ��

The explicit Richelot isogeny corresponding to O. Equation (12) writes
down the curve whose Jacobian is (2, 2)-isogenous to that of a given genus-2
curve; here the prescribed kernel can be any (2, 2)-subgroup. To fully describe
the isogeny, we also need to write down explicit formulas for pushing points in
the domain Jacobian through the corresponding isogeny, which is the purpose
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of this subsection. However, we first note that we will only be needing explicit
formulas for the special case when the kernel subgroup corresponds to a quadratic
splitting of the form of O in (11). To compute isogenies when the splitting is of
the form of Υ and/or Υ̃ , we will be (pre)composing the isogeny described in this
subsection with the isomorphisms (that transform these splittings into splittings
of the form of O) in the next subsection. For reasons analogous to Montgomery
2-isogenies in the elliptic curve case (see Sect. 2), proceeding in this way makes
life easier when we move down to the Kummer surface in Sect. 5.

Bost and Mestre [8] derive explicit (2, 2)-isogenies from Richelot correspon-
dences [33, Definition 8.4.7]. In general, correspondences are divisors on the prod-
uct C ×C ′ of the two curves C and C ′, and the theory of correspondences relates
such divisors to homomorphisms between their Jacobians (see [33, Chap. 3]). In
this paper we focus on the particular case of the Richelot correspondence

VO := V

(
O1(x1)O′

1(x2) + O2(x1)O′
2(x2),

y1y2 − O1(x1)O′
1(x2)(x1 − x2)

)

on Cα×CO. With O1 and O2 as in (11), and with O′
1 and O′

2 as their derivatives,
we get

VO = V

(
4x2(x2

1 − 2α2
0/α2

1 − 1),
α2
1y1y2 + 2x2(4α2

0 + 4α0γ
2
1 + α2

1(1 − x2
1))(x1 − x2)

)
.

Following [33, Sect. 3.3], and viewing VO as a curve on Cα × CO, we make
use of the coverings

πVO
1 : VO → Cα, ((x1, y1), (x2, y2)) �→ (x1, y1)

and
πVO
2 : VO → CO, ((x1, y1), (x2, y2)) �→ (x2, y2),

and compose the pullback πVO∗
1 with the pushforward πVO

2∗ to obtain4 the induced
isogeny

ϕO : JCα
→ JCO

,

defined on general elements of JCα
as

ϕO : (x2 + u1x + u0, v1x + v0) �→ (x2 + u′
1x + u′

0, v
′
1x + v′

0), (13)

where

u′
1 = −α1(u2

1 − 1)(N + 1)
α0(N − 1)

, u′
0 = u2

1, v′
0 = 2M · u1(α0(N − 1) − u1α1(N + 1))

v1α1(N + 1)
,

and

v′
1=2M · (α1u1(N + 1))2 − (N2 − 1)α1α0u1 − N(N + 2α0 + 1)(N − 2α0 + 1))

α0α1(N2 − 1)v1
,

4 Those unfamiliar with these maps can view this process informally as follows: for
a fixed (x1, y1), take the image as the divisor sum of the (in this case) two points,
P and Q, whose coordinates satisfy the resulting equations in (x2, y2). This gives
a map (x1, y1) �→ (P ) + (Q) between Div(Cα) and Div(CO) that can be extended
(linearly) to give a map from Pic0(Cα) to Pic0(CO), and then from JCα to JCO .
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with N = α2
0 + α2

1 and M = (u2
1 − 2α0/α1u1 − 1)(u2

1 + 2α0/α1u1 − 1), and with

CO : y2 = ε0x
(
x2 − ε1x − 1

) (
x2 − ε2x − 1

)
,

where ε0 = 4α0(N−1)
α1(N+1) , ε1 = 2α0(N+1)+4N

α1(N−1) and ε2 = 2α0(N+1)−4N
α1(N−1) .

Isomorphisms of (2,2)-kernels. As mentioned in Sect. 2, we follow a similar
path to that which was taken in the elliptic curve case and precompose the
isogeny described above with isomorphisms that transform the (2, 2)-kernels Υ
and Υ̃ to be of the same form as O, but on an isomorphic curve.

Our situation is more complicated than the elliptic curve case because our
kernels are non-cyclic, meaning that they cannot be defined using a single point
in the Jacobian. But, in the scenario of chained (2, 2)-isogeny computations
on supersingular abelian surfaces, we are able to overcome this and still use
individual 2-torsion points Pi,j to distinguish between the three kernel splittings
O, Υ , and Υ̃ . If n is the even integer (p + 1)/4, and if OJ is the identity on JCα

,
then [n]JCα

is a (2, 2)-subgroup (see (10)), and in our case is always one of

[n]JCα
= {OJ , (O1, 0), (Υ1, 0), (Υ̃1, 0)},

or
[n]JCα

= {OJ , (O2, 0), (Υ2, 0), (Υ̃2, 0)}.

In either case, if P is a point of exact order 2� with � > 1 in JCα
, then we see

that [2�−1]P �= OJ reveals which of the three splittings O, Υ or Υ̃ , corresponds
to our (2, 2)-kernel. Moreover, as discussed at the end of Sect. 2, in SIDH our
kernel will always correspond to one of Υ or Υ̃ , since O generates the dual of the
previous isogeny.

Our task is now to define an isomorphism that moves the kernels Υ and Υ̃
into a kernel of the same form as O, but on an isomorphic curve. For a given
point P = (x2 + u1x + u0, v1x + v0) in JCα

, we define

ξP : JCα
→ JC′

α

as the isomorphism of Jacobians corresponding to κa,b,c,d : Cα → C ′
α from (4),

with

d = 1, c = −u0 − 1 +
√

(u0 − 1)2 + u2
1

u1
,

b = −
√

−u1(2c(u0 − 1) − u1)
u1

, and a = −b
2u0 + cu1

2c + u1
. (14)

When P = (x2+u1x+u0, 0) is a 2-torsion point, the induced isomorphism of
Jacobians in (6) simplifies significantly. Straightforward calculations reveal that,
when P corresponds to the quadratic splitting Υ (i.e., when P ∈ {Υ1, Υ2}), we
have

{
ξ(Υ1,0)((Υ1, 0)) , ξ(Υ1,0)((Υ2, 0))

}
=

{
ξ(Υ2,0)((Υ1, 0)) , ξ(Υ2,0)((Υ2, 0))

}

=
{

((x2 − γ′2
0 /γ′2

1 ), 0) , ((x2 − γ′2
1 /γ′2

0 ), 0)
}

,
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and

ξ(Υ1,0)((Υ3, 0)) = ξ(Υ2,0)((Υ3, 0)) =
(

x2 +
(

β′2
1 − β′2

0

β′
0β

′
1

)
x − 1, 0

)
,

for some γ′
0, γ

′
1, β

′
0, β

′
1 ∈ Fp such that β′ = β′

0+β′
1·i ∈ Fp2 and γ′ = γ′

0+γ′
1·i ∈ Fp2

satisfy γ′2β′2 = γ′4 − 1, which comes from the relation in (8). Thus, the (2, 2)-
subgroup corresponding to the splitting Υ on JCα

is isomorphic (via either ξ(Υ1,0)

or ξ(Υ2,0)) to the splitting

O′ =
(

x2 − γ′2
0 /γ′2

1 , x2 − γ′2
1 /γ′2

0 , x2 + (β′2
1 − β′2

0 )/(β′
0β

′
1)x − 1

)

on JC′
α
.

Crucially, the analogous statements apply when the point P corresponds to
the quadratic splitting Υ̃ (i.e., when P ∈ {Υ̃1, Υ̃2}), with the only difference being
different values of γ′

0, γ
′
1, β

′
0, β

′
1 ∈ Fp and a different (but still isomorphic) image

curve JC′
α
.

Finally, we fix
ϕP := (ϕO ◦ ξP )

as the (2, 2)-isogeny of Jacobians whose kernel is the (2, 2)-subgroup correspond-
ing to Υ if P ∈ {(Υ1, 0), (Υ2, 0)}, or corresponding to Υ̃ if P ∈ {(Υ̃1, 0), (Υ̃2, 0)}.
It is important to point out that ϕP is computed in the same way regardless of
whether P corresponds to Υ or to Υ̃ .

To summarise, we have so far derived all of the ingredients necessary to
replace chained 2-isogenies on elliptic curves over Fp2 with chained (2, 2)-
isogenies on Jacobians over Fp. However, the combination of a relatively ineffi-
cient ϕP and point doublings in the full Jacobian is what prompts us to now
push this arithmetic down onto the corresponding fast Kummer surfaces.

Remark 2. It is not surprising that the isomorphism in (14) that transforms the
(2, 2)-kernels Υ and Υ̃ into a kernel of the form of O (but on an isomorphic curve)
seems to require square roots. Indeed, De Feo, Jao and Plût [16] encountered the
same problem in their treatment of 2-isogenies between Montgomery curves, but
noticed that the square roots were related to rational functions of torsion ele-
ments lying above their kernels, so were able to use these higher order points to
avoid square roots and efficiently chain together 2-isogenies in the SIDH frame-
work. We employ this same technique in the next section to avoid square roots
during Kummer isogeny computations, and claim that (if there was any practical
motivation to sort out these details) the square roots in (14) could also be cir-
cumvented by using points of order 4 lying above P ∈ JCα

. Indeed, the functions
of u0 and u1 in (14) being squares in Fp is undoubtedly related to their being
the output of a point doubling in JCα

. Finally, we point out that in the case of
2-isogenies on Montgomery elliptic curves, Renes [27, Sect. 4] recently removed
the need for any higher order points, giving explicit formulas that depend only
on the kernel element of order 2.
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5 Richelot Isogenies on Supersingular Kummer Surfaces

The efficacy of this work relies on our being able to push ϕP down onto specific
choices of Kummer surfaces.

Supersingular Kummer Surfaces. Following the initial works of the Chud-
novskys [12] and of Gaudry [19], a number of authors have exploited the fast
Kummer surface arithmetic in the context of modern HECC (cf. [4,5,7]). We
draw on the applicable techniques from that line of work in this paper, and in
particular adopt the Chudnovskys’ [12] squared Kummer surface approach that
was first exploited in high-speed HECC by Bernstein [4] and for fast factorisation
by Cosset [13].

Choices of notations and parameterisations of Kummer surfaces have varied
in the literature (see [28, Table 1]). We will aim to stick to that used in [28], but
warn that our supersingular Kummer surfaces are special and will be defined as
such. Kummer surfaces and their arithmetic are defined by fixing four funda-
mental theta constants, and the special squared Kummer surfaces used in this
paper work entirely with their squares, denoted μ1, μ2, μ3 and μ4.

Following [7, Sect. 5.2], the μi can be computed from the Rosenhain form
Cλ,μ,ν of the associated genus-2 curve, as

μ4 = 1, μ3 =

√
λμ

ν
, μ2 =

√
μ(μ − 1)(λ − ν)
ν(ν − 1)(λ − μ)

, μ1 = μ2μ3
ν

μ
. (15)

In the supersingular scenario, with the sextic form of genus-2 curves as in (9),
we will fix the transformation to Rosenhain form that sends the point (z1, 0) to
(0, 0), the point (z2, 0) to (1, 0), the point (z4, 0) to the unique point at infinity,
the point (z3, 0) to (λ, 0), the point (z6, 0) to (μ, 0), and the point (z5, 0) to (ν, 0).
We achieve this by taking a = z2 − z4, b = −az1, c = z2 − z1 and d = −cz4, i.e.,

κ(a,b,c,d) : Cα → Cλ,μ,ν

(x, y) �→
( (

β0γ0 + β1γ1

γ0β1 − γ1β0

)
·
(

β1x − β0

β0x + β1

)
, ey ·

(
β0β1γ1

(β1γ0 − β0γ1)(β0x + β1)

)3
)

,

with e2 = ac(a − c)(a − νc)(a − μc)(a − λc), and where

λ := −
(β0γ1 + β1γ0)(β0γ0 + β1γ1)

(β0γ0 − β1γ1)(β0γ1 − β1γ0)
, μ :=

(β0γ0 + β1γ1)(β0γ0 − β1γ1)

(β0γ1 + β1γ0)(β0γ1 − β1γ0)
, ν := −

(β0γ0 + β1γ1)
2

(β0γ1 − β1γ0)2
.

Thus, we see that ν = λμ, meaning that (15) simplifies to

μ4 := 1, μ3 := 1, μ2 :=
(

γ2
0 − γ2

1

γ2
0 + γ2

1

)
/
√

λ, μ1 :=
(

γ2
0 − γ2

1

γ2
0 + γ2

1

)
·
√

λ.

Previous works in the realm of high-speed HECC do not have μ3 = 1 in
addition to μ4 = 1 (because the chances of finding a secure such Kummer surface
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over a given field are very small), which is why we stated above that our Kummer
surfaces are special. One bonus of having μ3 = 1 is a simplified description of
the Kummer surface, and for a fixed5 Kummer surface of this form, another is
more efficient arithmetic for the pseudo-group operations.

Our special squared Kummer surface, KSqr, is defined as

KSqr : F · X1X2X3X4 =
(
X2

1 + X2
2 + X3

3 + X2
4 − G(X1 + X2)(X3 + X4) − H(X1X2 + X3X4)

)2
,

where

F := 4μ1μ2
(μ1 + μ2 + 2)2(μ1 + μ2 − 2)2

(μ1μ2 − 1)2
, G := μ1 + μ2, and H :=

μ2
1 + μ2

2 − 2

μ1μ2 − 1
.

Elements on KSqr are projective points (X1 : X2 : X3 : X4) ∈ P
3 satisfying

this equation, and the zero element is OK = (μ1 : μ2 : 1 : 1).
Let τ and τ̃ be the roots of x2 − Gx + 1 in Fp[x], and observe that τ · τ̃ = 1.

On KSqr, the three (2, 2)-subgroups corresponding to those defined in Sect. 4 are

O = (OK, O1, O2, O3) =
(
(μ1 : μ2 : 1 : 1), (1 : 1 : μ1 : μ2), (1 : 1 : μ2 : μ1), (μ2 : μ1 : 1 : 1)

)
,

Υ = (OK, Υ1, Υ2, Υ3) =
(
(μ1 : μ2 : 1 : 1), (1 : 0 : 0 : τ), (1 : 0 : τ : 0), (μ1 − τ : μ2 − τ : 0 : 0)

)
,

Υ̃ = (OK, Υ̃1, Υ̃2, Υ̃3) =
(
(μ1 : μ2 : 1 : 1), (1 : 0 : 0 : τ̃), (1 : 0 : τ̃ : 0), (μ1 − τ̃ : μ2 − τ̃ : 0 : 0)

)
.

(16)

Pseudo-doublings and ϕO on KSqr. Our (2, 2)-isogenies and pseudo-
doublings on KSqr will be comprised of three sub-operations. Define H : P3 → P

3

as the 4-way Hadamard transform in P
3, i.e.,

H : (�1 : �2 : �3 : �4) �→ (�1 + �2 + �3 + �4 : �1 + �2 − �3 − �4 : �1 − �2 + �3 − �4 : �1 − �2 − �3 + �4),

together with the coordinate squaring operation S : P3 → P
3, as

S : (�1 : �2 : �3 : �4) �→ (�21 : �22 : �23 : �24),

and the coordinate scaling operation C(d1 : d2 : d3 : d4) : P
3 → P

3, as

C(d1 : d2 : d3 : d4) : (�1 : �2 : �3 : �4) �→ (�1/d1 : �2/d2 : �3/d3 : �4/d4)
= (π1�1 : π2�2 : π3�3 : π4�4),

where πi = d1d2d3d4/di for i ∈ {1, 2, 3, 4}. It follows that H requires at most 8
field additions, S requires at most 4 field squarings, and C(d1 : d2 : d3 : d4) requires
at most 10 field multiplications if the πi are not precomputed, and at most 4
field multiplications if they are.

5 When we move from Kummer to Kummer in SIDH, we will not be normalising μ3

and μ4, so the only savings that remain are those that arise from μ3 = μ4.
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Following [28, Sect. 4], define the dual squared Kummer surface as

K̂Sqr
O : F̂ · X1X2X3X4 =

(
X2

1 + X2
2 + X3

3 + X2
4 − Ĝ(X1 + X2)(X3 + X4) − Ĥ(X1X2 + X3X4)

)2

,

where

F̂ := 64μ
2
1μ

2
2
(μ1 + μ2 + 2)(μ1 + μ2 − 2)

(μ1μ2 − 1)2(μ1 − μ2)2
, Ĝ := 2

(
μ1 + μ2

μ1 − μ2

)
, and Ĥ := 2

(
μ1μ2 + 1

μ1μ2 − 1

)
.

In the previous section we derived formulas for computing ϕO in the full
Jacobian – see (13). The corresponding isogeny on the Kummer surface is defined
(with abuse of notation) as

ϕO : KSqr → K̂Sqr
O ,

P �→
(
C(μ̂1 : μ̂2 : μ̂3 : μ̂4) ◦ S ◦ H

)
(P ),

where μ̂1 := (μ1 +μ2 +2)/2, μ̂2 := (μ1 +μ2 −2)/2, and μ̂3 := μ̂4 := (μ1 −μ2)/2.
For the pseudo-doubling map, we compose ϕO with its dual, ϕ̂O : K̂Sqr →

KSqr, which simply replaces C(μ̂1 : μ̂2 : μ̂3 : μ̂4) with C(μ1 : μ2 : μ3 : μ4). The kernel
of ϕO is the (2, 2)-subgroup O in (16), and the kernel of ϕ̂O is the (2, 2)-
subgroup consisting of (μ̂1 : μ̂2 : μ̂3 : μ̂4), (μ̂2 : μ̂1 : μ̂4 : μ̂3), (μ̂3 : μ̂4 : μ̂1 : μ̂2), and
(μ̂4 : μ̂3 : μ̂2 : μ̂1).
Isomorphisms and ϕP on KSqr. We now turn to defining the (2, 2)-isogenies
whose kernels are Υ and Υ̃ in (16).

Observe that there is a subtle difference between our description ϕO and
ϕ̂O above, and those described in the journey around the hexagon in [28,
Fig. 1]. We define ϕO as ϕO =

(
C(μ̂1 : μ̂2 : μ̂3 : μ̂4) ◦ S ◦ H

)
, swapping the order

of the scaling and squaring morphisms in [28, Fig. 1], which instead takes
ϕO =

(
S ◦ C(ν̂1 : ν̂2 : ν̂3 : ν̂4) ◦ H

)
, where ν̂2

i = μ̂i for i = 1, 2, 3, 4 (this is analo-
gous for ϕ̂O, but with ν2

i = μi). In their intended application to HECC, this
ordering makes no difference, since the (presumably Fp-rational) νi and ν̂i are
always fixed public parameters. In our case, however, all of the Kummer param-
eters change each time we compute an isogeny, and the ordering here turns out
to be crucial; we will never be computing the νi or ν̂i (or, at least, not in time for
their use in the pseudo-doublings that typically take place prior to the following
isogeny computation in the SIDH framework).

Nevertheless, viewing the first two steps from KSqr around the hexagon
exactly as in [28, Fig. 1] aids our derivation of the isomorphisms. The first step
is the Hadamard isomorphism, which moves us from KSqr to KInt, and the next
step is the scaling isomorphism C(ν̂1 : ν̂2 : ν̂3 : ν̂4), which takes us from KInt to K̂Can

O ;
here KInt is exactly as in [28] and K̂Can

O corresponds to K̂Can in [28]. Writing
OCan as the image of O under CO ◦ H with CO := C(ν̂1 : ν̂2 : ν̂3 : ν̂4), and similarly
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for Υ and Υ̃ , reveals that

OCan =
(
(a : b : c : d), (a : −b : c : −d), (a : −b : −c : d), (a : b : −c : −d)

)
,

ΥCan =
(
(a : b : c : d), (d : c : b : a), (c : d : a : b), (b : a : d : c)

)
, and

Υ̃Can =
(
(a : b : c : d), (d : −c : −b : a), (c : −d : a : −b), (b : a : −d : −c)

)
,

(17)

where (a : b : c : d) = (ν̂1 : ν̂2 : ν̂3 : ν̂4) is the neutral element on K̂Can
O . Note that

K̂Can is the Kummer surface used by Gaudry, which is why the points in (17)
match up with those in [19, Sect. 3.4].

We now proceed analogously to the treatment in Sect. 4. When ΥCan is the
intended (2, 2)-kernel, we seek an isomorphism that will transform ΥCan into a
(2, 2)-subgroup whose four elements act like the four elements in OCan, but on
an isomorphic surface. At the same time, this isomorphism should also trans-
form the two subgroups in {OCan, Υ̃Can} into two subgroups whose elements act
like those in the two subgroups in {ΥCan, Υ̃Can}, but on an isomorphic surface.
Here the term ‘act’ refers to the action of translation by the 2-torsion elements
of the corresponding Kummer surfaces. In the case of the 2-torsion on K̂Can

O ,
these actions (explained in [19, Sect. 3.4]) are extremely simple: for example,
translating (x : y : z : t) ∈ K̂Can

O by the element (c : −d : a : −b) gives the point
(y : − x : t : − z).

We observe that when the (2, 2)-kernel is ΥCan, its image under the Hadamard
transform satisfies these constraints, but when the (2, 2)-kernel is Υ̃Can, we need
to use a modified transform H̃ : (x : y : z : t) �→ H(−x : y : z : t). Looking closer,
and using the relationship τ τ̃ = 1 in (16), we see that we can instead replace
the scaling CO with scalings CΥ and CΥ̃ that depend on the subgroup at hand,
and to follow both by the original Hadamard transform H.

Importantly, the function for computing the constants for the coordinate
scalings CΥ and CΥ̃ is independent of which subgroup we are in; the values of
the torsion elements are what changes the values of the scaling constants, which
is crucial for obtaining a uniform isogeny algorithm. As alluded to above, to
avoid the computation of square roots, the formulas for computing the scaling
constants also take as input a point of order 4 on KSqr.

Let Q ∈ KSqr be a point of order 4 such that P = [2]Q ∈ {Υ, Υ̃}; writing
Q′ = H(Q) = (Q′

1 : Q′
2 : Q′

3 : Q′
4) and P ′ = H(P ) = (P ′

1 : P ′
2 : P ′

3 : P ′
4), then the

coordinate scaling is

CQ,P : (X1 : X2 : X3 : X4) �→ (π1X1 : π2X2 : π3X3 : π4X4),

where
π1 = P ′

2Q
′
4, π2 = P ′

1Q
′
4, and π3 = π4 = P ′

2Q
′
1,

when P ∈ {Υ1, Υ̃1} (such that its last coordinate is non-zero), and where

π1 = P ′
2Q

′
3, π2 = P ′

1Q
′
3, and π3 = π4 = P ′

2Q
′
1,
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when P ∈ {Υ2, Υ̃2} (such that its second to last coordinate is non-zero).
In our target application of chained (2, 2)-isogenies in the SIDH framework,

the 2-torsion points that represent our (2, 2)-kernels are either always of the
form of Υ1 and Υ̃1, or they are always of the form of Υ2 and Υ̃2. Thus, the
function that computes the scaling constants can be determined at setup and
fixed once-and-for-all in an implementation.

Let G ∈ {Υ, Υ̃} and let P ∈ G with P = [2]Q. We can now define the full
(2, 2)-isogeny with (2, 2)-kernel G as

ϕP : KSqr → KSqr/G,

R �→ (S ◦ H ◦ CQ,P ◦ H) (R). (18)

Note that all four elements of the (2, 2)-kernel G map to the neutral element
(μ′

1 : μ′
2 : 1 : 1) on KSqr/G.

In Fig. 1 we summarise the situation by making use of [28, Fig. 1]. The arrows
in the middle comprise half of their hexagon; this corresponds to ϕO, whose
kernel is the subgroup O. Note that our SIDH-style computations will never
compute this isogeny, and that we will always be taking either the top or bottom
path, depending on whether our (2, 2)-kernel is Υ or Υ̃ .

Fig. 1. An illustration of the two (2, 2)-isogenies corresponding to the subgroups Υ and
Υ̃ , based on the diagram in [28, Fig. 1]. Here CΥ is used to denote CQ,P when P ∈ Υ ,
and CΥ̃ is used to indicate CQ,P when P ∈ Υ̃ .

We point out that our use of the 4-torsion point Q above the 2-torsion point
P means that we must modify the computational strategy to account for this; we
refer to [16, Sect. 4.3.2], where this was done when 8-torsion points lying above
2-torsion kernel elements were incorporated into the computational strategies.

Operation Counts. Even though our Kummer surfaces are defined by the
projective tuple (μ1 : μ2 : 1 : 1), once we move into an SIDH computation (where
we avoid inversions in the main loop), we cannot expect the surface constants to
be normalised in this fashion, so in our context all multiplications by constants
are counted as generic multiplications (the analogue in the elliptic curve case
was treating the Montgomery coefficient in P

1 – see [14]). In the HECC context,
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pseudo-doublings on fast Kummer surfaces incur 6 multiplications by curve con-
stants, but this is because 2 of the constants were normalised; in our case, pseudo-
doublings incur 4 multiplications during each of the scalings D(μ1 : μ2 : μ3 : μ4) and
D(μ̂1 : μ̂2 : μ̂3 : μ̂4). This brings the operation count for a pseudo-doubling to 8 mul-
tiplications, 8 squarings, and 16 additions, and the operation count for pushing a
point through a (2, 2)-isogeny to 4 multiplications, 4 squarings, and 16 additions.
Note that both of these counts are obtained by assuming that the inverted con-
stants in the coordinate scalings have been precomputed during the computation
of the (2, 2)-isogenous Kummer surface.

It therefore remains to tally the operations required to compute the isogenous
Kummer surface constants. Firstly, we point out that an optimised implementa-
tion does not actually need to compute or use the constants F , G and H defining
the surface, since these are not used directly in the pseudo-group law computa-
tions. The only constants needed are those in the two coordinate scalings that
occur during pseudo-doublings; we obtain these by pushing any kernel point
through the (2, 2)-isogeny to get the squared theta constants (μ′

1 : μ′
2 : μ′

3 : μ′
4)

that define the image surface, a further 6 multiplications to obtain a projec-
tive tuple equivalent to (1/μ′

1 : 1/μ′
2 : 1/μ′

3 : 1/μ′
4), and then 8 more additions

and 6 more multiplications to compute a projective tuple whose coordinates are
projectively equivalent to the inverses of the coordinates of H(μ′

1 : μ′
2 : μ′

3 : μ′
4).

In total, the computation of the set of isogenous surface constants requires 19
multiplications, 4 squarings, and 28 additions. These counts are used in Table 1
in the next section.

6 Implications for Isogeny-Based Cryptography

We discuss potential implications and practical considerations of the Kummer
surface approach in the realm of SIDH. The takeaway message is that this paper
is a first step towards exploring the use of Kummer surfaces in isogeny-based
cryptography, and that more work needs to be done to determine whether they
will be utilised in real-world implementations. For example, it is possible that
our approach to computing the isogeny ϕP is sub-optimal, and that faster meth-
ods will be discovered, or that there are more specialised parameterisations of
supersingular Kummer surfaces that provide even faster arithmetic.

Efficiency of (2,2)-Isogenies in SIDH. In Table 1, we compare (2, 2)-
isogenies on Kummer surfaces with 2-isogenies on elliptic curves, by comparing
the operation counts for isolated operations in both scenarios. On the elliptic
curve side, the current state-of-the-art implementations actually use repeated
4-isogenies as they are slightly faster [14,16,27], so to take this into account
we simply double the relevant operation counts for the (2, 2)-isogenies reported
above (recall from Lemma 2 that our (2, 2)-isogenies correspond to 2-isogenies
on the elliptic curves). Operation counts for the relevant 4-isogeny operations in
the elliptic curve case are exactly as in the optimised version of the SIKE imple-
mentation [22], and for the relevant 2-isogeny operations are exactly as in [27,
Table 1].
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We use M, S and A to denote multiplications, squarings and additions in
Fp2 , and use m, s and a to denote the same respective operations in Fp. It is com-
mon to approximate the former in terms of the latter by assuming Karatsuba-like
routines for Fp2 operations, but this can be rather crude. To give a fairer com-
parison, we benchmarked these field operations directly using v3.0 of Microsoft’s
SIDH library6: on a 3.4GHz Intel i7-6700 (Skylake) architecture, and over the
751-bit prime from [14], this benchmarking reported M = 1004 cycles, S = 763
cycles, and A = 80 cycles, while m = 349 cycles and a = 43 cycles. The current
library does not have a tailored squaring routine over Fp, because the routines
for Fp2 operations never call Fp squarings as a subroutine. Thus, we give two
cycle count approximations for the Kummer case: one that assumes s = m (i.e.,
that the Fp multiplication routine is called to compute squarings), and one that
assumes s = 0.8m, a common ratio used to approximate the speedup obtained
by optimising tailored field squarings. We note that using cycle counts instead
of Karatsuba approximations favours the elliptic curve setting over this work.
For example, when using the above clock cycles as units, we have M < 3m, but
a common approximation is that M ≈ 3m + 5a � 3m.

Table 1. Field arithmetic required for the three main isolated operations on one side
of the SIDH framework, comparing chained 2-isogenies on Montgomery curves over
Fp2 (previous work) with chained Richelot isogenies on Kummer surfaces over Fp (this
work). Further explanation in text.

Operation chained 2-isogenies on
Montgomery curves
over Fp2 (previous
work)

chained (2, 2)-isogenies
on Kummer surfaces
over Fp (this work)

M S A ≈ cycles m s a ≈ cycles

s = m s = 0.8 m

doubling 4 2 4 5862 8 8 16 6272 5714

2-isog. curve - 2 1 2088 19 4 28 9231 8952

2-isog. point 4 0 4 4336 4 4 16 3480 3200

quadrupling 8 4 8 11724 16 16 32 12544 11427

4-isog. curve - 4 5 3452 38 8 56 18462 17903

4-isog. point 6 2 6 8030 8 8 32 6960 6401

The approximations in Table 1 suggest that the Kummer surface approach
of computing Richelot isogenies over Fp will be competitive with the previ-
ous approaches that apply Vélu’s formulas to the x-line of Montgomery elliptic
curves over Fp2 . The main operations of interest are ‘quadrupling’ and ‘4-isog.
point’, since these costs and their ratios are what determines the optimal strategy

6 See https://github.com/Microsoft/PQCrypto-SIDH.

https://github.com/Microsoft/PQCrypto-SIDH
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(see [16]), and they are computed many more times than the ‘4-isog. curve’ oper-
ation. Moreover, doubling the (2, 2)-isogeny operation counts is only accurate in
the case of the point operations; in terms of the curve operations, we would not
need to compute the full set of the surface constants of the intermediate curve in
back-to-back (2, 2)-isogenies, so a more careful approach to computing the image
curve in this case would likely lead to counts close to half of those in this row
(on our side). One caveat worth mentioning is that the special Kummer surfaces
in this work will also have a fast ladder for computing scalar multiplications, as
well as a fast three-point ladder that is typically used before any isogenies are
computed in the SIDH framework.

Of course, the only way to determine if the Kummer approach can outper-
form the elliptic curve approach is to present an optimised implementation of
Kummer surface isogenies within the SIDH framework, e.g., one that factors in
the cost ratios of pseudo-doublings and (2, 2)-isogenies to derive optimal strate-
gies for the full SIDH isogeny computation – see [16, Sect. 4.2]. We leave such
an implementation as future work (perhaps until the motivation is heightened
by odd-power Kummer isogenies that can be used on the other side of the SIDH
protocol, as we discuss below), but also mention that Kummer arithmetic is
especially amenable to aggressive vectorised implementations (see [5]).

Utilising Kummer Surfaces in Practice. We discuss two potential options
for taking advantage of Kummer surface arithmetic in the SIDH framework, and
the practical considerations of each. The first option is that the public parameters
and wire transmissions are as usual, i.e., using (points on) elliptic curves, but
that Kummer arithmetic is internally preferred by at least one party. The second
assumes that Kummer arithmetic is preferred everywhere, and that the SIDH
framework is defined to facilitate this.
Option 1 – Kummer arithmetic in private. Suppose Alice wants to compute her
secret isogenies on Kummer surfaces while engaging in an SIDH protocol that is
specified entirely using elliptic curves. In terms of the public parameters, her eas-
iest option would be to convert them (offline and once-and-for-all) into Kummer
parameters by first using the map η : Eα → JCα

in Sect. 3, and then applying
the usual maps from JCα

to KSqr. While this process seems complicated at a
first glance, a closer inspection of these maps reveals that an optimised conver-
sion in this direction would only require a few dozen field multiplications; the
x-coordinates of three co-linear points on Eα (see [14,22]) are all Alice needs
to compute the corresponding Kummer surface and the three Kummer points
required to kick-start her computations. Indeed, the only additional information
she needs to convert Bob’s public key down to the Kummer domain is the initial
2-torsion point (α, 0) (assuming Bob sends her information for the curve coeffi-
cient instead), and this requires at most one square root in Fp2 , which is not a
deal-breaker.

In the other direction, after computing her public key or shared secret on
KSqr, Alice needs to lift this information back up to Eα in order to comply
with Bob. The maps lifting from KSqr back up to JCλ,μ,ν

are naturally more
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complicated than their inverses [13,19], but again the SIDH x-only framework
simplifies the process significantly; we can recover the x-coordinate on Eα given
only the values of u1, u0 and v2

0 (corresponding to the Mumford coordinates of
a point in JCα

), and we can lift up from K to these values without any square
roots – see [19, Sect. 4.3].

In any case, equipped with the efficient maps in Sect. 3, we do not see any
theoretical or practical obstacle preventing Alice from complying, should the
efficiency of the Kummer warrant a small conversion overhead at either or both
sides of the main isogeny computation.
Option 2 – Kummer arithmetic everywhere. If both sides of the SIDH proto-
col eventually warrant Kummer arithmetic (see below), then defining the public
parameters to facilitate this is easy. The main issues we foresee involve main-
taining the size of the public keys in the compressed setting.

Firstly, in the uncompressed scenario, transmitting elliptic curves and Kum-
mer surfaces in the current framework has the same cost; Montgomery curves
are specified up to twist with one element in Fp2 , and our supersingular Kummer
surfaces are completely specified by two elements of Fp (μ1 and μ2). Unambigu-
ously specifying points on Montgomery curves amounts to sending one element
of Fp2 and a sign bit; on the Kummer side, the elegant techniques in [28, Sect. 6]
show that Kummer points can be specified by two elements of Fp and two sign
bits, meaning we lose at most one bit per group element. Rather than sending any
curve coefficients over the wire, recent works (including the SIKE proposal [22])
have instead specified public keys as three co-linear Montgomery x-coordinates,
from which the underlying Montgomery curve can be recovered on the other
side [14]. We have not yet investigated this analogue in the Kummer surface
setting, but even if it does not work in a straightforward way, reverting back to
the original form of public keys (from [16]) adds at most 4 bits to the public key
sizes. To summarise, we would lose at most a few bits to specify uncompressed
SIDH entirely using Kummer surfaces.

In terms of the shared secret, both parties would eventually arrive at a fast
supersingular Kummer surface specified by (μ1 : μ2 : 1 : 1). While we have yet to
investigate convenient Kummer surface invariants that could act as the shared
secret, we remark that emperical evidence seems to suggest that the approach of
computing λ, μ and ν = λμ from (15) and normalising the Igusa-Clebsch invari-
ants in P(2, 4, 6, 10)(Fp) makes the SIDH protocol commute. We leave further
investigation into appropriate invariants as future work.

In terms of optimal compression of public keys, applying the techniques in [2]
directly to the Kummer setting seems less straightforward, but again we cannot
see any reason preventing this possibility7. This too needs further investigation,
but we point out that as a fallback, we could of course always map the problem
of compression back to the elliptic curve setting (moving back to the first option
above), and specify the compressed public keys accordingly.

7 In recent years Kummer surfaces have been shown to be more cryptographically
versatile [24,28] than originally thought [32].
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Of course, there are several other possibilities that lie somewhere between
the two options above, e.g., where the two parties send information in such a
way that the overall cost of the protocol is minimised.

Beyond (2,2)-Isogenies. The case for the Kummer approach in supersingular
isogeny-based cryptography would be much stronger if it were able to be applied
efficiently for both parties. There has been some explicit work done in the case
of (3, 3)- and (5, 5)-isogenies (cf. [9,17]), but those situations appear much more
complicated than the case of Richelot isogenies, and we leave their investigation
as future work. One hope in this direction is the possibility of pushing odd degree
�-isogeny maps from the elliptic curve setting to the Kummer setting by way of
the maps in Sect. 3. This was difficult in the case of 2-isogenies because the
maps themselves are (2, 2)-isogenies (e.g., their kernel is the 2-torsion on Eα),
but in the case of odd degree isogenies there is nothing obvious preventing this
approach.
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preparation of this work, and to the anonymous reviewers for their useful comments.
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faster software implementation of the supersingular isogeny Diffie-Hellman key
exchange protocol. IEEE Trans. Comput. 67(11), 1622–1636 (2017)
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