
On Multiparty Garbling of Arithmetic
Circuits

Aner Ben-Efraim1,2(B)

1 Department of Computer Science, Ben Gurion University of the Negev,
Be’er Sheva, Israel

anermosh@post.bgu.ac.il
2 Department of Computer Science, Ariel University, Ariel, Israel

Abstract. We initiate a study of garbled circuits that contain both
Boolean and arithmetic gates in secure multiparty computation. In
particular, we incorporate the garbling gadgets for arithmetic circuits
recently presented by Ball, Malkin, and Rosulek (ACM CCS 2016) into
the multiparty garbling paradigm initially introduced by Beaver, Micali,
and Rogaway (STOC ’90). This is the first work that studies arith-
metic garbled circuits in the multiparty setting. Using mixed Boolean-
arithmetic circuits allows more efficient secure computation of functions
that naturally combine Boolean and arithmetic computations. Our gar-
bled circuits are secure in the semi-honest model, under the same hard-
ness assumptions as Ball et al., and can be efficiently and securely com-
puted in constant rounds assuming an honest majority.

We first extend free addition and multiplication by a constant to the
multiparty setting. We then extend to the multiparty setting efficient
garbled multiplication gates. The garbled multiplication gate construc-
tion we show was previously achieved only in the two-party setting and
assuming a random oracle.

We further present a new garbling technique, and show how this tech-
nique can improve efficiency in garbling selector gates. Selector gates
compute a simple “if statement” in the arithmetic setting: the gate selects
the output value from two input integer values, according to a Boolean
selector bit; if the bit is 0 the output equals the first value, and if the
bit is 1 the output equals the second value. Using our new technique,
we show a new and designated garbled selector gate that reduces by
approximately 33% the evaluation time, for any number of parties, from
the best previously known constructions that use existing techniques and
are secure based on the same hardness assumptions.

On the downside, we find that testing equality and computing expo-
nentiation by a constant are significantly more complex to garble in the
multiparty setting than in the two-party setting.

Keywords: Arithmetic garbled circuits · Constant round MPC
Multiparty garbling

Research supported by ISF grant 152/17, by the Frankel Center for Computer Sci-
ence, and by the BGU Cyber Security Research Center.

c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11274, pp. 3–33, 2018.
https://doi.org/10.1007/978-3-030-03332-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03332-3_1&domain=pdf

4 A. Ben-Efraim

1 Introduction

Garbled circuits are a fundamental cryptographic primitive, introduced by Yao
in the 1980s [33]. They are used in one-time programs, key-dependent message
security, homomorphic computation, verifiable computation, and more. The orig-
inal motivation of garbled circuits, and to date still their main use, is for secure
computation. The most practical approaches of secure two-party computation
are based on garbled circuits.

Since their introduction, garbled circuits have been significantly optimized
in a series of works, [5,21,25,26,29–31,34] being a very partial list. These works
reduced the size of the garbled gates and concretely improved the efficiency of
garbling protocols. For example, using the free-XOR technique introduced by
Kolesnikov and Schneider [25], XOR gates are “for free”, meaning they incur no
communication or cryptographic operations.

Due to efficiency reasons, garbled circuits were almost exclusively consid-
ered for Boolean circuits. However, there have been a few attempts to efficiently
extend the ideas of garbled circuits to arithmetic circuits (in the two-party set-
ting), e.g., [1,2,28]. The works of Ball et al. [2] and Malkin et al. [28] showed
how to extend free-XOR to free addition and multiplication by a constant. They
further showed how to efficiently garble multiplication in Fp, for small p. Ball
et al. also showed how to efficiently garble exponentiation by a constant. By com-
bining CRT representations in a primorial modulus, Ball et al. showed that the
above results extend to efficient garbling of arithmetic circuits over the integers.

Garbled circuits are important also for secure multiparty computation. The
multiparty garbling paradigm was introduced by Beaver et al. [4] in the first con-
stant round secure multiparty protocol. The first implementation of secure multi-
party computation, FairplayMP [6], followed this multiparty garbling paradigm.
Recently, experimental results in [8,32] suggested that concretely efficient imple-
mentations following the multiparty garbling paradigm, such as [8] in the semi-
honest model and [22,32] in the malicious model, are more suited for secure
multiparty computations over networks with high latency, such as the internet.

The adversarial model. We assume throughout that the adversary is semi-
honest, i.e., follows the protocol but might try to learn private information
from the messages it receives. A more realistic adversarial model is the mali-
cious adversary, which can deviate from the protocol arbitrarily. Nevertheless,
advances in semi-honest secure computation, and garbled circuits in particular,
have often proved to be a significant stepping stone for later advances in the
malicious model. Aside from numerous examples in the two-party setting, this
was recently demonstrated also in the multiparty setting: the concretely efficient
semi-honest protocols of [8] have been efficiently extended to maliciously secure
protocols in [22] and [7].

We also assume an honest majority, i.e., the adversary corrupts only a strict
minority of the parties. We do so in order to use the efficient constant round
protocol for unbounded fan-in multiplication of Bar-Ilan and Beaver [3], which is
needed in several of our constructions. Note that this is only needed for gates with

On Multiparty Garbling of Arithmetic Circuits 5

mixed Boolean-arithmetic inputs/output. Thus, arithmetic circuits can also be
garbled efficiently in the dishonest majority setting, assuming oblivious transfer.
Due to space constraints, this is explained in the full version.

The hardness assumption we rely on is the existence of a mixed-modulus cir-
cular correlation robust (MMCCR) hash function, introduced by Ball et al. [2];
see Definition 1. The definition of MMCCR hash functions is similar to the def-
inition of circular 2-correlation robust hash functions, introduced by Choi et al.
[12] to prove the security of free-XOR [25]. Ball et al. [2] conjecture that one
could use AES to construct a MMCCR hash function. Using AES is known to
be extremely fast in practice using AES-NI instructions.

Our results and techniques. We study garbled circuits containing both a
Boolean part and an arithmetic part in secure multiparty computation. We show
both how to compute efficient arithmetic garbled circuits, and also how the
Boolean and arithmetic parts of the circuit can efficiently affect each other.
This allows for more efficient secure multiparty computation of functions that
naturally combine Boolean and arithmetic computations, see our motivating
example below.

We begin by extending known results for garbled arithmetic circuits from
the two-party setting to the multiparty setting. In the two-party setting, Ball et
al. [2] and Malkin et al. [28] showed that the free-XOR idea of Kolesnikov and
Schneider [25] can be extended to free addition and multiplication by a constant
in Fp. We show that these results naturally extend to the multiparty setting.
This follows similar lines to the extension of free-XOR to the multiparty setting
by Ben-Efraim et al. [8].

We further efficiently extend the half-gates construction of Zahur et al. [34]
(which efficiently compute AND gates in the 2-party setting) to efficient multipli-
cation gates in the multiparty setting. There are three challenges we overcome in
this extension: (1) Since there is no single garbler, the parties perform the com-
putation using their shares. This requires understanding the values computed
in each half gate, which were not explicitly written (only implicitly used) in
previous works. (2) Since the evaluating parties also participate in the garbling
(and thus have additional knowledge), the output wire’s permutation element
and keys are partitioned to avoid revealing secret information. (3) Extending
from Boolean to Fp requires extending the technique of [34], by showing that
the correct way to look at the solution of [34] is to multiply the external value
of one wire with the key of the other. Proving this extended technique based on
MMCCR also requires an additional step in the proof that was not needed in
previous similar proofs (e.g., in [2,34]).

Using the half-gate extension, we manage to garble multiplication gates in Fp,
in the multiparty setting, with only 2p garbled rows. By representing numbers
in a primorial modulos and using the Chinese Remainder Theorem, as suggested
by Ball et al. [2], we obtain efficient arithmetic computations over the integers.
In the two-party setting, efficient garbled multiplication gates were previously
suggested by Malkin et al. [28] and by Ball et al. [2], see Table 1.

6 A. Ben-Efraim

We then show how the Boolean and arithmetic parts of the circuit efficiently
affect each other. In the multiparty setting, this requires a simple primitive that
we call a multifield-shared bit, in which the same bit is secret shared in multiple
fields of different characteristics. We show an efficient protocol for constructing
this primitive in the semi-honest model with an honest majority. Furthermore,
we explain that this primitive can be precomputed before the circuit is known.

To show how the Boolean part can efficiently affect the arithmetic part, we
look at selector gates, which compute a simple “if statement”: A selector gate
has 3 input wires, x, y, and w0. The wires x, y hold values in Fp and the wire w0

holds a Boolean value representing the selection bit. The output wire z should
equal either x or y, according to the value of the selection bit. I.e., denote the
value on wire ω by vω, then a selector gate computes the following simple if
statement: If (vw0 == 0) then vz = vx else vz = vy.

We show two constructions for garbled selector gates: the first is an exten-
sion of known techniques to the multiparty setting, using projection gates from
Boolean to Fp. To the best of our knowledge, this is the best construction of
selector gates using existing techniques that relies only on MMCCR hash func-
tions.1 Our second construction is a designated construction, using new tech-
niques described below. This construction reduces the evaluation time by approx.
33% from the construction using projection gates.

We give an informal overview of the main ideas in the designated selector
gate construction: The gate contains two components. Using the first component,
the evaluator tries to compute the multiplication between the Boolean value and
the values in Fp. But since the Boolean value seen by the evaluator is not the
real value on the wire, this computation possibly inserts an error. To solve this,
the second component is “corrector gates”. The result from the corrector gate is
(freely) added in order to correct the values from the first component. However,
the (possibly) inserted error depends on the value seen by the evaluator on
the Boolean wire. Thus, there are in fact 2 corrector gates, and the evaluator
decrypts only one of them, according to the value it sees. This raises a question
of security, as a corrupt evaluator can also decrypt the “wrong” corrector gate.
This issue is solved by double partitioning of the keys and permutation elements,
ensuring the decrypted keys and external values on the “wrong” corrector gate
leak no information, even given the correctly decrypted keys and values. To the
best of our knowledge, the technique of using a double partition of the keys and
permutation elements is new in this setting.

To show how the arithmetic part can affect the Boolean part, we extend to
the multiparty setting the construction of Ball et al. [2] of gates that test equality.
These equality gates use free subtraction and projection gates. Unfortunately,
we find that garbling general projection gates, and garbling equality gates in
particular, is significantly more complicated in the multiparty setting. To explain

1 In the 2-party setting there is a more efficient construction based on stronger assump-
tions by Ball et al. [2], see Remark 5. Nevertheless, since these stronger assumptions
are currently not needed to optimize any other garbled gate, we believe it is of
interest also to optimize selector gates which are secure based on MMCCR.

On Multiparty Garbling of Arithmetic Circuits 7

this, we note that the equations for equality gates require exponentiation. In
the multiparty setting, the values needed for the offline computation are secret
shared, and so this exponentiation is computed using MPC. We optimize these
computations using the constant round protocol of [3]. However, this still implies
that the offline time for computing equality gates is significantly slower. On the
positive side, the size of garbled projection gates and their evaluation time are
not affected by this, and therefore the difference in the online phase from the
two-party setting is similar to the Boolean case.

A motivating example. Many real-world applications naturally use a mixture
of Boolean and arithmetic computations. To illustrate the importance of mixed
Boolean-arithmetic circuits, we look at a simple natural problem, the problem
of conditional summation. Of course, it is possible to encode the problem as a
Boolean circuit or as an arithmetic circuit. However, notice that encoding the
conditions in arithmetic 0/1 would be very inefficient when the conditions are
complex. On the other hand, the summation could be expensive in Boolean,
while free in an arithmetic circuit (using free addition). Therefore, a more effi-
cient manner to perform the computation would be to compute the conditions
in a Boolean circuit, then use selector gates, and finally compute the summa-
tion in an arithmetic circuit. Possibly, the conditions (which are Boolean) could
decide multiplication constants instead of only 0, 1, (i.e., weighted conditional
summation) in which case multiplication gates are also required.

Comparison with previous works and techniques. Garbled multiplication
gates were previously considered in the two-party setting by Malkin et al. [28]
and by Ball et al. [2]. In Table 1 we compare our garbled multiplication gates with
those of [2] and [28]. We compare only with 2-party garbling protocols, because
previous multiparty garbling protocols did not handle arithmetic gates.2 For sake
of comparison, we also include the values of our garbled multiplication gate in the
2-party setting. The difference is that in the 2-party setting, the number of rows
in each half-gate can be reduced by one, using the row reduction technique [29].
Furthermore, in the multiparty setting, each row requires n ciphertexts, and
“decrypting” a row requires n2 decryptions (hash function calls), whereas in the
two-party setting each row is a single ciphertext and requires a single decryption.

In Table 2 we compare garbled selector gates using known techniques (pro-
jection gates) and the new designated construction.

Other related works. Most protocols for securely computing arithmetic cir-
cuits follow the secret-sharing paradigm, e.g., [10,11,14–16,23] to name but a
few. In the secret-sharing paradigm, the parties share their inputs. Then, for
each layer of the circuit, the parties interact in order to compute shares for the
next layer. Thus, the number of rounds depends on the depth of the circuit.
This could potentially lead to very slow online times when the circuit is very
deep and the latency is high (for example over the internet), as demonstrated

2 One could of course use an encoding of arithmetic into Boolean, e.g. the CRT encod-
ing in [1], and then apply any Boolean multiparty garbling protocol. For a comparison
between encoding into Boolean and arithmetic gates as discussed here, see [2].

8 A. Ben-Efraim

Table 1. Comparison of our garbled multiplication gates with those of [2,28] in number
of parties, number of garbled rows, total size of garbled gate, security assumption, and
number of decryptions (hash function calls needed in the online phase). For high fan-in
multiplication, the construction of [2] scales differently than ours, but still seems to
have more rows.

Garbled Multiplication Gate

Parties Rows Size Sec. Ass. # Dec.

[28] 2 2p − 2 (2p − 2)κ Random Oraclea 2

[2] 2 6p − 5 (6p − 5)κ MMCCR 6

New 2 2p − 2 (2p − 2)κ MMCCR 2

New n 2p (2p)κ · n MMCCR 2 · n2

aPossibly, this construction, which is also based on extending half-
gates, could be proven secure based on MMCCR, using techniques
later developed in [2]. However, we note that proving the extension
of half-gates to multiplication gates based on MMCCR requires an
additional step that was not needed in previous proofs, see Sect. 6.

in [8]. On the other hand, using garbled circuits breaks the dependency of the
round complexity on the depth of the underlying circuit. Furthermore, garbled
circuits are an important primitive that proved worth investigating even outside
the context of secure computation.

Hence, these works in the secret-sharing paradigm are incomparable with our
work. In addition, the recent works of Damg̊ard et al. [17] and Keller et al. [24] in
the secret-sharing paradigm use gate-scrambling, which shares many ideas with
garbling. Advances in garbling techniques could potentially aid these protocols.

Apart from the works of Ball el al. [2] and Malkin et al. [28], another notable
work that studied arithmetic garbled circuits in the two-party setting is the
work of Applebaum et al. [1]. The main result of [1] relies on LWE and is quite
complex. It is unclear if their result can be efficiently extended to the multiparty
setting – one of the main difficulties seems to be that their construction requires
preprocessing the circuit layer by layer. Thus, it does not seem to naturally lend
itself to an efficient constant round multiparty protocol, since a natural protocol
for this preprocessing would require rounds corresponding to the depth of the

Table 2. Comparison of garbled selector gates using known techniques (projection
gates) and the new designated construction.

Garbled Selector Gate

Parties Rows Size Sec. Ass. # Dec.

New – Known Techniques n 2p + 2 (2p + 2)κn MMCCR 3 · n2

New Technique n 2p + 2 (2p + 2)κn MMCCR 2 · n2

On Multiparty Garbling of Arithmetic Circuits 9

circuit. The secondary result of [1] using CRT has been surpassed by the results
of Ball et al. [2].

There have also been several other works that dealt with mixed Boolean-
arithmetic computations in secure computation, most notably the ABY frame-
work by Demmler et al. [18]. This work deals with mixed Boolean-arithmetic
computations in the 2-party setting by efficiently converting between arithmetic
secret-sharing, Boolean secret-sharing (for GMW), and Yao garbled circuits.
Their protocol is for 2 parties and not constant round. It is an interesting ques-
tion if the ABY framework can be extended to the multiparty setting (replacing
Yao with a BMR garbled circuit) and, in this case, how it would compare with
our constant-round protocol.

Organization. In Sect. 2 we review the basics of multiparty garbling and gar-
bling of arithmetic circuits. In Sects. 3 and 4 we explain how to efficiently garble
multiplication gates and selector gates, respectively.3 In Sect. 5 we describe our
constant-round secure multiparty protocol for mixed Boolean-arithmetic circuits.
In Sect. 6 we prove the security of our protocols.

2 Preliminaries

We assume that the reader is familiar with the BGW protocol and its improve-
ment [9,19]. Sections 2.4 and 4 also use the constant round protocol for
unbounded fan-in multiplication of Bar-Ilan and Beaver [3]. This protocol is
nicely explained in [13, Sect. 4].

2.1 Security Model

We follow the standard definition of secure multiparty computation for semi-
honest adversaries, as it appears in “Foundations of Cryptography” by Oded
Goldreich [20].4 To prove semi-honest security according to this definition, we
present a simulator for the ideal world that receives the output from the trusted
party and internally interacts with the real-world adversary. Informally, the pro-
tocol is secure if the view of the adversary (input, randomness, messages received)
in the ideal world is computationally indistinguishable from the view of the
adversary in the real world, given any fixing of the inputs of the honest parties.

2.2 Notation, Conventions, and Security Assumption

We list some of the conventions and notations that we use throughout this paper.
We consider a static semi-honest adversary A corrupting a strict minority of the

3 The garbling of equality testing gates and exponentiation by a public constant are
explained in the full version.

4 These security definitions are for the stand-alone model. There appears to be no
obstruction to prove also for the stronger UC model, but this has not been done in
this work.

10 A. Ben-Efraim

parties. The circuit of the function to be computed is denoted by C, and g ∈ C
denotes both the gate and its index. The set of all wires is denoted by W , and W
denotes the wires that are not outputs of “free gates” (e.g., XOR, addition, and
multiplication by a constant gates). The respective sets of wires with values in
Fp are denoted Wp and Wp respectively. The number of parties in the protocol is
n, and t =

⌊
n−1
2

⌋
is the bound on the number of corrupt parties. We denote the

security parameter by κ. For binary fields, the keys are therefore in F2κ . Notice
that for characteristic p fields, keys should be in Fpκp , with κp ≥ �κ/ log p�; see
also Remark 1. We often abuse notation, writing pκ def= pκp .

Throughout the paper we have computations in several fields. We often avoid
mentioning the field in which the computations are carried out when this can
be inferred from the equation. For example, if λ ∈ Fp and Δi

p ∈ Fpκ then
the multiplication λΔi

p is computed in Fpκ . Observe that Fp ⊂ Fpκ is a field
extension, so this is well defined. We also ensure that the computation is well
defined for the shares of λ and Δi

p; see Remark 1.
We sometimes use vector notation for the keys of the parties. For example,

if each party Pi has a key ki
x ∈ Fpκ then we write kx

def=
(
k1

x, . . . , kn
x

) ∈ F
n
pκ .

Addition of vectors and multiplication by a constant are the standard linear
algebra operations.

The hardness assumption we rely on, which we define next, is the existence
of a mixed-modulus circular correlation robust hash function that we denote by
H. This is the exact same assumption used by Ball et al. [2] in the two-party
setting. Ball et al. conjectured that it is secure to construct H using AES.

Definition 1. Let H be a hash function, and for each p in some set of primes
P let Δp ∈ Fpκ . We define an oracle OH

P that acts as follows:

OH
P (ρ, a, b, k, γ, δ) = H(k + γΔpa

, ρ) + δΔpb
(1)

where ρ ∈ N, pa, pb ∈ P , γ ∈ Fpa
, δ ∈ Fpb

, k ∈ Fpa
κ , and the output of H is

interpreted as in Fpb
κ . Note that γΔpa

is the inner offset and δΔpb
is the outer

offset. Legal queries to the oracle have inputs in the correct domains and satisfy:

1. The oracle is never queried with γ = 0,
2. For each ρ, all the queries have the same pa, pb, and each γ ∈ Fpa

\ 0 is used
in at most one query.

We say that H is mixed-modulus circular correlation robust if for all poly-
nomial time adversaries making only legal queries to the oracle, the oracle OH

P ,
for random Δps, is indistinguishable from a random function (with the same
input/output domains).

We use the shortened notation Fk(ρ) def= H(k, ρ) (F can be thought of as a
PRF). In our garbled gates, we use ρ = g||j (formally, ρ = ng + j), where g is
the index of the gate we garble and j ∈ [n]. In most gates, the key of each party

On Multiparty Garbling of Arithmetic Circuits 11

is “encrypted”, using F , by all parties, see for example Eqs. (2) and (3).5 We
therefore use the shortened notation Enckx

[
kj

z

] def=
(
Σn

i=1Fki
x
(g||j)) + kj

z. The
outputs of the Fki

x
(g||j)’s are, in this case, assumed to be in the same field as

kj
z. “Decryption” of the above ciphertext is by subtracting Σn

i=1Fki
x
(g||j).

Remark 1. In our offline protocols, the parties share both “small” field elements
λ ∈ Fp and “large” keys/offsets ki

x,Δi
p ∈ Fpκ , with κp ≥ �κ/ log p�. These

are shared using Shamir secret-sharing scheme in fields of characteristic p (to
allow linear combinations). Apart from the characteristic, there are three other
requirements of the fields in which the elements, keys, and offsets are shared.
The first two are always required by Shamir secret-sharing schemes.

1. The field must contain at least n + 1 elements.
2. The size of the field is at least the size of the domain of the secret.
3. We need to be able to multiply shares of the field element λ ∈ Fp with the

shares of the offset Δi
p ∈ Fpκ .

In order to satisfy the first requirement, the parties share λ in a field extension
Fpmp with pmp > n. In order to satisfy the second requirement, ki

x and Δi
p are

shared in Fpκ , as they cannot be shared in a smaller field. In order to satisfy
the third requirement, it must hold also that mp|κp, so that Fpmp ⊆ Fpκp . One
way to ensure all the requirements are met is to set mp = κp = �κ/ log p�. This
is not always the most efficient solution – any implementation should optimize
the choice of mp and κp for each p, in correspondence with the bound on the
number of parties, such that they satisfy all the above requirements.

2.3 Multiparty Garbling

In the multiparty setting, the first proposal for constructing a multiparty garbled
circuit was given in [4]. We extend a simplified description for the semi-honest
model given in [8] to the arithmetic setting (in the field Fp), by applying the
ideas of [2,28]. The construction of [8] allows the free-XOR ideas of [25]. In the
two-party setting, Malkin et al. [28] and Ball et al. [2] showed that free-XOR
extends to free addition, subtraction, and multiplication by a public constant in
the field Fp. As we shall see, this is also the case in the multiparty setting.

The multiparty garbling paradigm consists of two phases. In the first phase,
often called the offline or garbling phase, the parties collaboratively construct a
garbled circuit. Then, in the second phase, called the online or evaluation phase,
the parties exchange masked input values and the corresponding keys. After
that, each party (or a designated evaluating party) locally computes the outputs
of the function. Our secure computation protocol that follows this paradigm is
given in Sect. 5. We next recall the basics of the multiparty garbling paradigm.
5 As we explain later, it is more efficient to garble Boolean gates regularly than using

half-gates in the multiparty setting. However, this requires assuming also the exis-
tence of a circular two-correlation robust hash function (as defined in [12]), which
we denote, using shortened notation, by F2

k1,k2 . If we garble AND gates using the
half-gates construction in Sect. 3, this extra assumption is not needed.

12 A. Ben-Efraim

Boolean Circuits. For constructing the garbled circuit, each party Pi chooses,
for each wire ω ∈ W, two random keys, ki

ω,0 and ki
ω,1. To enable the free-XOR

technique [25], the parties need to choose the keys such that ki
ω,1 = ki

ω,0 ⊕ Δi

for some global offset Δi.
Each wire ω in the circuit is assigned a random secret permutation bit λω.

This bit masks the real values of the wires during the online phase. For an AND
gate with input wires x, y and output wire z, the garbled gate is the encryptions
gα,β =

(
g1α,β , . . . , gn

α,β

)
for (α, β) ∈ {0, 1}2, where

gj
α,β =

(
n⊕

i=1

F2
ki

x,α,ki
y,β

(g||j)
)

⊕ kj
z,0 ⊕ (

[(λx ⊕ α) · (λy ⊕ β) ⊕ λz] Δj
)
. (2)

Notice that all the values are “encrypted” by all the parties. XOR gates are
computed using the free-XOR technique of Kolesnikov and Schneider [25], which
was extended to the multiparty setting in [8] – the permutation bit and keys on
the output wire are set to be the XOR of those on the input wires; they require
no cryptographic operations or communication. For the circuit output wires, the
permutation bits are revealed. For input wires of party Pi, the corresponding
permutation bits are disclosed to party Pi.

During the evaluation phase, an evaluating party learns at each wire ω a
bit eω, called the external or public value, and the corresponding keys. The
keys on the output wire of a garbled gate are recovered by decrypting the row
gex,ey

using the keys on the input wires. As was first pointed out in [27], if the
evaluating party participates in the garbling (which we generally assume), the
external value can be extracted from the decrypted key – an evaluating party Pi

can compare the ith key with the keys it used for the garbling, and thus learn
the external value. I.e., if the key is ki

z,0 then ez = 0 and if it is ki
z,1 then ez = 1.

The external value eω is the XOR of the real value vω with the random per-
mutation bit λω. Since the permutation bit is random and secret, the external
value reveals nothing about the real value to the evaluating party. The evalu-
ating party uses the external value and keys to continue the evaluation of the
proceeding garbled gates. For the output wires of the circuit, the permutation bit
values are revealed, and thus the output is learnt by XORing with the external
values.

Extension to Fp Arithmetic. The above generalizes naturally to arithmetics in
the field Fp. We explain this briefly; see [2] for a detailed explanation (in the
two-party setting). Instead of each wire having a permutation bit λ, now each
wire has a random secret permutation field element λ ∈ Fp. The external value
on wire ω is similarly defined eω

def= vω + λω. The permutation field elements
are shared, using a linear secret-sharing scheme, in a field of characteristic p.
Furthermore, each party Pi has a global random secret offset Δi

p ∈ Fpκ . For
each wire ω, each party Pi has a random key ki

ω ∈ Fpκ . The p keys of each party

On Multiparty Garbling of Arithmetic Circuits 13

Pi that relate to the p possible external values, are set to be ki
ω,α

def= ki
ω + αΔi

p

for each α ∈ Fp.6

Thus, addition and subtraction are “free”: The zero keys of the output of an
addition/subtraction gate are chosen to be the sum/difference of the keys of the
input wires. The permutation field element of the output wire is set to be the
sum/difference of the permutation elements of the input wires. Since the keys
and permutation elements are shared using a linear secret-sharing scheme in a
field of characteristic p, the shares of the addition/subtraction can be computed
locally by the parties (by performing local additions on their shares). Similarly,
multiplication by a public constant c is also free: if c 	= 0, the zero keys and
permutation element of the output wire are set to be the multiplication by c.
Again, all the necessary computations can be performed locally by the parties,
both at the garbling phase and the evaluation phase. The case of c = 0 is dealt
using a global 0 wire.

A straightforward method for garbling multiplication gates is to extend Eq. 2
from Boolean to characteristic p. I.e., for a multiplication gate with input wires
x, y and output wire z, the garbled gate is the encryptions

gj
α,β =

(
Σn

i=1F2
ki

x,α,ki
y,β

(g||j)
)

+ kj
z,0 +

(
[(α − λx) · (β − λy) + λz] Δj

p

)
(3)

for every α, β ∈ Fp and j ∈ [n]. The summations and multiplications in the
above equation are carried out in Fpκ . Observe that for this equation to make
sense, the output of F2 must also be in Fpκ . At the online phase, the evaluator
recovers the output keys by decrypting row (ex, ey).

The above straightforward method requires p2 garbled rows. In Sect. 3 we
describe a more efficient way to garble multiplication gates in the multiparty
setting that requires only 2p garbled rows, by extending the half-gates idea of
Zahur et al. [34]. Extension of half-gates to Fp was shown in the two-party setting
by Malkin et al. [28], but their techniques are quite different from ours. Also,
in the two-party setting, Ball et al. [2] suggested a different solution to garble
multiplication gates in O(p) garbled rows. However, their solution relies heavily
on projection gates. Unfortunately, projection gates are relatively expensive to
garble in the multiparty setting, as we explain in Sect. 2.3.2.

2.3.1 CRT Representation and Application to Arithmetic Garbled
Circuits

We briefly explain the idea presented by Ball et al. [2] for constructing efficient
arithmetic garbled circuits over the integers; see [2] for a more detailed expla-
nation. The idea is to use the Chinese Remainder Theorem (CRT), along with
efficient garbling in the field Fp, for small p.

The computations are done in the primorial modulus Qk = 2 · 3 · · · pk, the
product of the first k primes. The number of primes k is chosen such that Qk > Z,
where Z is the bound on the possible intemediate values of the computation.
Each number is represented by a bundle of wires, one for each of the k primes.
6 Note that Fp ⊂ Fpκ is a field extension so α · Δi

p is well defined.

14 A. Ben-Efraim

We call such a representation a CRT bundle representation. Adding two num-
bers is free, because the sum can be carried out in each prime separately (and
addition in Fp is free), and similarly multiplication by a constant. Multiplication
and exponentiation by a constant are also computed separately for each prime.
Thus, the total number of computations and garbled rows is the sum of the
computations/garbled rows in the different primes. Correctness of computing
this way follows from the Chinese Remainder Theorem.

2.3.2 General Projection Gates
One of the main garbling gadgets used by Ball et al. [2] is projection gates. A
projection gate is a gate which has one input wire and one output wire. For
example, an exponentiation gate that computes x
→ xc, where c is a public
constant. In addition to gates g : ZN → ZN , there are also useful projection
gates in which the domain of the input wire differs from the domain of the
output wire. Ball et al. [2] showed in the two party setting that any projection
gate g : ZN1 → ZN2 can be garbled using at most N1−1 garbled rows, where the
−1 comes from the row reduction technique [29]. Furthermore, they showed that,
in the two-party setting, it is not difficult to compute these garbled projection
gates, because the garbler knows all the information for constructing the gate.
In particular, the garbler knows all the permutation bits/elements.

In contrast, in the multiparty setting, the parties only hold shares of the
permutation bits/elements. Therefore, the garbled gates are computed via an
MPC subprotocol with these shares. In general, garbling a projection gate might
require computing a very complex equation in MPC. Projection gates in which
the output domain differs from the input domain are potentially even more
complex.

We discuss three types of projection gates: a projection identity gate from
Boolean to Fp, an equality testing gate from Fp to Boolean, and an exponentia-
tion by a (public) constant gate from Fp to Fp (the latter two are explained in the
full version). The first gate can be computed very efficiently. On the other hand,
the equality and exponentiation gates, while significantly more efficient than
general projection gates, do still seem to be quite expensive. This is because
there are exponentiations in the gate equations, and computing exponentiation
in MPC is expensive, even using the protocols suggested in [3] or [13].

On the positive side, the number of garbled rows in our projection gates is
only one row more than the respective garbled gates in the two-party construc-
tion of [2]. Thus, the size of the garbled projection gates is only slightly more
than n times of the respective gate in the two-party setting. Furthermore, at
the evaluation phase only a single row is decrypted. Therefore, the online com-
putation is only about n2 times than the two-party setting. This matches the
Boolean case.

2.4 Multifield-Shared Bits

In this section we introduce a new primitive that we use in some of our construc-
tions. Note that garbling multiplication gates does not require this primitive; the

On Multiparty Garbling of Arithmetic Circuits 15

primitive is necessary only for garbling mixed Boolean-arithmetic gates. The
primitive is a random bit b ∈ {0, 1} that is shared multiple times in different
fields, of different characteristics. That is, each party holds multiple shares of the
same secret random bit, where each share is in a different field with a different
characteristic.

In the semi-honest model with an honest majority, it is quite simple to con-
struct this primitive. First, each party Pi chooses a random bit bi. The secret
random bit will be b =

⊕n
i=1 bi. Note that if there is an additional requirement

that bz = bx ⊕ by (as needed in some of our constructions to allow free XOR),
then party Pi sets (bz)i := (bx)i ⊕ (by)i instead of randomly choosing it – per-
mutation bits/elements are chosen only for the input wires of the circuit and for
output wires of garbled gates/components. Next, the parties run protocols to
share b in each field; these protocols are run in parallel.

We next explain the bit-sharing protocols. The sharing we describe is of
Shamir shares, which is the type of shares used in our constructions. The sharing
protocol depends on the characteristic of the field. See Remark 1 regarding the
fields in which the shares should be generated.

1. In characteristic 2 fields, each party Pi shares its bit bi amongst all the parties
in a (t + 1)-out-of-n Shamir sharing. The parties sum (XOR) their received
shares to obtain shares of the bit b.

2. In characteristic p 	= 2 fields, each party Pi shares the value b′
i =

{−1, bi = 1
1, bi = 0

amongst all the parties in a t + 1-out-of-n Shamir sharing. Then, the parties

use an MPC protocol to compute shares of b =
1−(Πn

i=1b′
i)

2 . This is computed
in constant rounds by combining the protocol of Bar-Ilan and Beaver [3]
for unbounded fan-in multiplication (to compute shares of Πn

i=1b
′
i) and then

linear operations on the shares (note that 2 is invertible in Fp and the inverse
is easily computable).

Observe that b computed in both protocols is the same: b = 0 if and only if an
even number of bis is 1. This happens if and only if an even number of b′

is is −1,
which is if and only if Πn

i=1b
′
i = 1, so if and only if 1−Πn

i=1b′
i

2 = 0. The case of
b = 1 is similar.

Remark 2. In our description of the protocol, we assume the parties know the
circuit when computing the multifield-shared bits. However, it is possible to
compute all the multifield-shared bits even before the function is known, at
almost no extra cost. This is explained in the full version.

3 Multiparty Multiplication Gates

In this section we show how to extend the notion of half-gates, introduced by
Zahur et al. [34], to multiplication gates in the multiparty setting. The multi-
plication gates are in the finite field Fp (note that regular half-gates, i.e. AND
gates, are multiplication in F2). The total cost of a multiplication gate in Fp will

16 A. Ben-Efraim

be 2p garbled rows, in comparison with p2 garbled rows of the näıve construc-
tion. In particular, the Boolean AND gate will cost 4 = 2 ∗ 2 = 22 garbled rows
using both the half-gates and the regular construction.

Remark 3. In the two party case, row reduction allows to reduce 2 garbled rows
using half-gates, while other methods either allow only a single row reduction
or are not compatible with the free-XOR technique. This is the main reason
to use half-gates also in the two-party Boolean case. However, no efficient row
reduction technique is yet known for the general multiparty case. Therefore,
half-gates does not seem to be suitable for the multiparty Boolean case.7

Remark 4. In [2], multiplication gates in Fp are constructed differently, mainly
using projection gates. As explained, projection gates seem to be considerably
more expensive in the multiparty case than in the two-party case. Therefore,
multiplication using an extension of the half-gates idea, as explained here, should
be preferred in the multiparty setting. In fact, the garbled multiplication gate
of [2] require slightly more rows and more decryptions, so possibly using the
half-gates extension should be considered also for the two-party setting.

We follow the convention of [34], describing the two half gates as the “Garbler
Half Gate” and “Evaluator Half Gate”, because these gates are somewhat similar
to the 2-party components of [34]. However, note that in our scenario all parties
perform the garbling collaboratively (i.e., there is no single garbler), and each
party can perform the evaluation.

Before going into the details of each half-gate, we give an informal overview
of the idea. Assume we have a multiplication gate with input wires x, y and
output wire z. During evaluation, the evaluating party learns on the input wires
the external values bits ex = vx + λx and ey = vy + λy, where v and λ are the
real value and the permutation element on the wires respectively. The evaluating
party also learns the keys corresponding to these external values. Using this, the
evaluating party should be able to recover the output external value

ez = vz + λz = vxvy + λz (4)

and corresponding keys.8 In the näıve construction, this is done by decrypting
the row (ex, ey), see Sect. 2.3.

In the half-gates construction, the computation is split into two distinct half-
gates, each performing a different computation. Informally, the first gate com-
putes −λyvx and the second half-gate computes vx(vy + λy). Then, adding the
two outputs, which is free, results in vz = vxvy.

To securely compute a multiplication gate using these two half gates in the
multiparty setting, two adjustments have to be made. The necessity of these
adjustments will become apparent when we discuss security. The first adjustment
7 Using half gates requires double the amount of decryptions during evaluation and is

therefore inferior in this case despite having the same number of garbled rows.
8 As explained in Sect. 2.3, it is enough to learn the keys; the evaluating party learns

the external value by comparing with its local key used for the garbling.

On Multiparty Garbling of Arithmetic Circuits 17

is that the permutation element on the output wire, λz, must be partitioned
λz = λ̃z + λ̂z, where λ̃z, λ̂z ∈ Fp are random elements under the constraint
that they sum to λz (which is the random permutation element of the output
wire). This is because the outputs of both half gates must be hidden, otherwise
information might be leaked on some of the values.9

The second adjustment is that the zero keys ki
z on the output wire also

need to be partitioned ki
z = k̂z

i
+ k̃i

z, where k̂z

i
, k̃i

z ∈ Fpκ are random under
the constraint that they sum to ki

z. The main idea of this partition is that the
output keys of an honest party Pi on both half gates do not leak information on
the global offset Δi

p. The permutation elements and keys λ̃z, k̃
i
z are used in the

Garbler half gate, and λ̂z, k̂z

i
are used in the Evaluator half gate.

To conclude, informally the half gates construction computes the output
using the following equation:

ez = vxvy + λz =

“Garbler Half Gate”
︷ ︸︸ ︷(
−λyvx + λ̃z

)
+

“Evaluator Half-Gate”
︷ ︸︸ ︷(
vx(vy + λy) + λ̂z

)
, (5)

The true construction and resulting equations are more involved, and we next
explain them in detail.

3.1 Garbler Half Gate

In the original description of this half gate in [34], the idea is described that
the garbler can take advantage that it knows the permutation bit (or color
bit in the terminology of [34]). In the multiparty case, no unauthorized subset
(i.e., a subset that could be controlled by the adversary) is allowed to know the
permutation element on any wire that it should not learn. However, we can use
the fact that the permutation elements are secret-shared to do the necessary
computations. The computed gate is slightly more complicated than in the two-
party case because the garbling parties also participate in the evaluation, and
thus have additional information.

As already stated, the garbler half gate should compute the value −λyvx+λ̃z.
Note that vx is the real value on the wire x (in an ungarbled computation) and
is therefore never known – neither during garbling nor during the evaluation
phase. Thus, we cannot hope to use it directly.

To overcome this, the value is computed using the equation −λyvx + λ̃z =
−λy(vx +λx)+λyλx + λ̃z. The value vx +λx is the external value on wire x and
thus revealed during evaluation. For garbling, the rows are computed for all p
values, using the BGW protocol with the shares of permutation bits, and with
vx + λx treated as a constant (as α in the αth row). The final garbled garbler
half gate is the set of encryptions

g̃i
α = Encky,α

[
k̃i

z +
(
−αλy + λyλx + λ̃z

)
Δi

p

]
(6)

9 This is different than the two-party case, where the evaluator half gate can be han-
dled differently, cf. [34].

18 A. Ben-Efraim

for every α ∈ Fp and i ∈ [n]. Note that α is a constant and all other values are
secret-shared. Since the multiplicative depth of this equation is 2, computing
this half gate (Eq. (6)) requires two BGW degree-reduction rounds.

To verify that the correct output key is recovered, we observe that if the
input external value is ex, then the encryptions g̃i

ex
are decrypted for all i. Thus,

the recovered output keys are

k̃i
z +

(
−exλy + λyλx + λ̃z

)
Δi

p

= k̃i
z +

(
−(vx + λx)λy + λyλx + λ̃z

)
Δi

p

= k̃i
z +

(
−λyvx + λ̃z

)
Δi

p = k̃i
z,−λyvx+˜λz

matching the expected value of the keys corresponding to −λyvx + λ̃z.

3.2 Evaluator Half Gate

As in the two-party case, the main idea of this half gate is that the evaluating
party learns at the evaluation phase the external values of the wires, and can
use this information for the computation. As we shall see more clearly when we
extend the half gates to Fp, the operation done by the evaluating party is to
multiply by this external value.

The evaluator half gate should compute the value vx(vy + λy) + λ̂z. The
value vy + λy is the external value ey on input wire y, and therefore known at
evaluation time. On the other hand, the value vx is the true value on wire x,
and thus generally should never be learnt by any subset of parties. Therefore, to
compute the gate we use the equation:

vx(vy + λy) + λ̂z = (vx + λx)(vy + λy) + λx(vy + λy) + λ̂z. (7)

The computation of the value λx(vy +λy)+ λ̂z is similar to the computations in
the Garbler Half Gate. Thus, the main addition in this half gate is the compu-
tation of the value (vx + λx)(vy + λy). Näıvely, it would seem that this requires
p2 rows in order to garble for each combination of (vx + λx, vy + λy) ∈ (Fp)2.
However, in the two party Boolean case, [34] observed that this computation
can be obtained practically for free. We first explain the observation of [34], and
then extend it to the multiparty Fp case.

In the Boolean case, the external values are (vx ⊕ λx) and (vy ⊕ λy). Note
first that (vx ⊕λx)(vy ⊕λy) can be computed at evaluation time as both external
values are known. This is still insufficient, because the evaluating party needs to
recover some key that corresponds to this value. The “trick” performed by [34] is
to XOR with the key on the wire x if vy ⊕λy = 1 and to ignore it if vy ⊕λy = 0.
We next describe this slightly differently for the Fp case, but the descriptions in
fact coincide for p = 2.

To extend the technique of [34], during evaluation, each evaluating party
multiplies the key on wire x by the external value vy + λy and adds it to the

On Multiparty Garbling of Arithmetic Circuits 19

decrypted key. Notice that this completely coincides with the Boolean case when
p = 2 (since multiplying the key by 0 is the same as ignoring the key). The only
subtlety is that now the corresponding multiplication of the zero key must be
subtracted from the encrypted key during the garbling. However, the proof for
this extended technique is slightly trickier, as we shall see in Sect. 6.

The garbled evaluator half gate is the set of encryptions

ĝj
β = Encky,β

[
k̂i

z − βki
x +

(
−βλx + λ̂z

)
Δi

p

]
(8)

for every β ∈ Fp and i ∈ [n]. Since the multiplicative depth is 1, computing this
half gate (Eq. 8) requires one BGW degree-reduction round.

Now during evaluation, the evaluating party multiplies the key on the x wire
by the external value ey = vy + λy. This is then added to the key decrypted
at row ey. We next verify that the recovered output keys indeed corresponds to
the correct value: the recovered output keys are the sum (for each i ∈ [n]) of
ey(ki

x + exΔi
p) and k̂i

z − eyki
x +

(
−eyλx + λ̂z

)
Δi

p. Simplifying,

ey(ki
x + exΔi

p) + k̂i
z − eyki

x +
(
−eyλx + λ̂z

)
Δi

p

= eyki
x + ey(vx + λx)Δi

p + k̂i
z − eyki

x +
(
−eyλx + λ̂z

)
Δp

= k̂i
z +

(
eyvx + λ̂z

i)
Δi

p = k̂i
z,eyvx+̂λz

matching the expected key value of vx (vy + λy) + λ̂z.

3.3 Summing the Two Half Gates

Recall that λz = λ̃z + λ̂z and ki
z = k̃i

z + k̂i
z. At the evaluation phase, once both

half gates are evaluated as above, each evaluating party computes for each i ∈ [n]
the output keys of the gate, by summing the two keys it recovered from the two
half gates, i.e.,

ki
z,ez

=
(
k̃i

z +
(
−λyvx + λ̃z

)
Δi

p

)
+
(
k̂i

z +
(
eyvx + λ̂z

)
Δi

p

)

=(k̃i
z + k̂i

z) +
(
−λyvx + λ̃z + (vy + λy)vx + λ̂z

)
Δi

p

=ki
z + (vxvy + λz) Δi

p = ki
z,vxvy+λz

.

Next, evaluating party Pj recovers the external value ez = vxvy + λz, by
comparing the recovered key kj

z with its local keys.

4 Selector Gates

One of the more challenging tasks of performing an arbitrary computation using
arithmetic circuits is to perform conditional statements. In this section, we dis-
cuss a gate computing a simple if statement. Namely, we build a “selector” gate,

20 A. Ben-Efraim

which chooses between two input wires in Fp, according to a Boolean “selection
bit”. I.e., the gate has three input wires x, y, and w0, and an output wire z.
The values on the input wires x, y are from Fp and the value on w0 is the selec-
tion bit. The selector gate computes the following if statement: If (vw0 == 0)
then vz = vx else vz = vy. Note that by applying this to each wire in the CRT
representation, we get a selector gate for integers.

We show two constructions for a selector gate. The first construction is using
known techniques. The gate is constructed by first projecting the value of w0

into Fp using a projection gate, and then using a multiplication gate. That is,
the gate is computed using the equation:

vz = ϕ(vw0) · vx + ϕ(vw0 ⊕ 1) · vy = ϕ(vw0) · vx + (1 − ϕ(vw0)) · vy

= ϕ(vw0) · (vx − vy) + vy (9)

where ϕ denotes the projection of the bit into Fp. There is one projection and one
Fp multiplication in Eq. 9, costing 2 and 2p garbled rows respectively. Thus, a
selector gate using the above construction has 2p+2 garbled rows. However, note
that the evaluator has to decrypt 3 rows using this method: 1 for the projection
gate, and 2 for the multiplication gate (1 in each half gate). To the best of our
knowledge, this is the best selector gate construction using existing techniques
and relying only on the existence of MMCCR PRFs; see Remark 5.

Our second construction will be a new and designated construction of a
garbled selector gate. The cost of the designated garbled selector gate will be
also 2p + 2 garbled rows. However, the number of rows the evaluator will have
to decrypt will be only 2. Thus, we expect evaluation of this designated selector
gate to be approx. 33% faster.

Remark 5. If w0 is in Fp then a selector gate can be garbled with 2p rows and
only 2 decryptions at evaluation (since projection is not needed). However, we
argue that it is important to consider the case of Boolean w0 for two reasons:
the first is that when computing over the integers using CRT, we would like
the same bit to select in all the characteristics. The second is that w0 could be
determined by a complex set of conditions, so it would make sense that w0 is
the output or intermediate value of a Boolean sub-circuit.

If we do not restrict the security assumption to only MMCCR hash functions,
then in the 2-party setting, Ball et al. [2] showed a direct construction of a
selector gate that has 2p − 1 rows and requires only 1 decryption, which can be
proved secure based on a random oracle (or possibly also on some extension of
Definition 1 to allow correlation and circularity on two input keys). Note that in
the 2-party setting, also the new designated construction and the construction
using a projection gate have 2p − 1 rows (this is because row-reduction [29]
reduces 1 row from every garbled component). However, they require 2 and 3
decryptions, respectively. Nevertheless, since in the two-party setting this is the
only garbled gate which an optimization is known using a stronger assumption,
we feel it is important also to optimize constructions that are based only on
MMCCR.

On Multiparty Garbling of Arithmetic Circuits 21

4.1 Charateristic 2 to Characteristic p Projection Gates

In this section we explain how to construct a projection gate that maps a bit
value on a Boolean wire to the same value on a wire in Fp. The projection gate
has a single input wire w0 containing a Boolean value, and an output wire z,
containing the same value in Fp. I.e., if vw0 = 0 then vz = 0 and if vw0 = 1 then
vz = 1 (note that vw0 ∈ F2 and vz ∈ Fp). This projection gate is needed if one
wishes to multiply the bit value by a value in Fp, as in the first selector gate
construction described above.

The projection gate takes advantage of the following observation: Suppose
that vw0 , λw0 ∈ {0, 1}. Then,

vw0 ⊕ λw0 =
{

vw0 − λw0 , vw0 ⊕ λw0 = 0
vw0 + λw0 , vw0 ⊕ λw0 = 1,

(10)

where the computations on the left and right are in F2, the computation in
middle is in Fp, and equality signifies that the value is the same value in {0, 1}
(whether in F2 or Fp). I.e., if vw0 = λw0 then vw0 − λw0 = 0 = vw0 ⊕ λw0 and if
vw0 	= λw0 then vw0 + λw0 = 1 = vw0 ⊕ λw0 .

To use Eq. (10), we will assume that λw0 is a multifield-shared bit, shared in
both a field of characteristic 2 and a field of characteristic p. Note that although
the output value is known to be a bit, it is masked using a random permutation
element in Fp to avoid leaking information. Thus, the equation of the gate will
be

ez = vz + λz = vw0 + λz =
{

(vw0 ⊕ λw0) + λw0 + λz, vw0 ⊕ λw0 = 0
(vw0 ⊕ λw0) − λw0 + λz, vw0 ⊕ λw0 = 1.

(11)

Hence, the garbled projection gate is the following encryptions for every i ∈ [n]:

Enckw0,0

[
k̂i

z + (λw0 + λz) Δi
p

]
, (12)

Enckw0,1

[
k̂i

z + (1 − λw0 + λz) Δi
p

]
. (13)

As explained in Sect. 2, although kw0,0, kw0,1 ∈ F2κ , the output of the PRF in
this case is in Fpκ . Assuming we have λw0 as a multifield-shared bit, i.e., the
parties already posses Shamir shares of the the bit λw0 in the correct field of
characteristic p, Eqs. (12), (13) can be computed using one additional BGW
degree-reduction round. Using Eq. (11), it is not difficult to verify that for both
values of ew0 the decrypted key corresponds to ez.

4.2 Designated Selector Gate Construction

In this section we explain a designated construction for a selector gate. The
gate contains three components. The first component, which we call the chooser
partial gate, has 2 garbled rows. The other two components, which we call the
corrector partial gates, contain p garbled rows each. Thus, this construction of a

22 A. Ben-Efraim

selector gate will require 2p+2 garbled rows, same as the previous construction.
However, this construction requires less decryptions at the evaluation phase, as
we explain next.

The main idea we use in our construction can be seen as an extension of
the half-gate technique – the evaluating party uses the key of one of the input
wires, according to the external value on the selection wire. Furthermore, the
evaluating party decodes only one of the two corrector partial gates according to
the external value on the selection wire. Therefore, only two rows are decrypted
when evaluating the gate (one in the chooser gate and one in the corrector gate),
1 less than the previous construction.

Note that since the external values are known only at the evaluation phase,
we cannot prevent a corrupt evaluating party from decrypting also the other
corrector partial gate. Thus, we must ensure that the decrypted key from this
does not leak any extra information. This is achieved using a double partitioning
of the output zero keys and permutation bit. I.e.,

λz = λ̂z + λ̃z = ̂̂
λz + ˜̃

λz, (14)

ki
z = k̂i

z + k̃i
z = ̂̂

k
i

z + ˜̃
k

i

z, (15)

where λ̂z, λ̃z,
̂̂
λz,

˜̃
λz ∈ Fp are random such that they satisfy Eq. (14) and likewise

k̂i
z, k̃

i
z,
̂̂
k

i

z,
˜̃
k

i

z ∈ Fpκ are random such that they satisfy Eq. (15). Note for example

that ˜̃λz is random even given λ̂z, λ̃z. Such observations are crucial for security, as
we later explain. Otherwise, a corrupt evaluator could learn secret information
by decrypting the “wrong” corrector gate. This idea of double partition of the
keys and permutation elements appears to have not been used before in garbled
circuits.

4.2.1 Half-Selector Gate
We now show the construction of a half selector gate that receives only two input
wires, x and w0, and outputs either x or 0 according to w0. This easily extends
to a full selector gate, using the equation

vz = vw0 · vx + (vw0 ⊕ 1) · vy = vw0 · (vx − vy) + vy. (16)

I.e., computing the value of x − y using free subtraction, then using a half-
selector, and then freely adding the value of y. It is also possible to construct a
full selector gate directly. This is explained in the full version. The construction
of the half-selector gate is significantly simpler, but contains most of the main
ideas.

Informally, the half-selector gate is computed using the following equation:

vxvw0 + λz =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

“Chooser Gate”
︷ ︸︸ ︷
vx(vw0 ⊕ λw0) + λ̂z

“Corrector Gate”
︷ ︸︸ ︷
+λw0vx + λ̃z vw0 ⊕ λw0 = 0

vx(vw0 ⊕ λw0) + ̂̂
λz −λw0vx + ˜̃

λz vw0 ⊕ λw0 = 1.

(17)

On Multiparty Garbling of Arithmetic Circuits 23

This equation works because vx(vw0 ⊕ λw0) =
{

vxvw0 − λw0vx vw0 ⊕ λw0 = 0
vxvw0 + λw0vx vw0 ⊕ λw0 = 1,

as one can readily verify for the 4 combinations of vw0 , λw0 ∈ {0, 1}. Note also
that the equations of the chooser gate in the first and second row simplify to λ̂z

and vx +̂̂
λz respectively, since the value of vw0 ⊕λw0 is already fixed. The reason

why we need to use different partitions of λz in the two rows will become clear
when we discuss the corrector partial gates in detail. In short, the reason is to
ensure that decrypting the “wrong” corrector gate does not leak any information.

Chooser Partial Gate for Half Selector. The chooser partial gate is somewhat
similar to the evaluator half gate. The first garbled row, which is decrypted
when vw0 ⊕ λw0 = 0, should output a key corresponding to vx(vw0 ⊕ λw0) +
λ̂z = λ̂z if decrypted. The λ̂z is secret-shared, so this computation is done in a
straightforward manner.

The second garbled row is decrypted when vw0⊕λw0 = 1, and the output keys

should correspond to the value vx(vw0⊕λw0)+
̂̂
λz = vx+̂̂

λz. Here we use a similar

trick as in the evaluator half-gate, i.e., the equation vx+̂̂
λz = (vx+λx)−λx+̂̂

λz,
where for the value vx + λx the evaluator will add the key on the input wire x,
as in the evaluator half gate. To conclude, the chooser partial gate for a half
selector gate has the following encryptions for every i ∈ [n]:

Enckw0,0

[
k̂i

z + λ̂zΔ
i
p

]
, (18)

Enckw0,1

[
̂̂
k

i

z − ki
x +

(
−λx + ̂̂

λz

)
Δi

p

]
. (19)

At the garbling phase, these equations require one BGW degree-reduction round.
At the evaluation phase, if the external value ew0 is 1, the evaluating party also
adds the key on wire x after decryption.

We verify that the decrypted keys indeed correspond to the values vx(vw0 ⊕
λw0) + λ̂z and vx(vw0 ⊕ λw0) + ̂̂

λz:

1. If ew0 = 0 the decrypted keys are k̂i
z + λ̂zΔ

i
p = k̂i

z,̂λz
= k̂i

z,vx(vw0⊕λw0)+
̂λz

,

2. If ew0 = 1 the output is the sum of ki
x + exΔi

p and ̂̂
k

i

z −ki
x +

(
−λx + ̂̂

λz

)
Δi

p.

Simplifying:

[
ki

x + exΔi
p

]
+
[
̂̂
k

i

z − ki
x +

(
−λx + ̂̂

λz

)
Δi

p

]
= ̂̂

k
i

z +
(

vx + ̂̂
λz

)
Δi

p

= ̂̂
k

i

z,vx+
̂

̂λz
= ̂̂

k
i

z,vx(vw0⊕λw0)+
̂

̂λz
.

Corrector Partial Gate for Half Selector. The computation of each corrector
partial gate is similar to the garbler half gate. The interesting point is that
there are two corrector gates for every selector gate, and only one value is used

24 A. Ben-Efraim

at evaluation. However, since which of the two is used is known only at the
evaluation phase, both corrector gates need to be computed at the garbling
phase.

The garbled rows of the first corrector gate, which correspond to the value
λw0vx + λ̃z = λw0(vx + λx) − λw0λx + λ̃z, are the following encryptions for each
α ∈ Fp and i ∈ [n]:

Enckx,α

[
k̃i

z +
(
αλw0 − λw0λx + λ̃z

)
Δi

p

]
. (20)

The garbled rows of the second corrector gate, which correspond to the value

−λw0vx + ˜̃
λz = −λw0(vx + λx) + λw0λx + ˜̃

λz, are the following encryptions for
each α ∈ Fp and i ∈ [n]:

Enckx,α

[
˜̃
k

i

z +
(

−αλw0 + λw0λx + ˜̃
λz

)
Δi

p

]
. (21)

Assuming λw0 is a multifield-shared bit, computing these gates requires two
BGW degree-reduction rounds. Verification is slightly tedious and hence omitted.

Combining the above components results in the half-selector gate: At the
evaluation phase, an honest evaluating party decrypts the chooser partial gate
and only one of the corrector gates, according to the external value on the
selector wire w0. By summing the values, the evaluating party recovers the key
corresponding to vxvw0 + λz.

Observe that the same key is used to decrypt both corrector gates. Thus,
a corrupt evaluating party can recover the decrypted keys on both corrector
gates, regardless of the external value on wire w0. Therefore, we must ensure
that the unused decrypted value does not leak any information. We explain the
intuition for the case ew0 = 0; the case of ew0 = 1 is similar. Notice that the keys

decrypted from the inactive corrector gate are ˜̃k
i

z +
(

−exλw0 + λw0λx + ˜̃
λz

)
Δi

p

for i ∈ [n]. There are 2 key observations:

– Clearly, a corrupt evaluating party Pi can learn the value −exλw0+λw0λx+˜̃
λz

by subtracting ˜̃
k

i

z and dividing by Δi
p. Furthermore, ex, ew0 , λ̂z, and λw0vx +

λ̃z are known to the evaluator from the protocol.10 Nevertheless, ˜̃λz ∈ Fp is

random even given these values. Thus, the value −exλw0 + λw0λx + ˜̃
λz leaks

no information on λw0 and λx.

– A corrupt evaluating party learns ˜̃
k

j

z +
(

−exλw0 + λw0λx + ˜̃
λz

)
Δj

p also for

every honest party Pj . However, ˜̃k
j

z ∈ Fpκ is random even given the keys
10 Usually, the permutation bits must remain secret as they hide the value on the wire.

However, in this specific case, the value on the wire corresponding to vxew0 = 0 is

publicly known. Thus, there is no need to hide ̂λz in this specific case. However, ̂λz

is crucial for security, otherwise λz = ˜λz and this would be insecure when ew0 = 1.

On Multiparty Garbling of Arithmetic Circuits 25

party Pi recovers from following the protocol. Thus, this does not leak any
information on Δj

p.

The proof of security in Sect. 6 formalizes the above intuition.

5 Protocol for Secure Computation

In this section we give the details of our secure multiparty computation protocol.
The protocol is an extension of the semi-honest BMR protocol, e.g. [8], to the
arithmetic case. The details of the garbled gates are explained in Sects. 3 and
4.11 The proofs of correctness and security appear at Sect. 6.

The garbling phase of protocols following the multiparty garbling paradigm
is often abstracted as a functionality that outputs the garbled circuit and the
necessary permutation bits to the respective parties. This functionality, which we
term FGC , is described in Fig. 1. We next sketch out a straightforward protocol
for securely computing FGC in constant rounds, using a combination of the
BGW protocol [9,19] and the constant round protocol for unbounded fan-in
multiplication of Bar-Ilan and Beaver [3].

Step 1, Setup: For each prime p in the primorial modulus, each party Pi does
the following:

– For each wire ω ∈ Wp (i.e., input wires of the circuit and output wires of
garbled gates/components), randomly chooses a random element (λω)i ∈
Fp and (zero) key ki

ω ∈ Fpκ .12 The random permutation element on the
wire is λω

def= Σn
i=1 [(λω)i].

– In topological order on the circuit, computes (λω)i and ki
ω for each wire

ω /∈ Wp, by summing/multiplying by a constant (according to gate type),
by using λi and ki on the input wires – see Sect. 2.3 on “free” gates.

– Each party randomly chooses a random global offset Δi
p ∈ Fpκ .

– For each garbled component g ∈ C, compute Fki
x,α

(g, j) for each j ∈ [n]
and α ∈ Fp, where p is according to the gate/component type.

Step 2, Sharing: Each party Pi shares all the keys, elements, and outputs of
F in Step 1 using (t + 1)-out-of-n Shamir secret-sharing scheme. Multifield-
shared bits are also shared using Protocol 2 in Sect. 2.4 for each p. The par-
ties obtain shares of λω for each wire by locally summing their shares of
{(λω)i}n

i=1.
Step 3, Computing the garbled gates: Shares of the garbled rows of each

garbled gate/component are computed using their respective equation (e.g.,
Eqs. 6, 8, 12, 13), where in each equation

– Addition and multiplication by a constant are computed locally,
– Multiplication is computed using a BGW degree-reduction round,

11 Due to lack of space, some of the constructions are deferred to the full version.
12 In the designated selector gates, this choice is slightly more involved – Pi randomly

chooses (̂λω)i, (
̂

̂λω)i, (˜λω)i, (
˜

˜λω)i such that (̂λω)i + (˜λω)i = (
̂

̂λω)i + (
˜

˜λω)i. The keys
are similarly partitioned; see Sect. 4.

26 A. Ben-Efraim

– Exponentiation is computed using the protocol of [3].
More details can be found in the respective section.

Step 4, Reconstructing the outputs: The parties exchange the shares (of
the outputs of FGC) and reconstruct the outputs of FGC , namely the garbled
gates/components and the output permutation elements. Furthermore, each
party receives the shares and reconstructs the permutation elements on its
input wires.

Remark 6. The above protocol is constant round since all gates are computed in
parallel and each step is constant round (Step 1 is local). However, the protocol
can be considerably optimized using techniques described in [7], such as share-
conversion and masking by additive shares of zeros. Due to space limitations,
the optimized protocol is deferred to the full version. An alternative protocol for
arithmetic garbled circuits that does not require an honest majority, which is
based on oblivious transfer, is also given in the full version.

Next, in Fig. 2 we give the details of our MPC protocol, in the FGC -hybrid
model (i.e., FGC can be executed securely as a black-box). The protocol is similar
to other protocols following the multiparty garbling paradigm, e.g., [8]. The only
major difference is the external values are not exclusively Boolean, and the size of
the garbled gates/components varies according to the gate type. The evaluation
of the various gates (Step 3b in Fig. 2) is explained in the respective section.
Correctness and security of the protocol are shown in Sect. 6.

6 Correctness and Security

In this section we state the correctness and security of our protocol. Due to lack
of space, we only give sketches of the proofs. The full proof of security, as well
as the straightforward proof of Claim1, will be given in the full version.

Correctness. We briefly explain the correctness of the protocol. To show that
the outputs received by the parties in Πonline (Fig. 2) corresponds to the correct
output, we show the following statement: for each wire, the evaluating parties
recover at evaluation the correct external value ez = vz +λz, and the correspond-
ing keys. For input wires, this statement follows from Step 2. The statement is
then proved by induction on the topological ordering of the gates. For output
wires of each gate type, this is shown in the respective section. Using the induc-
tion argument, the statement holds also for the output wires of the circuit. Thus,
in Step 4, the value recovered by the parties at wire z is ez − λz = vz.

Security. We now show the security of our protocol. We assume a semi-honest
adversary corrupting a strict minority of the parties. We begin with the following
lemma:

Lemma 1. Protocol ΠGC securely computes FGC in the presence of a static
semi-honest adversary controlling a strict minority of the parties.

On Multiparty Garbling of Arithmetic Circuits 27

Fig. 1. Functionality FGC for Constructing a Multiparty Garbled Circuit

Proof Sketch. Protocol ΠGC computes FGC using only Shamir secret sharing,
the BGW protocol, and the constant round protocol for unbounded fan-in mul-
tiplication of [3]. These are secure and composable with each other (the protocol
of [3] can be based on BGW) in the semi-honest model with an honest majority.
The intermediate messages the adversary sees throughout the protocol (Steps 2
and 3) are only Shamir shares, which appear random in the information theoretic
sense. Thus, they are easily simulated. The messages of the last round (Step 4)
are computed by the simulator using the output (given from the trusted party)
and the messages already given to the adversary in previous rounds. �

Before stating our main security theorem, we state the following claim that
follows from Definition 1:

Claim 1. Let B ⊂ [n]. If H is mixed-modulus circular correlation robust, then
for all polynomial time adversaries making only legal queries to the oracle, the
oracle

OH,B
P (ρ, a, b,

(
ki
)
i∈B

, γ, (δi)i∈B) def= Σi∈B

[
OH,i

P (ρ, a, b, ki, γ, δi)
]
, (22)

28 A. Ben-Efraim

where each OH,i
P is equal to OH

P with random and independent Δi
ps for each

p ∈ P and i ∈ B, is indistinguishable from a random function (with the same
input/output domains).

Claim 1 is proved from Definition 1 by a reduction. The proof is deferred to the
full version. Informally, the importance of Claim1 is to use the claim with B as
the set of honest parties, so OH,B

P mimics “encryption” by all the honest parties.
Further, the oracle adds offsets, corresponding to δiΔ

i
ps, to the encrypted keys

of the honest parties.
To give some intuition, this allows the distinguisher to change the values to

which the encrypted keys correspond to, without knowing the Δi
ps. For example,

let ex and ez be the external values on the input and output wires of the gate.
If the distinguisher wants to encrypt row ex + 1 with the key corresponding to

ez + 2, then for the jth part it uses γ = 1 and δi =
{

2 i = j
0 i 	= j

for each i ∈ B

(the computation of δj for the evaluator half gate and designated selector gates

Fig. 2. The online phase – circuit evaluation

On Multiparty Garbling of Arithmetic Circuits 29

is slightly more complex, as explained in the proof). This way, the distinguisher
only uses the keys ki

x,ex
, ki

z,ez
of the honest parties. Next, we state our main

security theorem:

Theorem 2. If H is a mixed-modulus correlation robust hash function then
Protocol Πonline in Fig. 2 securely computes fC in the FGC-hybrid model, in the
presence of a static semi-honest adversary.

The proof follows the general ideas used in [12], with the extended assumption.
The main difficulty of the proof, on which we focus, is to show how the simulator
simulates the output of FGC , and in particular a fake garbled circuit, such that
no polynomial time distinguisher can distinguish this fake garbled circuit from
a real garbled circuit. To show this, we describe a distinguisher that uses H and
legal queries to an oracle O ∈

{
OH,B

P , Rand
}

in order to construct a circuit that
distributes either as a real garbled circuit or as a fake garbled circuit, according
to the oracle. Thus, distinguishing between the two types of circuits breaks the
mixed-modulus correlation robustness of H. See the full version for more details.

There are two main differences from similar proofs: the first appears in mul-
tiplication gates, and specifically in the evaluator half gate. The second appears
in the designated selector gates. Therefore, we split the proof sketch into two
parts. In the first, we give an overview of the general proof structure and ideas,
i.e., the construction of the fake circuit by the simulator, and the construction
of the circuit by the distinguisher (which distributes as a real or fake circuit
according to the oracle). In the second part, we explain the difficulties and nec-
essary changes for evaluator half gates, and give a more detailed explanation on
the subtleties of selector gates.

Proof Sketch. Simulator: The simulator chooses a random path on the circuit,
i.e., for each wire ω ∈ W selects a random external value. For each wire ω ∈ W
and for each honest party, the simulator chooses random keys corresponding
to these external values. Then, the simulator computes the external values and
corresponding keys of free gates. Using these values, the simulator computes a
single encrypted row for each non-free gate/component – this row corresponds
to the external value on the input wire. The other rows are sent as completely
random strings (or more precisely as a random vector in F

n
pκ for the appropri-

ate p). There are slight differences in the designated selector gates, and these
are explained later in the proof.

Distinguisher: The distinguisher starts by following the simulator construction
for computing the first encrypted row. The other rows are computed differently,
by using the oracle. The key observation is that the distinguisher can compute
the γ’s it needs tosupply the oracle in order to, in the case O = OH,B

P , encrypt

30 A. Ben-Efraim

the rows correctly and can compute the δi’s in order to, if necessary, change the
keys of the honest parties that are encrypted in that case.13

Computing γ is simply by the difference in the rows – this part is unchanged
in the different gate types. Note that this ensures that γ 	= 0 and that each
γ ∈ Fpa

is used only once for each gate and party index. Thus, the distinguisher
makes only legal queries to the oracle.

To compute the δi’s, the distinguisher uses the inputs to compute the real
values on the wires. Using the real and external values, the distinguisher extracts
the permutation elements, which are used to compute δi for each row and each
i ∈ B. In the computation of the δi’s there are differences and subtleties from
similar proofs in both the evaluator half-gate and the designated selector gate,
and we address these next.

Evaluator Half Gates: The simulator computes the evaluator half gates
exactly the same. I.e., the simulator chooses an “external value” êz and cor-
responding random key k̂i

z,êz
. However, note that the “external value” of output

wire of the evaluator half gate represents êz = vx(vy +λy)+ λ̂z, but the key k̂i
z,êz

represents k̂i
z − eyki

x +
(
−eyλx + λ̂z

)
Δi

p. This is because the evaluator should

add eyki
x,ex

after decrypting row ey.
This poses an extra challenge to the distinguisher when trying to compute

the other rows, because they require deducting different multiplications of ki
x,

but the distinguisher does not know ki
x.14 However, the distinguisher does know

ki
x,ex

= ki
x + exΔi

p. Therefore, to deduct βki
x, the distinguisher computes β(ki

x +
exΔi

p) = βki
x + βexΔi

p. Then, this is deducted, and the βex is aggregated to the
computation of the δi of that row. Thus, the simulator calls the oracle with these
aggregated δi’s. The technical details are given in the full version.

Designated Selector Gates: First note that in the designate selector gates
the simulator chooses three random external values and corresponding keys,
although one of the corrector gates should not be decrypted. Furthermore, the
simulator knows which corrector gate should not be decrypted. Nevertheless,
the simulator constructs this gate as usual (one row correctly encrypted, and
the other rows are random).

As for the distinguisher, the construction of the two corrector gates is similar
to regular gates. The distinguisher builds both corrector gates, despite knowing
which one should be decrypted. For the unused row in the chooser gate, the
distinguisher uses the technique described for the evaluator half gate.

Conclusion: The proof concludes with the following key observation: If O =
Rand then the circuit created by the distinguisher distributes as a fake garbled

13 All the keys of the corrupt parties are known to the distinguisher. For the honest
parties, the distinguisher knows the keys corresponding to the external values (chose
them randomly), but does not know the Δi

p’s. Therefore, in order to change which

value the honest parties’ encrypted keys correspond to, it must use the oracle OH,B
P .

14 The random Δi
ps of i ∈ B are an internal part of OH,B

P . The Δi
ps of the adversary

(i /∈ B) are known to both the simulator and the distinguisher.

On Multiparty Garbling of Arithmetic Circuits 31

circuit created by the simulator, while if O = OH,B
P the circuit distributes as

a real garbled circuit, created by a real execution of the protocol. Thus, distin-
guishing between the two cases breaks the mixed-modulus circular correlation
robustness. �

At first sight, it might not be obvious where in the proof we required the
double partition of the keys and permutation bits. However, a closer inspection
shows that by the simulator and distinguisher choosing the external values and
keys of the two corrector gates randomly and independently, this fact is implicitly
used. Otherwise (without the double partition), in a real garbled circuit the two
external values are dependent and similarly the two keys, and would not match
the distinguisher’s construction. Furthermore, in a real execution of the protocol,
if the λ’s are not double partitioned, by subtraction of the two external values, a
corrupt evaluator learns 2λw0vx (here λw0 is treated as an Fp element), violating
security. If the keys are not double partitioned, then a corrupt evaluator can
subtract the decrypted keys of an honest party Pi and recover a multiplication
of Δi

p. Thus, this double partition is crucial.

Acknowledgements. I would like to thank Amos Beimel, Eran Omri, and Yehuda
Lindell for the many ideas and helpful discussions. Special thanks to the anonymous
referees for their remarks and suggestions, and to abhi shelat and Mike Rosulek for
helping me to better understand their papers.

References

1. Applebaum, B., Ishai, Y., Kushilevitz, E.: How to garble arithmetic circuits. In:
Proceedings of the 2011 IEEE 52nd Annual Symposium on Foundations of Com-
puter Science, FOCS 2011, pp. 120–129. IEEE Computer Society (2011)

2. Ball, M., Malkin, T., Rosulek, M.: Garbling gadgets for Boolean and arithmetic
circuits. In: Proceedings of the 23rd Conference on Computer and Communications
Security, ACM CCS, pp. 565–577 (2016)

3. Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in constant
number of rounds of interaction. In: PODC (1989)

4. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols.
In: Proceedings of the Twenty-Second Annual ACM Symposium on Theory of
Computing, STOC 1990, pp. 503–513 (1990)

5. Bellare, M., Hoang, V.T., Keelveedhi, S., Rogaway, P.: Efficient garbling from a
fixed-key blockcipher. In: 2013 IEEE Symposium on Security and Privacy, SP 2013,
Berkeley, CA, USA, 19–22 May 2013, pp. 478–492 (2013)

6. Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: a system for secure multi-party
computation. In: Proceedings of the 15th ACM Conference on Computer and Com-
munications Security, ACM CCS, pp. 257–266 (2008)

7. Ben-Efraim, A., Omri, E.: Concrete efficiency improvements for multiparty gar-
bling with an honest majority. In: Proceedings of the 5th International Conference
on Progress in Cryptology, LATINCRYPT (2017, to appear)

8. Ben-Efraim, A., Lindell, Y., Omri, E.: Optimizing semi-honest secure multiparty
computation for the internet. In: Proceedings of the 23rd ACM Conference on
Computer and Communications Security, ACM CCS, pp. 578–590 (2016)

32 A. Ben-Efraim

9. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for noncrypto-
graphic fault-tolerant distributed computations. In: Proceedings of the 20th ACM
Symposium on the Theory of Computing, pp. 1–10 (1988)

10. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-
preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS,
vol. 5283, pp. 192–206. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-88313-5 13

11. Burkhart, M., Strasser, M., Many, D., Dimitropoulos, X.: SEPIA: privacy-
preserving aggregation of multi-domain network events and statistics. Network
(2010)

12. Choi, S.G., Katz, J., Kumaresan, R., Zhou, H.-S.: On the security of the “Free-
XOR” technique. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 39–53.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9 3

13. Cramer, R., Damg̊ard, I.: Secure distributed linear algebra in a constant number of
rounds. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 119–136. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 7

14. Damg̊ard, I., Geisler, M., Krøigaard, M., Nielsen, J.B.: Asynchronous multiparty
computation: theory and implementation. In: Jarecki, S., Tsudik, G. (eds.) PKC
2009. LNCS, vol. 5443, pp. 160–179. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-00468-1 10

15. Damg̊ard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

16. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6 1

17. Damg̊ard, I., Nielsen, J.B., Nielsen, M., Ranellucci, S.: The tinytable protocol for
2-party secure computation, or: gate-scrambling revisited. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 167–187. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63688-7 6

18. Demmler, D., Schneider, T., Zohner, M.: ABY-A framework for efficient mixed-
protocol secure two-party computation. In: NDSS (2015)

19. Gennaro, R., Rabin, M.O., Rabin, T.: Simplified VSS and fast-track multiparty
computations with applications to threshold cryptography. In: Proceedings of the
Seventeenth Annual ACM Symposium on Principles of Distributed Computing,
PODC 1998, pp. 101–111. ACM (1998)

20. Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications. Cam-
bridge University Press, Cambridge (2009)

21. Gueron, S., Lindell, Y., Nof, A., Pinkas, B.: Fast garbling of circuits under stan-
dard assumptions. In: Proceedings of the 22nd ACM Conference on Computer and
Communications Security, ACM CCS, pp. 567–578 (2015)

22. Hazay, C., Scholl, P., Soria-Vazquez, E.: Low cost constant round MPC combining
BMR and oblivious transfer. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017.
LNCS, vol. 10624, pp. 598–628. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-70694-8 21

23. Keller, M., Orsini, E., Scholl, P.: Mascot: faster malicious arithmetic secure com-
putation with oblivious transfer. In: Proceedings of the 23rd ACM Conference on
Computer and Communications Security (ACM CCS), pp. 830–842 (2016)

https://doi.org/10.1007/978-3-540-88313-5_13
https://doi.org/10.1007/978-3-540-88313-5_13
https://doi.org/10.1007/978-3-642-28914-9_3
https://doi.org/10.1007/3-540-44647-8_7
https://doi.org/10.1007/978-3-642-00468-1_10
https://doi.org/10.1007/978-3-642-00468-1_10
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-319-63688-7_6
https://doi.org/10.1007/978-3-319-70694-8_21
https://doi.org/10.1007/978-3-319-70694-8_21

On Multiparty Garbling of Arithmetic Circuits 33

24. Keller, M., Orsini, E., Rotaru, D., Scholl, P., Soria-Vazquez, E., Vivek, S.: Faster
secure multi-party computation of AES and DES using lookup tables. In: Goll-
mann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 229–
249. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61204-1 12

25. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 486–498.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3 40

26. Kreuter, B., Shelat, A., Shen, C.-H.: Billion-gate secure computation with mali-
cious adversaries. In: USENIX Security Symposium, pp. 285–300 (2012)

27. Lindell, Y., Pinkas, B., Smart, N.P., Yanai, A.: Efficient constant round multi-
party computation combining BMR and SPDZ. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 319–338. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 16

28. Malkin, T., Pastero, V., Shelat, A.: An algebraic approach to garbling. Unpublished
manuscript

29. Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism
design. In: Proceedings of the 1st ACM Conference on Electronic Commerce, EC
1999, pp. 129–139. ACM (1999)

30. Nielsen, J.B., Orlandi, C.: LEGO for two-party secure computation. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 368–386. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00457-5 22

31. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party compu-
tation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
250–267. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 15

32. Wang, X., Ranellucci, S., Katz, J.: Global-scale secure multiparty computation.
In: Proceedings of the 24th ACM Conference on Computer and Communications
Security, ACM CCS, pp. 39–56 (2017)

33. Yao, A.C.: Protocols for secure computations. In: Proceedings of the 23rd IEEE
Symposium on Foundations of Computer Science, pp. 160–164 (1982)

34. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 220–250. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 8

https://doi.org/10.1007/978-3-319-61204-1_12
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-662-48000-7_16
https://doi.org/10.1007/978-3-642-00457-5_22
https://doi.org/10.1007/978-3-642-10366-7_15
https://doi.org/10.1007/978-3-642-10366-7_15
https://doi.org/10.1007/978-3-662-46803-6_8

	On Multiparty Garbling of Arithmetic Circuits
	1 Introduction
	2 Preliminaries
	2.1 Security Model
	2.2 Notation, Conventions, and Security Assumption
	2.3 Multiparty Garbling
	2.4 Multifield-Shared Bits

	3 Multiparty Multiplication Gates
	3.1 Garbler Half Gate
	3.2 Evaluator Half Gate
	3.3 Summing the Two Half Gates

	4 Selector Gates
	4.1 Charateristic 2 to Characteristic p Projection Gates
	4.2 Designated Selector Gate Construction

	5 Protocol for Secure Computation
	6 Correctness and Security
	References

