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Abstract. Truncation collision resistance is a simple non-interactive
complexity assumption that seems very plausible for standard crypto-
graphic hash functions like SHA-3. We describe how this assumption
can be leveraged to obtain standard-model constructions of public-key
cryptosystems that previously seemed to require a programmable ran-
dom oracle. This includes the first constructions of identity-based key
encapsulation mechanisms (ID-KEMs) and digital signatures over bilin-
ear groups with full adaptive security and without random oracles, where
a ciphertext or signature consists of only a single element of a prime-
order group. We also describe a generic construction of ID-KEMs with
full adaptive security from a scheme with very weak security (“selective
and non-adaptive chosen-ID security”), and a similar generic construc-
tion for digital signatures.
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1 Introduction

The random oracle model (ROM) [BR93] is often used to analyze the security
of cryptosystems in a hypothetical setting, where a cryptographic hash function
is modeled as an oracle that implements a truly random function. This provides
a very strong handle for formal security proofs. For example, an adversary in
this model has to explicitly query the oracle to evaluate the hash function,
and it is possible to adaptively “program” the hash function to map certain
input values to specific output values in the security proof. The random oracle
is a hypothetical concept, used only in a security proof, but instantiated in
practice with a standard cryptographic hash function, like SHA-3. This incurs
the additional assumption that this hash function is “secure enough” for the
given application.

Besides the well-known difficulty of instantiating random oracles [CGH98],
the major drawback of this approach is that the random oracle essentially is a
“perfect” hash function, which provides not only standard security properties,
like onewayness and collision resistance, but essentially all imaginable security
properties simultaneously. Therefore a security proof in the random oracle model
c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11273, pp. 221–250, 2018.
https://doi.org/10.1007/978-3-030-03329-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03329-3_8&domain=pdf


222 T. Jager and R. Kurek

does not explain which precise security properties of a hash function are actually
necessary or sufficient for a given application. This is very undesirable, as we
want to understand the required security properties and we want to provide
cryptanalysts with clearly-defined cryptanalytic goals to attack the “security”
of cryptographic hash functions. Therefore the ROM is often seen as only a first
step towards achieving provably-secure constructions in the standard model.

The only known security proofs for many important cryptographic con-
structions seem to inherently require an adaptively programmable random ora-
cle [Nie02,FLR+10,HMS12,FF13]. There are many primitives for which it is
still unknown whether and how they can be instantiated without random ora-
cles, and where no standard-model security proofs based on classical complexity
assumptions on cryptographic hash functions are known so far. Several previ-
ous works isolated specific properties of random oracles, such as programmabil-
ity [HK08,HJK11,FHPS13,CFN15] or extreme lossyness [Zha16], and realized
these with standard-model constructions of special-purpose functions and based
on algebraic public-key techniques, which are relatively inefficient in comparison
to standard cryptographic hash functions. In the instead, we ask:

Which reasonable, simple, and non-interactive complexity assumptions for
standard cryptographic hash functions are sufficient to obtain instantia-
tions of cryptographic tools that currently require the ROM?

Hence, we do not ask for new non-standard hash functions that realize specific
properties of a random oracle, but for reasonable assumptions on standard hash
functions that are sufficient to avoid the random oracle. In this sense, we follow
a line of research initiated by Canetti in 1997 [Can97], and continued by the
UCE approach introduced by Bellare et al. [BHK13] and continued by Farshim
and Mittelbach [FM16].

Truncation collision resistance. Truncation collision resistance (TruCR) basi-
cally demands that there is no algorithm that finds collisions significantly faster
than the standard birthday collision algorithm, even when (short) prefixes of
hash values are considered. More precisely, let H : {0, 1}∗ → {0, 1}k be a cryp-
tographic hash function, and write Hj(x) to denote the first j bits of H(x).
Truncation collision resistance requires that two input values x, x′ with x �= x′

and Hj(x) = Hj(x′) cannot be found for any value of j with significantly better
time-to-success ratio than the standard birthday collision algorithm.

In contrast to the ROM, this assumption provides an explicit and well-defined
goal for the cryptanalysis of hash functions. It is a single simple assumption,
rather than a complex family of UCE assumptions of [BHK13], and based on
simple “symmetric-key techniques” (i.e., standard cryptographic hash functions).

Contributions. We show that truncation collision resistance enables several inter-
esting applications that previously required a random oracle. This includes:

– Identity-based key encapsulation schemes (ID-KEMs) with very short cipher-
texts (only a single group element) and full adaptive security.
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– Short digital signatures over bilinear groups with very short signatures (only
a single group element) and full adaptive security.

– Generic constructions of ID-KEMs and digital signatures with full adaptive
security from ID-KEMs and signatures with extremely weak “selective and
non-adaptive” security.

Due to the relatively large (but polynomially-bounded) security loss of our secu-
rity proofs, the practical value of our constructions is limited, if tightness is taken
into account. However, we see truncation collision resistance as a step towards
avoiding the random oracle for cryptosystems with minimal overhead.

Leveraging truncation collision resistance. In order to sketch how truncation
collision resistance can be used in a security proof, let us consider the case of
short digital signatures as an example. We work in the bilinear group setting,
where we have groups G1,G2,GT of prime order p, and an efficiently computable
bilinear map e : G1 × G2 → GT . Signatures consist of only one element of G1.
A secret key consist of � = log 4(k + 1) elements x1, . . . , x� ∈ Zp, where k is
the security parameter. The corresponding public key consists of one element
of G1 plus 4(k + 1) elements of G2. Thus, public and secret keys are larger
than for the random-oracle-based short signature scheme of Boneh, Lynn, and
Shacham [BLS04], but the signature size is identical.

Computing a signature on a message m works as follows. For a cryptographic
hash function H : {0, 1}∗ → {0, 1}4(k+1), let us write H2j (m) to denote the first
2j bits of H(m). In order to sign a message m, we first compute

G(m) =
�∏

j=1

(xj + H2j (m)) mod p.

Note that one can perform this computation very efficiently, as it involves only
elementary operations over Zp. Finally, the signature for m is

σ = g
1/G(m)
1 ∈ G1,

where g1 ∈ G1 is a generator. Thus, computing a signature requires to perform
only a single exponentiation in G1, plus a small number of additional operations
in Zp.

A signature can be verified by first computing g
G(m)
2 ∈ G2 from the group

elements contained in the public key, which involves O(k) operations in Zp, O(k)
multiplications in G2, and then testing whether

e(σ, g
G(m)
2 ) ?= e(g1, g2).

Note that this test requires only a single application of the bilinear map e to com-
pute e(σ, g

G(m)
2 ), because the term e(g1, g2) is independent of the given message

and signature, and can thus be precomputed.
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In order to sketch how truncation collision resistance is used in the security
proof, note that a signature has the form

σ = g
1/

∏�
j=1(xj+H2j (m))

1 , (1)

which can be viewed as an aggregation of � signatures of the form

σj = g
1/(xj+H2j (m))
1 . (2)

Let us view a signature σ as an �-tuple σ = (σ1, . . . , σ�), where σj is as in (2).
We describe later how these signatures can be aggregated to obtain our actual
scheme. Note that each σj is a Boneh-Boyen signature [BB04c] over the first 2j

bits of H(m). In the security proof, we will choose j such that it simultaneously
achieves the following two properties.

1. The index j is sufficiently small. Let m∗ be the message for which the assumed
adversary A forges a signature. We want that j is small enough, such that we
can guess H2j (m∗) ∈ {0, 1}2j

with reasonable success probability, even before
the security experiment starts, and we are able to prepare signatures for all
other values {0, 1}2j \ H2j (m∗).

2. At the same time, we will make sure that the index j is sufficiently large, such
that it is “sufficiently unlikely” that the adversary finds a collision for H2j .
More precisely, we want that it is “sufficiently unlikely” that the adversary
ever requests a signature for a message mi and then outputs a forgery for
message m∗ with H2j (mi) = H2j (m∗).

The main difficulty of our security analysis lies in the second property, therefore
let us consider this one more closely. Truncation collision resistance basically
guarantees that there is no algorithm that finds collisions with significantly better
time-to-success ratio than the standard birthday collision algorithm, even when
prefixes H2j (x) of hash values H(x) are considered. Of course we will not be able
to choose j such that the probability that A finds a collision is negligibly small
– at least not without sacrificing the first condition, which we cannot afford.
However, we will be able to choose j such that we can argue that the probability
that A finds a collision for H2j is at most ε/2, where ε is the success probability
of A in breaking our signature scheme. This is “sufficiently unlikely”, because
it means: while sometimes A may break the security of the signature scheme
by finding a collision, at least sometimes (more precisely: with probability at
least ε/2) the adversary will also be able to break the signature scheme without
finding a collision. This allows us to reduce the full EUF-CMA-security of our
scheme to the SUF-naCMA-security of the underlying Boneh-Boyen scheme.

Since Boneh-Boyen signatures are not known to be efficiently aggregable in
the sense of [BGLS03,LOS+06], we have to overcome another hurdle to obtain a
short signature scheme. Note that computing a signature that satisfies (1) essen-
tially yields a “polynomial in the exponent” in unknowns x1, . . . , x� of degree �.
In order to verify whether a given value σ indeed satisfies (1) using a bilinear
map, we therefore must to be able to compute group elements of the form
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gx
b1
1 ···xb�

� . (3)

for all possible values of b1, . . . , b� ∈ {0, 1}. Note that these are 2� different
values, but we have � = O(log k) This allows us to include all required values of
the form (3) in the public key, which yields a public key of size O(k).

On the necessity of using � parallel copies. A signature σ in the construction
described above essentially consists of � aggregated copies of signatures σj , j ∈
[�]. The purpose of j is to find a balance the two properties described above,
but the “right” choice of j depends on the given adversary: different adversaries
may require a different value of j to achieve the right balance.

The fact that we essentially run several copies of the scheme in parallel may
appear artificial, but it is the only way that we currently know to guarantee a
suitable value of j for any possible adversary, and thus the only way we know
to prove security against any efficient adversary. There are other schemes that
essentially run many copies of an underlying scheme in parallel “only” to achieve
provable security. This includes, for instance, pseudorandom functions [DS15,
BH15] and digital signatures [BHJ+13,HW09a,BK10].

Comparison to other prefix-guessing techniques. The main difference between
our approach and the prefix-guessing technique of [HW09b,BK10] is that we
essentially guess a short prefix of the hash of the “target message” directly,
exploiting the truncation collision resistance to argue that this hash cannot be
equal to the hash of any chosen-message query. We do not have to know any
chosen-message queries of the adversary to do this, which makes the technique
also applicable to identity-based schemes like ID-KEMs. In contrast, the prefix-
guessing technique of [HW09b,BK10] guesses the shortest prefix of the target
message that is not equal to a prefix of a chosen-message query, which depends
on the chosen-message queries made by the adversary and therefore can only
be used to construct non-adaptively secure signatures (adaptive security is then
achieved in a second step, e.g. using [EGM96]).

2 Truncation Collision-Resistant Hashing

Intuitively, truncation collision resistance (TruCR) means that there exists no
algorithm which finds collisions with significantly better work factor [BR09] than
the trivial birthday collision algorithm. This must hold even if the output of the
hash function is truncated. This notion is strongly related to standard collision
resistance [RS04], but to our best knowledge has not yet been formally defined
or used as a basis for formal security proofs of cryptosystems.

Computational model. We consider algorithms as Turing machines, which operate
on a binary alphabet and write their output bit-by-bit to an output tape, where
each written bit takes one elementary machine operation.1 The running time of

1 We explain below how our results can be extended to models of computation where
an algorithm is able to output multiple bits per elementary machine operation.
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an algorithm is defined as the number of elementary operations performed by
this machine.

Truncation collision resistance. Let H = {H : {0, 1}∗ → {0, 1}α} be a family of
keyed hash functions and let Hi denote the function obtained by evaluating H
and truncating its output to the first i bits. Thus, H1(x) consists of the first bit
of H(x), and Hα(x) = H(x) for all x ∈ {0, 1}∗.

Definition 1. We say that adversary B i-breaks the truncation collision resis-
tance of H, if it runs in time tB and

Pr
H

$←H

[
(x0, . . . , xq)

$← B(H) :
∃u, v s.t.Hi(xu) = Hi(xv) ∧ xu �= xv

]
>

tB(tB − 1)
2i+1

.

The bound tB(tB − 1)/2i+1 in the above definition stems from the birth-
day bound, which states that an adversary which evaluates a random function
with range {0, 1}i at most q times will find a collision with probability at most
q(q − 1)/2i+1. Observe here that an adversary in our computational model must
perform at least q · log2 q computational operations in order to output q pairwise
distinct bit strings. Hence, in order to break TruCR, an algorithm must be better
than the trivial birthday attack algorithm by a factor larger than log2 q.

Constructing hash families from standard hash functions. Let H ′ be any standard
cryptographic hash function, such as SHA-3, for example. We can construct a
hash function family H as

H := {H : H(x) := H ′(r||x), r ∈ {0, 1}k}.

A uniformly random hash function H from the family is chosen by selecting
a uniformly random bit string r ∈ {0, 1}k. H(x) is evaluated by computing
H ′(r||x).

Strength of the TruCR assumption. We view truncation collision resistance as
a very natural security property for cryptographic hash functions. Note that
truncated versions of SHA-256 (to 224 bits) and SHA-512 (to 384 bits) have
been standardized by NIST [Nat15a]. Also the SHA-3 standard [Nat15b] defines
two extendable-output-functions (XOFs), in which the output length can be
adapted to any desired length.

Furthermore, recall that the standard way to determine the size of the out-
put of a hash function in practice is to fix a security parameter k, and to take
a hash function of output size 2k. For example, choosing SHA-256 (which has
256-bit hash values) for k = 128 is considered an adequate choice in practice, if
collision-resistance at “128-bit security level” is required. Note that one essen-
tially assumes here already that there is no significantly better collision attack
than the generic birthday algorithm. TruCR generalizes this assumption to pre-
fixes of the hash function output.

We also note that our applications will require hash functions with output
length 4(k + 1), rather than the “minimal” 2k. For example, for k = 127 we
would use SHA-512.
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In the full version [JK17], we also sketch how TruCR hash functions can be
constructed from standard assumptions.

Choice of computational model and weakening the TruCR assumption. Assume
a computational model where an algorithm is able to output many pairwise
distinct values x0, . . . , xq in a single elementary machine operation, and thus
within a single time unit. Note that such an algorithm would be able to trivially
break the TruCR assumption with a simple birthday attack. To overcome this
technical obstacle, we are working in a computational model where algorithms
are assumed to write their output bit-by-bit to an output tape.

In order to generalize this to a computational model where algorithms are
able to output any constant number of bits in parallel in a single step, we can
weaken Definition 1 by increasing the size of the prefix for which the adversary
has to find a collision. To this end, one would replace the requirement

Hi(xu) = Hi(xv).

in Definition 1 with Hi+c(xu) = Hi+c(xv) for some small constant value c (e.g.,
c ∈ {1, ..., 10}). This also allows to add some additional “safety margin” to the
assumption, if desired, at the cost of an additional constant tightness loss factor
of 2c in the security proofs of our constructions. In the remainder of the paper,
we will work with the original Definition 1, as it simplifies the exposition of our
main results.

Relation to ELFs. From a high-level perspective, truncation collision-resistant
hash functions are related to extremely lossy functions (ELFs), which were intro-
duced by Zhandry [Zha16]. In some applications, TruCR and ELFs can be used
in a very similar way to argue in a security proof, and it seems that some of our
applications can also be achieved by using an ELF instead. ELFs furthermore
allow for some additional applications, like the construction of output-intractable
hash functions or a standard-model instantiation of full-domain hash (the latter
in combination with indistinguishability obfuscation).

The main difference between Zhandry’s work and ours is that [Zha16] gives
new constructions of hash functions based on public-key techniques and the
reasonable exponential hardness assumption of the decisional Diffie-Hellman
problem in algebraic groups. Instead, following [Can97,BHK13,FM16], we use
standard cryptographic hash functions that are already widely-used in practice,
and a similarly reasonable complexity assumption for such functions. This par-
tially resolves the open problem posed in [Zha16] of constructing ELFs using
symmetric-key techniques: while we do not construct full ELFs, we show how
certain potential applications of ELFs can be realized based on standard hash
functions. We furthermore show how TruCR can be used to obtain interesting
new constructions: the first ID-KEM with full adaptive security and very short
ciphertexts (only a single element from a bilinear group), and the first digital
signature scheme with full adaptive security and very short signatures (again,
only single element from a bilinear group). One can also show that ELFs and
TruCR hash functions do not imply each other. Due to space limitations, this is
deferred to the full version of this paper [JK17].



228 T. Jager and R. Kurek

On assuming exponential hardness. Both the work of Zhandry [Zha16] and ours
assume exponential hardness of the underlying computational problems. The
construction of ELFs from [Zha16] assumes the exponential hardness of the
DDH assumption in suitable algebraic groups. This is a strong assumption, but
it appears reasonable, e.g., in certain elliptic curve groups, where the best known
algorithms for solving the DDH problem have exponential complexity. Further-
more, note that this matches the choice of elliptic curve groups in practice, where
typically a group of prime order ≈ 22k is expected to achieve “k-bit security”.
Similarly, we assume that for a cryptographic hash function there exists no sig-
nificantly better collision attack than the generic birthday collision algorithm,
which also has exponential complexity.

Useful technical lemma. To conclude our discussion of TruCR, we state a tech-
nical lemma, which will be useful to leverage truncation collision resistance in
security proofs. Intuitively, the lemma will provide bounds to ensure in our
security proofs that for each adversary with some running time t and success
probability ε there always exists a “good” index j such that H2j is “sufficiently
collision-resistant”, but at the same time the range {0, 1}2j

of H2j is “sufficiently
small”. As usual, all logarithms are to base 2 in the sequel.

Lemma 1. Let t ∈ N and ε ∈ (0, 1] with t/ε < 2k, and j :=
⌊
log log(4t2/ε)

⌋
+1.

Then it holds that

j ∈ {1, . . . , log 4(k + 1)},
4t2

22j+1
<

ε

2
and 22

j ≤
(

4t2

ε

)2

.

Proof. We first show that j ∈ {1, . . . , log 4(k+1)}. Since ε > 0, we trivially have
j ≥ 1. Additionally using that t/ε < 2k, we obtain

j =
⌊
log log(4t2/ε)

⌋
+ 1 ≤ log log(4t2/ε) + 1

< log log(22k+2) + 1 = log 4(k + 1).

To show 4t2/22
j+1 < ε/2, we compute

4t2

2 · 22j =
4t2

2 · 22�log log(4t2/ε)�+1
<

4t2

2 · 22log log(4t2/ε)
=

4t2

2 · (4t2/ε)
=

ε

2
.

Finally, we get 22
j ≤ (

4t2/ε
)2 from

22
j

= 22
�log log(4t2/ε)�+1 ≤ 22·2log log(4t2/ε)

= (4t2/ε)2.

�

3 Identity-Based Key Encapsulation

Recall that the commonly accepted standard security notion for identity-based
key encapsulation (ID-KEM) is adaptive chosen-ID security (IND-ID-CPA), as
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introduced in [BFMLS08]. Here, the adversary in the security experiment may
adaptively choose both the “challenge identity” (i.e., the identity for which it
receives a challenge ciphertext) and the “key-query identities” (i.e., the identities
for which it requests a user secret key). A much weaker common standard secu-
rity notion is selective challenge-ID security (IND-sID-CPA) [CHK03,CHK04],
where the adversary has to announce the challenge identity and at the very
beginning of the security experiment, even before seeing the master public key,
but may adaptively query for user secret keys. In this work, we consider the even
weaker notion with selective challenge-identity and non-adaptive key-queries
(IND-snaID-CPA), where the adversary has to announce both the challenge iden-
tity and all key-query identities at the very beginning of the security experiment,
even before seeing the master public key (see Sect. 3.1 for formal definitions).

As a first application of TruCR, we describe a simple generic construction
of a fully adaptively IND-ID-CPA-secure ID-KEM from any ID-KEM which is
only IND-snaID-CPA-secure. This shows that if TruCR hash functions exist,
then ID-KEMs with full IND-ID-CPA-security are implied by IND-snaID-CPA-
secure ID-KEMs. The latter are usually significantly easier to construct. This
result also introduces a technique for leveraging truncation collision-resistance
in security proofs. The generic conversion is relatively efficient: it increases the
size of public parameters, user secret keys, and ciphertexts by a factor of only
O(log k), where k is the security parameter. The security reduction is non-tight,
but polynomial-time. Previous standard techniques to build an adaptively secure
ID-KEM from a selectively-secure one, e.g. by using admissible [BB04b] or pro-
grammable [HK08,Wat05] hash functions, work only non-generically for certain
schemes with specific properties. The only previously known generic way to turn
an IND-snaID-CPA-secure scheme into a fully IND-ID-CPA-secure one is to use
the programmable ROM.

Then we show how TruCR can be used to obtain the first ID-KEM with full
IND-ID-CPA-security without random oracles and with very short ciphertexts,
where the ciphertext overhead is only a single element from a prime-order group.
The only previously known ID-KEM with such short ciphertexts and adaptive
security is the construction of Boneh and Franklin [BF01], which only has a
security proof in the ROM. The adaptively secure standard-model scheme of
Wee [Wee16] requires significantly larger composite-order groups. Our scheme
is based on the selectively-secure Boneh-Boyen IBE scheme [BB04a] and proven
secure under a q-type assumption, but it shows that adaptively secure ID-KEMs
with such short ciphertext overhead can be constructed without random oracles.

On using complexity leveraging. Achieving adaptive security from selective secu-
rity is sometimes also possible by directly assuming exponential hardness of
breaking the underlying selectively-secure scheme, and then using complexity
leveraging. For instance, in order to convert an IND-sID-CPA-secure ID-KEM
into an IND-ID-CPA-secure one, we can simply guess the challenge identity id∗

chosen by the IND-ID-CPA adversary up front at the beginning of the secu-
rity experiment, and use this to implement a straightforward reduction to the
IND-sID-CPA of the considered scheme. Since the identity space usually has
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exponential size 2k where k is the security parameter, then this incurs an expo-
nential security loss of 2k, which must be compensated by choosing larger param-
eters for the underlying scheme. If the underlying scheme is exponentially secure,
then doubling the size of parameters, such as underlying algebraic groups for
instance, usually suffices in this case.

However, note that this complexity leveraging approach is not useful if one
starts from the weaker IND-snaID-CPA-security, as we do in this work. This is
because here we would have to guess not only the challenge identity id∗, but also
all q identities id1, . . . , idq of key-queries made by the IND-ID-CPA adversary up
front, which yields a security loss of

(
2k

q+1

) ≥ 2kq−log q ≈ 2kq. This cannot be easily
compensated with larger parameters, because even if the underlying scheme is
exponentially secure, then this would still require to increase the parameters by
a factor of about q, which is completely impractical.

Relation to a result by Döttling and Garg. There exists several (semi-)generic
constructions of strongly-secure signatures from signatures with weaker secu-
rity [EGM96,BSW06,SPW07,HW09b,BK10]. All these works have in common
that they can be applied only to signature scheme, but not to identity-based
schemes like ID-KEMs, because they are either probabilistic (e.g., based on
ephemeral one-time signatures or chameleon hash functions), or consider a set-
ting with a non-adaptive adversary, which is forced to output all chosen-message
queries before seeing the public key.

Döttling and Garg [DG17a] describe a generic construction of adaptively
secure IBE from selectively-secure IBE. Their approach is completely different
from ours, as it is based on the techniques introduced in [DG17b]. A ciphertext of
the adaptively secure scheme consists of n + 1 garbled circuits, � corresponding
labels, and � ciphertexts of a specific type of encryption scheme called one-
time signature with encryption (OTSE), plus a few additional values. Here, n is
the bit-length of identities and � denotes the length of encrypted messages. A
ciphertext of the OTSE scheme in turn consist of 2k ciphertexts of the underlying
selectively-secure scheme, where k is the security parameter. The size of public
and secret keys is similarly large.

In contrast, our generic construction is much more direct, and shows how
to construct an adaptively secure scheme that requires only log k copies of the
underlying scheme (with similarly short public and secret keys), but based on an
additional security assumption on the hash function. Our approach also enables
the construction of an adaptively secure scheme where a ciphertext consists only
of a single group element, which currently seems out of reach of the approach of
Döttling and Garg.

Another difference is that they start from the IND-sID-CPA security notion,
while we start from the even weaker IND-snaID-CPA notion. It is unclear whether
their results can be adopted to the same setting.

In summary, the construction of Döttling and Garg has the advantage of
not requiring an additional complexity assumption, but also seems rather far
away from practical applicability and is therefore currently mostly of theoretical
interest. In contrast, our construction requires an additional assumption, but is



Short Digital Signatures and ID-KEMs via Truncation Collision Resistance 231

more direct and incurs significantly less overhead, such that it already yields
very efficient schemes. Thus, both approaches achieve different goals.

3.1 Definitions and Security Notions

Definition 2. An ID-KEM consists of the following four PPT algorithms:

Setup(1k) returns the public parameters PP and the master secret key MSK.
We assume that PP defines (implicitly or explicitly) an identity space I, a
key space K and a ciphertext space C.

KeyGen(MSK, id) returns the user secret key USKid for identity id ∈ I.
Encap(PP, id) returns a tuple (C,K), where K ∈ K is a key and C ∈ C is a

ciphertext encapsulating K with respect to identity id.
Decap(USKid, C, id) returns the decapsulated key K ∈ K or an error symbol ⊥.

For perfect correctness we require that for all k ∈ N, all pairs (PP,MSK) gen-
erated by Setup(1k), all identities id ∈ I, all (K,C) output by Encap(PP, id) and
all USKid generated by KeyGen(MSK, id):

Pr[Decap(USKid, C, id) = K] = 1.

Adaptive security. Let us first recall the standard IND-CPA-security notion for
ID-KEMs from [BFMLS08]. To this end, consider the IND-ID-CPA security exper-
iment depicted in Fig. 1.

IND-snaID-CPAq,A
Π (k) IND-ID-CPAq,A

Π (k)

b
$← {0, 1}

(id∗, id1, ..., idq, st1) ← A1(1k)
(PP, MSK) $← Setup(1k)
USKidi

$← KeyGen(MSK, idi) ∀i ∈ [q]
K0

$← K; (C, K1)
$← Encap(PP, id∗)

b′ ← A2(st1, (USKidi)i∈[q], C, Kb)
Return (b′ == b)

b
$← {0, 1}

(PP, MSK) $← Setup(1k)
(id∗, st) ← AKeyGen(MSK,·)

1 (1k, PP )
K0

$← K; (C, K1)
$← Encap(PP, id∗)

b′ ← AKeyGen(MSK,·)
2 (st, C, Kb)

Return (b′ == b)

Fig. 1. The security experiments for ID-KEMs, executed with scheme
Π = (Setup,KeyGen,Encap,Decap) and adversary A = (A1, A2). The oracle

KeyGen(MSK, id) returns USKid
$← KeyGen(MSK, id) with the restriction that A is

not allowed to query oracle KeyGen(MSK, ·) for the target identity id∗.

Definition 3. We say that adversary A (tA, q, εA)-breaks the IND-ID-CPA secu-
rity of Π, if Pr[IND-ID-CPAq,A

Π (k) = 1] − 1
2 ≥ εA and tA is the running time of

A, including the security experiment.
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Remark 1. Including the running time of the security experiment into tA will
later allow us to simplify our security analysis and the statement of theorems
significantly.

Selective and non-adaptive security. We also define a very weak security notion
for ID-KEMs. Consider the IND-snaID-CPA security experiment depicted in
Fig. 1, where the attacker has to commit to both the challenge-ID id∗ the key-
query identities id1, . . . , idq non-adaptively and even before receiving the master
public key PP .

Definition 4. We say that A (tA, q, εA)-breaks the IND-snaID-CPA security of
Π, if it runs in time tA and

Pr[IND-snaID-CPAq,A
Π (k) = 1] − 1

2
≥ εA.

3.2 From Weak Security to Adaptive Security

Construction. Let H = {H|{0, 1}∗ → {0, 1}4(k+1)} be a family of keyed hash
functions and define

� := log 4(k + 1).

Let Π ′ = (Setup′,KeyGen′,Encap′,Decap′) be an ID-KEM. We construct our
ID-KEM scheme Π = (Setup,KeyGen,Encap,Decap) as follows.

Setup. Compute (PPi,MPKi)
$← Setup′(1k) for all i ∈ {1, . . . , �} and H ← H

and define

PP = (H,PP1, . . . , PP�) and MSK = (MSK1, . . . , MSK�).

and output (PP,MSK).
User Key Generation. To create a private key for the identity id, compute

USKi
$← KeyGen′(MSKi,H2i(id)) for all i ∈ {1, . . . , �}. Define

USKid := (USK1, . . . , USK�)

and output USKid.
Encapsulation. On input PP = (H,PP1, . . . , PP�) and id, compute

(Ki, Ci)
$← Encap′(PPi,H2i(id)) for all i ∈ {1, . . . , �}. Then define K :=⊕�

i=1 Ki, where
⊕

denotes the XOR-operation and output (C,K) =
((C1, ..., C�),K).

Decapsulation. On input C = (C1, ...C�) and USKid, compute

Ki = Decap′(USKi, Ci)

for all i ∈ {1, . . . , �} and output K :=
⊕�

i=1 Ki.
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The correctness of Π follows immediately from the correctness of Π ′.
Security analysis. Recall that we have � := log 4(k+1), and that Lemma 1 shows
that for each adversary A with tA/εA < 2k, there exists an index j ∈ {1, . . . , �}
such that

j =
⌊
log log 4t2A/εA

⌋
+ 1. (4)

Theorem 1. Let A be an adversary that (tA, qA, εA)-breaks the IND-ID-CPA-
security of Π such that tA/εA < 2k and let j be an index such that (4) is satisfied.
Given A and j, we can either construct an adversary Bj that (tB, qB, εB)-breaks
the IND-snaID-CPA-security of Π ′ with

tB = O(t4A/ε2A), qB < 4t4A/ε2A and εB ≥ ε3A
32t4A

or an adversary C that 2j-breaks the truncation collision resistance of H.

Note that the theorem considers adversaries that for a given security parame-
ter k have “work factor” tA/εA below 2k. This deviates slightly from the common
asymptotic definition, where it is required that tA is polynomially-bounded and
εA is non-negligible. Assuming tA/εA < 2k is an alternative way of express-
ing that a cryptosystem is secure with respect to a given security parameter k
that originates from the “concrete security” approach of Bellare and Ristenpart
[BR09]. Note also that the security loss of reduction B is polynomially-bounded,
but relatively large.

Proof. We say that event collj occurs in the IND-ID-CPAq,A
Π (k) security experi-

ment, when A ever queries a user secret key for identity idz such that H2j (idz) =
H2j (id∗), where id∗ is the challenge identity. We distinguish between two cases.

Case 1: Pr [collj ] > εA/2. In this case we are able to construct an adversary C
on the truncation collision resistance of H.

Construction of C. C runs the IND-ID-CPAq,A
Π (k) experiment. Whenever A issues

a query idi to KeyGen, then C additionally outputs idi. When A outputs the chal-
lenge identity id∗, then C outputs id∗. When A terminates, then C terminates,
too.

Running time of C. To bound the running time of C, note that it consists of the
time required to run A, plus the time required to simulate the experiment, plus
the time required to output the queries id1, . . . , idq, id

∗ made by A. Thus, since
tA already includes the running time of the experiment, the total running time
of C is bounded by tC ≤ 2 · tA.

Success probability of C. To analyze the success probability of C, let i := 2j . Note
that the success probability of C is equal to Pr [collj ], and by definition of j and
Lemma 1 we have

Pr [collj ] > εA/2 > 4t2A/2i+1 ≥ 2tA(2tA − 1)/2i+1 ≥ tC(tC − 1)/2i+1

so that indeed C breaks the truncation collision resistance of H.
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Case 2: Pr [collj ] ≤ εA/2. In this case we construct an algorithm Bj on
the IND-snaID-CPA security of Π ′. Before we are able to describe Bj , we
will describe a short sequence of games, which gradually modifies the original
IND-ID-CPAq,A

Π (k) experiment. In the sequel let Gi denote the event that Game i
outputs 1.

Game 0 . This is the original IND-ID-CPAq,A
Π (k) security experiment. By defini-

tion, we have

Pr [G0] =
1
2

+ εA.

Game 1 . Game 1 is identical to Game 0, except that if collj occurs, then Game 1
outputs a random bit and aborts.

Using that G1∧¬collj ⇐⇒ G0∧¬collj and that Pr [collj ] ≤ εA/2, we obtain

Pr [G1] ≥ Pr [G1 ∧ ¬collj ] = Pr [G0 ∧ ¬collj ] ≥ Pr [G0] − Pr [collj ] ≥ 1
2

+
εA
2

.

Game 2 . In Game 2, we additionally guess a string ID∗ $← {0, 1}2j

uniformly
random. We raise event abortchal if adversary A requests a challenge ciphertext
for identity id∗ with H2j (id∗) �= ID∗.

We stress that this game merely defines event abortchal, as a preparation
for the analysis in the following game, but we do not make any changes to the
experiment. Thus, we have

Pr [G2] = Pr [G1] .

Note also that A receives no information about ID∗ and thus the events G2 and
abortchal are independent.

Game 3 . This game is identical to Game 2, except that we output a random bit
and abort the game, if abortchal occurs.

Using that G3 ∧ ¬abortchal ⇐⇒ G2 ∧ ¬abortchal we first get

Pr [G3] = Pr [G3 | abortchal] · (1 − Pr [¬abortchal]) + Pr [G3 ∧ ¬abortchal]
=

1
2

· (1 − Pr [¬abortchal]) + Pr [G2 ∧ ¬abortchal]

=
1
2

· (1 − Pr [¬abortchal]) + Pr [G2 | ¬abortchal] · Pr [¬abortchal]

=
1
2

+ Pr [¬abortchal] ·
(

Pr [G2 | ¬abortchal] − 1
2

)
.

Using now that Pr [G2 | ¬abortchal] = Pr [G2], since G2 and abortchal are inde-
pendent, the bound on Pr [G2] from Game 2, and finally using that our choice
of j and Lemma 1 yield that 22

j ≤ 16t4A/ε2A, we obtain
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Pr [G3] =
1
2

+ Pr [¬abortchal] ·
(

Pr [G2 | ¬abortchal] − 1
2

)

=
1
2

+ Pr [¬abortchal] ·
(

Pr [G2] − 1
2

)

≥ 1
2

+
1

22j · εA
2

≥ 1
2

+
ε3A

32t4A
.

Construction of Bj . Now we are ready to construct Bj , which simulates Game 3
as follows.

Initialization. At the beginning of the experiment, Bj samples a random bit
string ID∗ ← {0, 1}2j

and defines 22
j −1 identities ID1, . . . , ID22

j −1, consisting
of all values in {0, 1}2j \ {ID∗}. It outputs these values to the IND-snaID-CPA
experiment, which then generates and responds with a key pair (PP ′,MSK ′) $←
Setup′(1k), user secret keys USK ′

IDs
, s ∈ {1, . . . , 22

j −1}, for the requested iden-
tities, and a challenge ciphertext (C ′,K ′), where (C ′,K) $← Encap′(PP ′, ID∗)
and either K ′ = K or K ′ is uniformly random.

Simulation of the public key. In order to simulate the public key, Bj generates
H ← H and � − 1 additional key pairs by running (PPi,MPKi)

$← Setup′ for
all i ∈ {1, . . . , �} \ {j}. Then it sets

PP = (H,PP1, ..., PPj−1, PP ′, PPj+1, ..., PPl).

Finally, Bj outputs PP to A. Note that this is a correctly distributed master
public key for scheme Π.

Simulation of key queries. Note that the two abort conditions introduced in
Games 1 and 3 together imply in particular that Bj aborts and outputs a random
bit, if A ever issues a key query for identity idz with H2j (idz) = ID∗. This is
because in this case either it holds that H2j (idz) = ID∗ �= H2j (id∗), in which
case abortchal occurs, or it holds that H2j (idz) = ID∗ = H2j (id∗), which means
that collj occurs. Thus, we only have to consider the case H2j (idz) �= ID∗ in
the sequel. Note also that Bj knows MSKi for all i �= j and user secret keys
for USK ′

IDs
for all IDs ∈ {0, 1}2j \ {ID∗}. Therefore it is able to compute and

return valid user secret keys to A for all identities idz with H2j (idz) �= ID∗.
Whenever A requests a user secret key for an identity idz ∈ {0, 1}∗, Bj

proceeds as follows. If there is no abort, then Bj computes

(USKi)
$← KeyGen′(MSKi,H2i(idz))

for all i ∈ {1, . . . , �} \ {j}. Recall that Bj has requested user secret keys for all
values H2j (idz) ∈ {0, 1}2j

with H2j (idz) �= ID∗, in particular for IDs ∈ {0, 1}2j

such that IDs = H2j (idz). Therefore it is able to efficiently determine and output

USKidz
= (USK1, ..., USKj−1, USK ′

IDs
, USKj+1, ..., USKl).
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Computing the challenge ciphertext. Recall that we only have to consider the
case H2j (id∗) = ID∗, as otherwise Bj outputs a random bit and aborts. Thus,
when adversary A outputs a challenge identity id∗ with H2j (id∗) = ID∗, then
Bj computes (Ci,Ki)

$← Encap′(PPi,H2i(id∗)) for all i ∈ {1, . . . , �} \ {j}, and
then

K :=
�⊕

i=1,i �=j

Ki ⊕ K ′ and C := (C1, . . . , Cj−1, C
′, Cj+1, . . . , C�),

where (C ′,K ′) is the tuple received from the IND-snaID-CPA-experiment. Bj

returns (C,K) to A and outputs whatever A outputs. Note that if K ′ is a “real”
key, then so is K, while if K ′ is “random”, then so is K.

Success probability of Bj . Since Bj provides a perfect simulation of Game 3 for
A, we have

Pr
[
IND-snaID-CPAq,B

Π′ (k) = 1
]

= Pr [G3] ≥ 1/2 +
ε3A

32t4A
.

Running time of Bj . The running time tB of Bj consists of the time needed
to execute A, the time required to simulate the IND-ID-CPA security experi-
ment, and the time required to request the 22

j − 1 user secret keys from the
IND-snaID-CPA experiment, plus a minor number of additional operations. Mak-
ing use of Lemma 1, we get

tB ≈ tA + O(
22

j − 1
) ≈ tA + O

(
t4A
ε2A

)
= O

(
t4A
ε2A

)
.

Remark 2. We remark also that tB ≈ tA if we instead consider the generic
construction of an IND-ID-CPA-secure ID-KEM from an IND-sID-CPA-secure one.
This is because in this case the reduction Bj does not have to issue all KeyGen
queries at the beginning of the experiment. Instead, it can make all queries “on
demand”, whenever A issues such a query. Their number is identical to the
number q of KeyGen made by A, so that we get a reduction which runs in strict
polynomial time.

Note also that Bj issues qB = 22
j − 1 < 4t4A/ε2A user key queries. This

completes the proof of Theorem 1.
�

3.3 Adaptively Secure ID-KEM with Short Ciphertexts

Now we show that it is possible to construct an ID-KEM with full adaptive
security, where a ciphertext consists of only a single element of a bilinear group.
A comparison to previous IBE-schemes, viewed as ID-KEMs, is given in Fig. 2.
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Scheme |G| |pk| |C| Security Assumption ROM Security Loss
[BF01] Prime 2 1 Full BDDH Yes O(qkey)
[BB04a] Prime 4 2 Selective strong q-DH No O(1)
[Wat05] Prime n + 3 2 Full BDDH No Õ(t2 + (n · qkey · ε−1)2)
[Wee16] Comp. 3 1 Full Dec. Subgrp. No O(qkey)
Ours Prime O(k) 1 Full q-DH No O(t7A/ε4A)

Fig. 2. Comparison of ID-based encryption schemes with short ciphertexts. The column
|G| refers to the order of the underlying group (prime or composite), |pk| is the number
of group elements in public keys (common descriptions of groups and hash functions not
included), where n is the length of identities and k the security parameter. All public
keys include one element from the target group of the pairing, except for [BF01]. |C| is
the number of group elements in the ciphertexts when viewed as a KEM. “Full” security
means IND-ID-CPA security as defined below, “selective” security is from [BB04a]. The
remaining columns state the hardness assumption in the security proof, whether the
Random Oracle Model is used, and the security loss of the reduction, where qkey is
the number of identity key queries, tA and εA the running time and advantage of the
adversary, and the loss is the value L that satisfies tB/εB = L · tA/εA, where tB and εB
are the success probability and running time of the reduction.

Building Block: Simplified Boneh-Boyen ID-KEM. The following ID-
KEM is based on the IBE scheme of Boneh and Boyen [BB04a]. Let G1,G2,GT

be groups of prime order p with generators g1, g2, gT , respectively, and let e :
G1 × G2 → GT be an efficiently computable pairing. We will use the implicit
notation of Escala et al. [EHK+13], and write [x]s shorthand for gx

s for all
s ∈ {1, 2, T}.

Simple ID-KEM based on the Boneh-Boyen IBE scheme. We use the following
scheme as a building block for our adaptively secure ID-KEM.

Setup. Choose two random elements x, y
$← Zp. Then define ν = e([1]1, [y]2).

The public parameters PP and the master secret key MSK are defined as
PP = ([1]1, [x]1, ν) and MSK = (x, y).

Key Generation. To create a private key for identity id ∈ Zp, compute and
return USKid = [y/(id + x)]2.

Encapsulation. To encapsulate a key K ∈ GT under public key id ∈ Zp, pick
a random r ∈ Zp and output (C,K) = ([id + x]r1, ν

r) ∈ G1 × GT .
Decapsulation. To decapsulate C using the private key USKid, compute and

output e(C,USKid).

Proving security of the simplified Boneh Boyen IBE. Consider the following
experiment q-BDDHI(1k), which was generalized to asymmetric bilinear groups
in [BB11]. With regard to the security parameter k, the challenger generates an
asymmetric pairing group and chooses x ∈ Zp uniformly at random. Then it
chooses T

$← GT and defines



238 T. Jager and R. Kurek

T0 := ([1]1, [x]1, [1]2, [x]2, . . . [xq]2, T ),

T1 := ([1]1, [x]1, [1]2, [x]2, . . . [xq]2, e([1]1, [1]2)
1
x ).

Finally, it flips a fair coin β
$← {0, 1} and outputs Tβ to the adversary. The task

of adversary B is to determine β.

Definition 5. We say that adversary B (t, ε)-solves the q-BDDHI problem, if it
runs in time t and

|Pr [B(T0)] − Pr [B(T1)]| ≥ ε.

It is straightforward to prove the IND-snaID-CPA-security of our simplified
Boneh-Boyen scheme using standard techniques from [BB04a,BB11], therefore
we state the following theorem without proof.

Theorem 2. From an adversary A that (tA, qs, εA)-breaks the IND-snaID-CPA-
security of the simplified Boneh-Boyen ID-KEM one can construct an algorithm
B that (tB, εB)-solves the q-BDDHI problem with q = qs + 1 such that

tB ≈ tA and εB = εA.

Adaptively Secure Construction. Encoding elements of {0, 1}4(k+1) as Zp-
elements. In order to simplify the notation and description of the construction
and its security analysis, we will henceforth make the implicit assumption that
elements of {0, 1}4(k+1) can be injectively encoded as elements of Zp. This is
of course easily possible by choosing p large enough, such that p > 4(k + 1).
However, this would yield an unnaturally large group order (a typical choice in
practice is 2k). In practice, one would map elements of {0, 1}4(k+1) to elements
in Zp by using a collision-resistant hash function h : {0, 1}4(k+1) → Zp, which for
our purposes is as good as an injective map. However, to simplify the description
of our scheme and its security proof we do not make h explicit in the sequel.

The construction. In the sequel, let H = {H|{0, 1}∗ → {0, 1}4(k+1)} be a family
of keyed hash functions and define � := log 4(k + 1). We construct ID-KEM
scheme Π = (Setup,KeyGen,Encap,Decap) as follows.

Setup. Sample random generators [1]1 ∈ G1, [1]2 ∈ G2, elements y, x1, . . . , x� ∈
Zp and a hash function H ← H and define the master secret key MSK as

MSK = (y, x1, . . . , x�) ∈ Z
�+1
p .

Define bi(n) for positive integers i as the function that, on input of integer
n ≥ 0, outputs the i-th bit of the binary representation of n. Let F (MSK,n)
be the function that on input of MSK = (x1, . . . , x�) and an integer n ≥ 0
outputs

F (MSK,n) =
�∏

i=1

x
bi(n)
i .
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The public parameters are defined as

PP = (H, [F (MSK, 0)]1, . . . , [F (MSK, 2� − 1]1, [1]2, ν),

where ν = e([1]1, [y]2).
Key Generation. The private key for identity id is computed as

USKid = [y/u(id)]2,

where

u(id) =
�∏

i=1

(H2i(id) + xi) ∈ Zp. (5)

Encapsulation. Observe that

u(id) =
�∏

i=1

(H2i(id) + xi) = d0 +
2�−1∑

n=1

(
dn

�∏

i=1

x
bi(n)
i

)
,

where the constants di are efficiently computable from H(id).
To encapsulate a key, first [u(id)]1 is computed. Note that this is possible
from H(id) and the values F (MSK,n) contained in the public parameters
(in particular, without knowing x1, . . . , x� explicitly), by computing

[u(id)]1 =

⎡

⎣d0 +
2�−1∑

n=1

(
dn

�∏

i=1

x
bi(n)
i

)
⎤

⎦

1

= [d0]1 ·
2�−1∏

n=1

[F (MSK,n)]dn
1 .

Finally, the ciphertext and key are computed as

(C,K) = ([u(id)]r1, ν
r) ∈ G

2
T

for uniformly random r
$← Zp.

Decapsulation. To recover K from a ciphertext C for identity id and a match-
ing user secret key [y/(u(id))]2, compute and output e(C,USKid).

Correctness. The correctness follows from

e(C,USKid) = e([u(id)]r1, [y/u(id)]2) = e([1]1, [y]2)r = νr.

Note that the scheme described above has extremely short ciphertexts, con-
sisting of only one element of G1, and also very efficient decapsulation, which
takes only a single pairing evaluation.

Theorem 3. Let A be an adversary that (tA, qA, εA)-breaks the IND-ID-CPA-
security of Π such that tA/εA < 2k and let j be an index such that (4) is satisfied.
Given A and j, we can either construct an adversary Bj that (tB, qB, εB)-breaks
the IND-snaID-CPA-security of Π ′ with

tB = O(t4A/ε2A), qB < 4t4A/ε2A and εB ≥ ε3A
32t4A

or an adversary C that 2j-breaks the truncation collision resistance of H.
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Proof. The proof of Theorem 3 is almost identical to the proof of Theorem 1.
The main difference is that we additionally use the algebraic structure of the
underlying Boneh-Boyen ID-KEM to achieve short ciphertexts.

Setup and initial input. Just like in the proof of Theorem 1, B picks a random
value ID∗ $← {0, 1}2j

and requests a challenge ciphertext for identity ID∗ and
user secret keys for all 22

j − 1 identities in the set {0, 1}2j \ {}. In response, B
receives public parameters PP ′ = ([1]1, [xj ]1, ν) from the IND-snaID-CPA experi-
ment, as well as user secret keys [y/(ID + xj)]2 for all ID �= ID∗ and a challenge
ciphertext (C ′,K ′).

Additionally, B chooses �−1 integers xi for all i ∈ {1, . . . , �}\{j} and a hash
function H ← H.

Simulation of the public parameters. Note that B is not able to compute the
function F ((x1, . . . , x�), n) =

∏�
i=1 x

bi(n)
i for all values of n efficiently, since it

does not know xj . However, B is able to efficiently compute

[F ((x1, . . . , x�), n)]1 =

[
�∏

i=1

x
bi(n)
i

]

1

for all values of n from [xj ]1 and the xi, i ∈ {1, . . . , �} \ {j}. This is sufficient to
properly simulate a public key of scheme Π.

Simulation of user secret keys. Using the user secret keys received from the
IND-snaID-CPA challenger, B is able to answer all secret key queries for all iden-
tities id with H2j (id) �= ID∗. To this end, it computes

USKid =

[
y/

�∏

i=1

(H2i(id) + xi)

]

2

= [y/(H2j (id) + xj)]
1/uj(id)
2 ,

where

uj(id) =
�∏

i=1,i �=j

(H2i(id) + xi)).

Creating the challenge ciphertext. B creates the challenge ciphertext as follows.
If A has selected a target identity id∗ with H2j (id∗) = ID∗, then B computes
C := (C ′)uj(id

∗) and outputs (C,K). Note that

C = [(H2j (id∗) + xj)]r
∏�

i=1,i�=j(H2i (id
∗)+xi) =

[
�∏

i=1

(H2i(id∗) + xi)

]r

1

such that C is a correctly distributed challenge ciphertext, and K is either “real”
or “random”, depending on the choice of the IND-snaID-CPA security experiment.

Analysis. The analysis of the success probability of B is identical to the analysis
from the proof of Theorem 1, and yields identical bounds. �
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4 Digital Signatures

Recall that the commonly accepted security notion for digital signatures is exis-
tential unforgeability under adaptive chosen-message attacks, as introduced by
Goldwasser, Micali, and Rivest [GMR88] (EUF-CMA, see Sect. 4.1 for formal
definitions). There are several different ways to turn signatures schemes with
weaker security properties into ones with full EUF-CMA-security, even with-
out random oracles. These are either based on one-time signatures [EGM96]
or chameleon hash functions [KR00,BSW06,SPW07], and work generically for
any signature scheme. However, all these generic constructions start from an
existentially-unforgeable scheme, where the adversary has to select the “chosen-
message queries”, for which it requests a signature, even before seeing the public
key, but is able to choose the “target-message” for which it forges a signatures
adaptively (EUF-naCMA-security).

We consider the even weaker notion of selective unforgeability under non-
adaptive chosen-message attacks (SUF-naCMA) [HW09b,BK10], where the
adversary has to select both the “target-message” for which it forges a signatures
and the chosen-message queries for which it requests a signature already before
seeing the public key. We describe a generic construction of EUF-CMA-secure
digital signatures from signatures that are only SUF-naCMA-secure. This con-
struction is also relatively efficient: it increases the size of public keys, secret keys,
and signatures by a factor of only O(log k), where k is the security parameter.
Again, the security reduction is non-tight, but polynomial-time.

4.1 Definitions and Security Notions

Definition 6. A digital signature scheme consists of three PPT algorithms with
the following syntax.

Gen(1k) outputs a key pair (pk, sk). We assume that pk implicitly or explicitly
defines a message space M.

Sign(sk,m) on input of sk and message m ∈ M outputs a signature σ.
Vfy(pk,m, σ) outputs 1 if σ is a valid signature for m with respect to pk and

else 0.

Adaptive security. We recall the standard security notion existential unforgeabil-
ity under adaptive chosen message attack (EUF-CMA) depicted in Fig. 3. Note
that the adversary may choose the challenge-message m∗ after it has received
the public key pk and may adaptively query signatures for messages mi �= m∗.

Definition 7. We say that adversary A (tA, q, εA)-breaks the EUF-CMA security
of Σ = (Gen,Sign,Vfy), if Pr[EUF-CMAq,A

Σ (k) = 1] ≥ εA and tA is the running
time of A including the EUF-CMA security experiment.

Selective and non-adaptive security. We also define a very weak security notion
for digital signature schemes. Consider the SUF-naCMA security experiment
depicted in Fig. 3, where the attacker has to commit to both the challenge-
message m∗ the signing-query messages m1, . . . , mq non-adaptively and even
before receiving the public key pk.
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SUF-naCMAq,A
Σ (k) EUF-CMAq,A

Σ (k)

(m∗, m1, ..., mq, st1) ← A1(1k)
(pk, sk) $← Gen(1k)
σi

$← Sign(sk, mi) ∀i ∈ [q]
(m∗, σ∗) ← A2(st1, (σi)i∈[q])
If (∃i ∈ [q] : m∗ == mi) return 0
else return Vfy(pk, m∗, σ∗)

(pk, sk) $← Gen(1k)
(m∗, σ∗) ← ASign(sk,·)(1k, pk)
If (∃i ∈ [q] : m∗ == mi) return 0
else return Vfy(pk, m∗, σ∗)

Fig. 3. The security experiments for digital signature schemes, executed with scheme
Σ = (Gen, Sign,Vfy) and adversary A = (A1, A2). The oracle Sign(sk, m) returns

σ
$← Sign(sk, m) with the restriction that A is not allowed to query oracle Sign(sk, m∗)

for m∗.

Definition 8. We say that A (tA, q, εA)-breaks the SUF-naCMA security of Σ,
if it runs in time tA and Pr[SUF-naCMAq,A

Σ (k) = 1] ≥ εA.

4.2 From Weak Security to Adaptive Security

Construction. Let H = {H|{0, 1}∗ → {0, 1}4(k+1)} be a family of keyed hash
functions and Σ′ = (Gen′,Sign′,Vfy′) a digital signature scheme. In the sequel, let
� := log 4(k +1). We construct our digital signature scheme Σ = (Gen,Sign,Vfy)
as follows.

– Key Generation. Algorithm Gen computes (pki, ski)
$← Gen′(1k) for all

i ∈ {1, . . . , �} and H ← H, defines

pk := (H, pk1, . . . , pk�) and sk = (sk1, . . . , sk�)

and outputs (pk, sk).
– Signing. To sign a message m, compute σi

$← Sign′(ski,H2i(m)) for all
i ∈ {1, . . . , �}, and return the signature σ = (σ1, . . . , σ�).

– Verification. To verify a signature σ = (σ1, . . . , σ�), return 1 if and only if
Vfy′(pki,H2i(m)) = 1 for all i ∈ [�].

Theorem 4. Let A be an adversary that (tA, qA, εA)-breaks the EUF-CMA-
security of Σ = (Gen,Sign,Vfy) such that tA/εA < 2k and let j be an index
such that (4) is satisfied. Given A and j, we can either construct an adversary
Bj that (tB, qB, εB)-breaks the SUF-naCMA-security of Σ′ = (Gen′,Sign′,Vfy′)
with

tB = O(t4A/ε2A), qB < 4t4A/ε2A and εB ≥ ε3A
32t4A

or an adversary C that 2j- breaks the truncation collision resistance of H.
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The proof of Theorem 4 is nearly identical to the proof of Theorem 1, except
that some arguments and computing some bounds works slightly differently,
because in the ID-KEM setting from Theorem 1 we are considering an “indis-
tinguishability” security experiment, while in the digital signature setting of
Theorem 4 we consider a “search problem”. The full proof is contained in the
full version [JK17].

4.3 Very Short Signatures with Adaptive Security

The generic construction of adaptively secure digital signature schemes described
in Sect. 4.2 increases the size of keys and signatures by a factor of O(log k). Again
it is possible to obtain a more efficient scheme based on specific, number-theoretic
constructions. In this section we describe a variant of the Boneh-Boyen signature
scheme [BB04c] that applies a truncation collision resistant hash function to
achieve adaptive security without random oracles, and where a signature consists
of only a single group element. A comparison to previous short signature schemes
is given in Fig. 4.

Scheme |G| |pk| |σ| Security Assumption ROM Security Loss
[BLS04] Prime 2 1 Full CDH Yes O(qSig)
[BB04c] Prime 5 2 Selective strong q-DH No O(1)
[Wat05] Prime n + 3 2 Full CDH No O(n · qSig)
[HJK11] Prime n + k + 3 2 Full q-DH No O(n2 · qSig)
[BHJ+13] Prime O(log k) 3 Full CDH No O((ε−1 · qm+1

Sig )c/m)
[Wee16] Comp. 3 1 Full Dec. Subgrp. No O(qSig)
Ours Prime O(k) 1 Full q-DH No O(t7A/ε4A)

Fig. 4. Comparison of short signature schemes, instantiated with asymmetric pairings.
The column |G| refers to the order of the underlying groups (prime or composite), |pk|
is the number of group elements in public keys, where common descriptions of groups
and hash functions are not included, n is the length of messages, and k the security
parameter. All public keys include one element from the target group of the pairing,
except for [BLS04,HJK11,BHJ+13]. The column |σ| refers to the number of group
elements in the signature. “Full” security means EUF-CMA security as defined below,
“selective” security is from [BB04c]. The remaining columns state the assumption the
proof is based on, whether the Random Oracle Model is used, and the security loss of
the reduction, where qSig is the number of signing queries, tA and εA the running time
and advantage of the adversary, and the loss is computed as explained in Fig. 2. The
values m and c are system parameters influencing keys and signature sizes. Note that
[HJK11] present also other trade-offs with larger public keys consisting and shorter
signatures, but always strictly larger than one group element.

Building Block: Simplified Boneh-Boyen Signatures. Again we let G1,
G2, GT be groups of prime order p with generators g1, g2, gT , respectively,
and e : G1 × G2 → GT be an efficiently computable pairing. Recall that
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write [x]s shorthand for gx
s for all s ∈ {1, 2, T}, following [EHK+13]. The

Boneh-Boyen signature scheme [BB04c] consists of the following algorithms
Σ′ = (Gen′,Sign′,Vfy′).

Key generation. Algorithm Gen′(k) chooses a random integer x
$← Zp and

defines ν = e([1]1, [1]2). The public keys and the secret key are defined as
pk := ([1]1, [x]1, [1]2, ν) and sk := x.

Signing. Algorithm Sign′ receives as input sk = x and message m ∈ Zp, and
computes and returns σ := [1/(x + m)]2 ∈ G2.

Verification. Algorithm Vfy′ takes as input a public key pk = ([1]1, [x]1, ν) ∈
G

2
1 × G2, message m ∈ Zp, and σ ∈ G2. It returns 1 iff e ([x]1 · [1]m1 , σ) = ν.

Security. The original paper by Boneh and Boyen [BB04c] proves security of
this scheme in the sense of existential unforgeability under non-adaptive chosen-
message attacks (EUF-naCMA), under the strong (or “flexible”) q-Diffie-Hellman
assumption. We will require only a weaker notion of security, in the sense of selec-
tive unforgeability against non-adaptive chosen message attacks (SUF-naCMA),
which is achievable under a weaker, “non-flexible” q-type assumption.

Definition 9. We say that adversary A (εA, tA)-breaks the q-Diffie-Hellman
assumption in group G of order p, if it runs in time tA and

Pr
[
x

$← Zp;h
$← A([1], [x], [x2], . . . , [xq]) : h = [1/x]

]
≥ εA.

The above assumption is also known as the q-Diffie-Hellman Inversion assump-
tion [ZSS04]. By using the “generator-shifting” technique of [HJK11], one can
prove the following theorem along the lines of the original proof of Boneh and
Boyen [BB04c].

Theorem 5. From an adversary A that (tA, qs, εA)-breaks the SUF-naCMA-
security of Σ′ chosen-message queries, one can construct an adversary B that
(tB, εB)-breaks the q-Diffie-Hellman assumption with q = qs + 1, tB ≈ tA and
εB = εA.

Encoding elements of {0, 1}4(k+1) as Zp-elements. In order to simplify the nota-
tion and description of the construction and its security analysis, we will hence-
forth make the implicit assumption that elements of {0, 1}4(k+1) can be injec-
tively encoded as elements in Zp (see also the corresponding, more detailed
comment in Sect. 3.3).

Construction. Let H = {H|{0, 1}∗ → {0, 1}4(k+1)} be a family of keyed
hash functions and � := log 4(k + 1). We construct signature scheme Σ =
(Gen,Sign,Vfy) as follows.

Key generation. Algorithm Gen(k) chooses � random integers x1, . . . , x�
$← Zp

and H ← H. It defines the secret key as sk := (x1, . . . , x�) ∈ Z
�
p. Note that

sk contains only � = log 4(k + 1) elements of Zp.



Short Digital Signatures and ID-KEMs via Truncation Collision Resistance 245

The public key is computed as follows. For a positive integer i ≥ 1, let bi(n)
be the function that, on input of integer n ≥ 0, outputs the i-th bit of the
(canonical) binary representation of n. Let F (sk, n) be the function that, on
input of sk = (x1, . . . , x�) and integer n ≥ 0, outputs

F (sk, n) :=
�∏

i=1

x
bi(n)
i .

The public key is defined as pk := (H, [F (sk, 0)]1, . . . , [F (sk, 2� −1)]1, [1]2, ν),
where ν = e([1]1, [1]2).

Signing. Algorithm Sign receives as input sk = (x1, . . . , x�) and message m ∈
{0, 1}∗. Let u(m) be the function

u(m) :=
�∏

i=1

(xi + H2i(m)) ∈ Zp, (6)

where bit strings H2i(m) are interpreted canonically as integers in Zp. Recall
here that by our assumption on p this is injective for all i ∈ {1, . . . , �}.

The signing algorithm computes and returns σ := [1/u(m)]2 ∈ G1.

Note that computing signatures is extremely efficient. It involves only the
computation of 1/u(m) ∈ Zp, which can be performed over the integers mod-
ulo p, where p is the group order, and then a single exponentiation in G1 to
compute g

1/u(m)
1 ∈ G1.

Verification. Algorithm Vfy takes as input a public key

pk = ([F (sk, 0)]1, . . . , [F (sk, 2� − 1)]1, [1]2, ν),

message m ∈ {0, 1}∗ and σ ∈ G2. Note here that [F (sk, 0)]1 = [1]1. The
algorithm returns 1 if and only if

e ([u(m)]1, σ) = ν. (7)

Here [u(m)]1 is computed as follows. Viewing u(m) =
∏�

i=1(xi + H2i(m)) as
a polynomial in � unknowns x1, . . . , x�, we can expand the product from (6)
to obtain the equation

u(m) =
�∏

i=1

(xi + H2i(m)) = d0 +
2�−1∑

n=1

(
dn

�∏

i=1

x
bi(n)
i

)
(8)

for integers di, which are efficiently computable from H(m). This yields the
equation

[u(m)]1 =

⎡

⎣d0 +
2�−1∑

n=1

(
dn

�∏

i=1

x
bi(n)
i

)⎤

⎦

2

= [d0]2 ·
2�−1∏

n=0

[F (sk, n)]dn
2 . (9)

Therefore the verification algorithms proceeds as follows:
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1. From H(m) it computes the integers di as in (8).
2. Then it computes [u(m)]1 as in (9) from the group elements [F (sk, n)]1

contained in the public key.
3. Finally, it outputs 1 if and only if Eq. (7) holds.

Theorem 6. Let A be an adversary that (tA, qA, εA)-breaks the EUF-CMA-
security of Σ such that tA/εA < 2k and let j be an integer that such that
(4) is satisfied. Given A and j we can either construct an adversary Bj

that (tB, qB, εB)-breaks the SUF-naCMA security of the Boneh-Boyen signature
scheme Σ′ = (Gen′,Sign′,Vfy′) with

tB = O(t4A/ε2A), qB < 4t4A/ε2A and εB ≥ ε3A
32t4A

or and adversary C that 2j-breaks the truncation collision resistance of H.

The proof of Theorem 6 is almost identical to the proofs of Theorems 3 and 4.
It is contained in the full version [JK17].

5 Conclusion

Truncation collision resistance enables very efficient generic constructions of
adaptively-secure cryptographic primitives from building blocks with very weak
selective and non-adaptive security. We showed this for identity-based encryp-
tion and digital signatures, but expect further useful applications to other cryp-
tographic primitives.

Two particularly interesting applications are the first standard-model con-
structions of an ID-KEM where a ciphertext consist of only a single group ele-
ment of a prime-order group, and a digital signature scheme where signatures
consist of only a single prime-order group element. Both achieve full adaptive
security. Previously, it was not clear that this is possible without random oracles
and based on simple, non-interactive hardness assumptions.

Acknowledgements. We would like to thank all anonymous reviewers for their help-
ful comments.
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