
A Framework for Achieving KDM-CCA
Secure Public-Key Encryption

Fuyuki Kitagawa(B) and Keisuke Tanaka(B)

Tokyo Institute of Technology, Tokyo, Japan
{kitagaw1,keisuke}@is.titech.ac.jp

Abstract. We propose a framework for achieving a public-key encryp-
tion (PKE) scheme that satisfies key dependent message security against
chosen ciphertext attacks (KDM-CCA security) based on projective hash
function. Our framework can be instantiated under the decisional diffie-
hellman (DDH), quadratic residuosity (QR), and decisional composite
residuosity (DCR) assumptions. The constructed schemes are KDM-
CCA secure with respect to affine functions and compatible with the
amplification method shown by Applebaum (EUROCRYPT 2011). Thus,
they lead to PKE schemes satisfying KDM-CCA security for all func-
tions computable by a-priori bounded size circuits. They are the first
PKE schemes satisfying such a security notion in the standard model
using neither non-interactive zero knowledge proof nor bilinear pairing.
The above framework based on projective hash function captures only
KDM-CCA security in the single user setting. However, we can prove the
KDM-CCA security in the multi user setting of our concrete instantia-
tions by using their algebraic structures explicitly. Especially, we prove
that our DDH based scheme satisfies KDM-CCA security in the multi
user setting with the same parameter setting as in the single user setting.

Keywords: Key dependent message security
Chosen ciphertext security · Projective hash function

1 Introduction

1.1 Backgrounds

Key dependent message (KDM) security, introduced by Black, Rogaway and
Shrimpton [3], guarantees confidentiality of communication even if an adversary
can get a ciphertext of secret keys. KDM security is useful for many practical
applications including anonymous credential systems [7] and hard disk encryp-
tion systems (e.g., BitLocker [4]). KDM security is defined with respect to a
function family F . Let n denote the number of keys and sk = (sk1, · · · , skn)
be secret keys. Informally, a PKE scheme is said to be F-KDM secure if confi-
dentiality of messages is protected even when an adversary can see a ciphertext
of f(sk) under the k-th public key for any f ∈ F and k ∈ {1, · · · , n}. In this

c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11273, pp. 127–157, 2018.
https://doi.org/10.1007/978-3-030-03329-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03329-3_5&domain=pdf

128 F. Kitagawa and K. Tanaka

paper, we focus on constructing PKE schemes that satisfy KDM security against
chosen ciphertext attacks, namely KDM-CCA security in the standard model.

Camenisch, Chandran and Shoup [6] proposed the first KDM-CCA secure
PKE based on the Naor-Yung paradigm [16]. They showed that for any func-
tion class F , F-KDM-CPA secure PKE can be transformed into F-KDM-CCA
secure one assuming non-interactive zero knowledge (NIZK) proof. They also
showed a concrete instantiation based on the decisional diffie-hellman (DDH)
assumption on a bilinear pairing. Subsequently, Hofheinz [10] showed more effi-
cient KDM-CCA secure PKE. His scheme is circular secure (KDM-CCA secure
with respect to selection functions) relying on both the DDH and decisional
composite residuosity (DCR) assumptions on a bilinear pairing.

The first KDM-CCA secure PKE using neither NIZK proof nor bilinear pair-
ing was proposed by Lu, Li and Jia [14]. They claimed their scheme is KDM-CCA
secure with respect to affine functions (Faff -KDM-CCA secure) relying on both
the DDH and DCR assumptions. However, a flow on their security proof was later
discovered by Han, Liu and Lyu [9]. Han et al. also showed a new Faff -KDM-CCA
secure PKE scheme based on the construction methodology of Lu et al. In addi-
tion, they constructed KDM-CCA secure PKE with respect to bounded degree
polynomial functions. Their schemes are efficient and secure relying on both the
DDH and DCR assumptions.

Despite the above previous efforts, it is still open whether we can construct
KDM-CCA secure PKE based on a single computational assumption using
neither NIZK proof nor bilinear pairing. All existing KDM-CCA secure PKE
schemes without NIZK proof were proved to be secure relying on both the DDH
and DCR assumptions. These schemes are proposed based on a specific algebraic
structure and it is crucial to assume the hardness of both the DDH and DCR
problems on the specific algebraic structure. Thus, it seems difficult to construct
KDM-CCA secure PKE based on a single computational assumption using their
techniques.

Moreover, it is also an open question whether we can construct KDM-CCA
secure PKE with respect to all functions computable by bounded size circuits
(Fall-KDM-CCA secure) using neither NIZK proof nor bilinear pairing. The only
existing way to construct Fall-KDM-CCA secure PKE is to utilize the amplifi-
cation method shown by Applebaum [2]. Applebaum showed if a PKE scheme
is KDM-CCA secure with respect to projection functions, we can transform it
into a Fall-KDM-CCA secure one, where projection function is a function whose
each output bit depends on only a single bit of an input. Kitagawa, Matsuda,
Hanaoka and Tanaka [12] later showed we can perform such a transformation
even if the underlying PKE is only KDM-CCA secure with respect to projection
functions whose output is one bit.

Among existing KDM-CCA secure schemes, only Camenisch et al.’s scheme is
compatible with those transformations. Thus, a construction of Fall-KDM-CCA
secure PKE using neither NIZK proof nor bilinear pairing is not known so far.

A Framework for Achieving KDM-CCA Secure PKE 129

1.2 Our Results

Based on the above back ground, we show the following results.

A framework achieving KDM-CCA security in the single user setting. First, we
propose a framework to construct PKE that is Faff -KDM-CCA secure in the
single user setting based on projective hash function. Our framework can be
instantiated based on the DDH, quadratic residuosity (QR), and DCR assump-
tions. More specifically, we obtain the following theorem.

Theorem 1 (Informal). Under each of the DDH, QR, and DCR assumptions,
there exists PKE that is Faff-KDM-CCA secure in the single user setting.

These schemes are also KDM-CCA secure with respect to projection functions
of single-bit output thus compatible with the amplification method of Apple-
baum [2] and Kitagawa et al. [12]. Thus, we obtain the following corollary.

Corollary 1 (Informal). Under each of the DDH, QR, and DCR assumptions,
there exists PKE that is Fall-KDM-CCA secure in the single user setting.

KDM -CCA secure PKE in the multi user setting. Then, we focus on KDM-CCA
security in the multi user setting. Although the above framework based on pro-
jective hash function captures only KDM-CCA security in the single user setting,
we can prove the KDM-CCA security in the multi user setting of our concrete
instantiations by using their algebraic structures explicitly.

Our DDH based construction is an extension of the KDM-CPA secure
scheme proposed by Boneh, Halevi, Hamburg and Ostrovsky [4]. Similarly to
Boneh et al., using the self-reducibility of the DDH problem, we can prove the
KDM-CCA security in the multi user setting of our DDH based construction
with the same parameter setting as in the single user setting. Especially, we
formally prove the following theorem.

Theorem 2 (Informal). Under the DDH assumption, there exists PKE that
is Faff-KDM-CCA secure in the multi user setting.

Since the DDH based construction is compatible with the results by Apple-
baum [2] and Kitagawa et al. [12], we obtain the following corollary.

Corollary 2 (Informal). Under the DDH assumption, there exists PKE that
is Fall-KDM-CCA secure in the multi user setting.

Our QR and DCR based constructions are extensions of the KDM-CPA secure
scheme proposed by Brakerski and Goldwasser [5]. If we allow the length of a
secret key to depend on the number of users, we can also prove the KDM-CCA
security in the multi user setting of our DCR and QR based schemes using a
technique similar to Brakerski and Goldwasser. We briefly explain how to prove
it after the proof of multi user security of the DDH based scheme.

We summarize our results and previous results in Fig. 1.

130 F. Kitagawa and K. Tanaka

Scheme Functions Assumption Free of pairing Amplification Flexible parameter

[6] Affine DDH
[10] Circular DDH+DCR
[9]-1 Affine DDH+DCR
[9]-2 polynomial DDH+DCR

Ours 1 Affine DDH
Ours 2 Affine QR
Ours 3 Affine DCR

Fig. 1. Comparison of KDM-CCA secure PKE schemes. “Amplification” indicates
whether we can transform the scheme into Fall-KDM-CCA secure one using the results
of Applebaum [2] and Kitagawa et al. [12]. “Flexible parameter” indicates whether we
can prove KDM-CCA security in the multi user setting of the scheme without making
the length of a secret key depend on the number of users.

1.3 Technical Overview

Our starting point is the constructions of PKE proposed by Wee [19] that is
KDM secure in the single user setting (hereafter, KDM(1) security). He showed
how to construct KDM(1)-CPA secure PKE based on homomorphic projective
hash function. His framework captures the previous constructions proposed by
Boneh et al. [4] and Brakerski and Goldwasser [5].

Projective hash function was originally introduced by Cramer and Shoup [8]
to construct PKE satisfying indistinguishability against chosen ciphertext
attacks (IND-CCA security). Thus, we have a natural question whether we can
construct KDM(1)-CCA secure PKE based on projective hash function.

We answer the above question affirmatively with a simple construction.
Below, we first review the construction proposed by Wee [19].

KDM(1)-CPA Secure PKE Based on Homomorphic Projective Hash
Function. We consider a group C and its subgroup V satisfying the subgroup
indistinguishability, that is, uniform distributions over C and V are computation-
ally indistinguishable. Based on C and V, we define projective hash function as
follows. A projective hash function is a family H of hash functions Λsk : C → K
indexed by a key sk ∈ SK, where K is a group. Let μ be a projection map defined
over SK. We require Λsk be projective, that is, for every c ∈ V, the value of Λsk(c)
is determined by only c and pk = μ(sk). In addition, we require that there exist a
public evaluation algorithm Pub that given pk, c ∈ V, and a witness w of c ∈ V,
outputs Λsk(c). Below, we denote group operations of C and K by “·” and “+”,
respectively.

Using a projective hash function H, we can naturally construct a PKE scheme
Π as follows. When generating a key pair (pk, sk), we sample random sk and
compute pk = μ(sk). When encrypting a message m ∈ K, we first sample c

r←− V
with a witness w of c ∈ V. Then, we compute d ← Pub(pk, c, w) + m and set
(c, d) as a ciphertext. When decrypting (c, d), we compute m ← d − Λsk(c).

A Framework for Achieving KDM-CCA Secure PKE 131

Π is IND-CPA secure if H is smooth, that is, the value of Λsk(c) is statistically
chose to uniform given pk = μ(sk) and c, where sk

r←− SK and c
r←− C.1 We

prove the IND-CPA security of Π as follows. We first switch c∗ used to encrypt
the challenge message to c∗ r←− C by using the subgroup indistinguishability.
Then, the distribution of the resulting ciphertext is close to uniform due to the
smoothness and thus IND-CPA security follows.

KDM security from homomorphism. Wee [19] showed Π is also KDM(1)-CPA
secure if H is homomorphic, that is, for every c0, c1 ∈ C, it holds that Λsk(c0 ·
c1) = Λsk(c0)+Λsk(c1). More precisely, Π is KDM(1)-CPA secure with respect to
functions defined as fe(sk) = Λsk(e), where e ∈ C. Note that this function class
corresponds to the set of affine functions in his instantiations.

If H is homomorphic, we can change the distribution of an encryption of
fe(sk), that is (c,Pub(pk, c, w) + Λsk(e)) as

(c,Pub(pk, c, w) + Λsk(e)),where c
r←− V

= (c, Λsk(c) + Λsk(e)),where c
r←− V (by projective property)

= (c, Λsk(c · e)),where c
r←− V (by homomorphism)

≈c (c, Λsk(c · e)),where c
r←− C (by subgroup indistinguishability)

≈s

(
c · e−1, Λsk(c)

)
,where c

r←− C (sincee ∈ C)

≈c

(
c · e−1, Λsk(c)

)
,where c

r←− V (by subgroup indistinguishability)

=
(
c · e−1,Pub(pk, c, w)

)
,where c

r←− V (by projective property),

where w denotes a witness of c ∈ V, and ≈c and ≈s denote computational
indistinguishability and statistical indistinguishability, respectively. This means
that we can simulate an encryption of fe(sk) without sk. Then, based on the
standard hybrid argument, we can prove the KDM(1)-CPA security of Π using
the smoothness of H similarly to the proof for the IND-CPA security of Π.

Extension to KDM(1)-CCASecurePKE. We can construct IND-CCA
secure PKE by adding 2-universal projective hash function to the construc-
tion of Π. More precisely, we use a projective hash function Ĥ consisting of
hash functions Λ̂ŝk indexed by ŝk ∈ ŜK defined on C and V.2 Let μ̂ and ˆPub be
the projection map and public evaluation algorithm of Ĥ. We require that Ĥ
be 2-universal, that is, for every p̂k, c, c∗ ∈ C \ V, and K,K∗ ∈ K, Λ̂ŝk(c) = K

holds with only negligible probability under the condition that p̂k = μ̂
(
ŝk
)

and

Λ̂ŝk(c
∗) = K∗, where ŝk

r←− ŜK.
We modify Π into IND-CCA secure Π′ as follows. When generating a key pair,

in addition to (pk, sk), we sample ŝk
r←− ŜK and compute p̂k = μ̂

(
ŝk
)
. A public

1 More specifically, this property is called average-case smoothness in general.
2 In the actual construction of IND-CCA secure PKE, we need to use 2-universal

projective hash function defined on C × K and V × K. Such a primitive is called
extended projective hash function [8]. For simplicity, we ignore this issue here.

132 F. Kitagawa and K. Tanaka

key and secret key of Π′ are
(
pk, p̂k

)
and

(
sk, ŝk

)
, respectively. When encrypting

a message, we first compute c and d in the same way as Π using pk. Then, we
compute π ← ˆPub

(
p̂k, c, w

)
and set (c, d, π) as the resulting ciphertext. When

decrypting (c, d, π), we first check whether π = Λ̂ŝk(c) holds and if so decrypt a
message in the same way as Π using sk. Otherwise, we output ⊥.

Since Ĥ is 2-universal, an adversary cannot compute Λ̂ŝk(c) correctly for
c ∈ C\V even if he obtain a single hash value Λ̂ŝk (c∗) for c∗ ∈ C\V in the challenge
ciphertext. In other words, the adversary cannot make a valid decryption query
(c, d, π) for c ∈ C \ V. Then, from the projective property of H, the adversary
cannot obtain information of sk other than pk through decryption queries. Thus,
we can reduce the IND-CCA security of Π′ to the smoothness of H.

Problems for proving KDM (1)-CCA security. Even if H is homomorphic, we
cannot prove the KDM(1)-CCA security of Π′ straightforwardly. In the security
game of KDM(1)-CCA security, an adversary can obtain an encryption of ŝk
in addition to that of sk. Thus, we need to eliminate ŝk from the view of the
adversary to use the 2-universal property of Ĥ.

Moreover, if we can do that, there is another problem. Consider functions
of the form fe

(
sk, ŝk

)
= Λsk(e) + f

(
ŝk
)
, where e ∈ C and f : ŜK → K is a

function. If H is homomorphic, using a similar argument as Wee [19], we can
simulate an encryption of fe

(
sk, ŝk

)
by

(
c · e−1,Pub(pk, c, w) + f

(
ŝk
)

, Λ̂ŝk

(
c · e−1

))
,

where c ∈ V and w is an witness of c ∈ V. Even if we can eliminate f
(
ŝk
)

from the second component, the third component Λ̂ŝk

(
c · e−1

)
incurs another

problem. e is an element chosen by an adversary in the security game, and thus
c · e−1 might not be included in V. Thus, the adversary can obtain a hash value
Λ̂ŝk

(
c · e−1

)
for c · e−1 /∈ V through each KDM query fe. In this case, we cannot

rely on the 2-universal property of Ĥ to argue about decryption queries made
by the adversary if he makes multiple KDM queries. Therefore, we also need to
eliminate Λ̂ŝk

(
c · e−1

)
from the view of the adversary.

Our solution: Double layered encryption. We solve the above two problems
at once by extending double layered encryption techniques originally used to
expand the plaintext space of an IND-CCA secure PKE scheme [11,15]. More
precisely, by adding an outer encryption layer, we put the estimation of the prob-
ability that an adversary makes an “illegal” decryption query off till the end of
the sequence of games where all information about the inner layer is eliminated
from the challenge ciphertexts. We use an IND-CCA secure PKE scheme Πcca

as the outer layer encryption scheme. When encrypting a message, we first gen-
erate (c, d, π) in the same way as Π′ and then encrypt them by Πcca. We call the
resulting PKE scheme Πkdm.

A Framework for Achieving KDM-CCA Secure PKE 133

Of course, if we just maintain a secret key csk of Πcca as a part of a secret-key
of Πkdm, we cannot use the IND-CCA security of Πcca. Thus, we add a modifica-
tion. We maintain csk after encrypting by H. More precisely, we modify the key
generation procedure of Πkdm as follows. We first generate (pk, sk) and

(
p̂k, ŝk

)

in the same way as Π′ and generate a key pair (cpk, csk) of Πcca. Moreover, we
sample c∗ r←− C and compute d∗ r←− Λsk(c∗) + csk.3 The resulting public key and
secret key of Πkdm are

(
pk, p̂k, cpk

)
and

(
sk, ŝk, c∗, d∗

)
, respectively.

The overview of the security proof is as follows. Let A be an adversary for
the KDM(1)-CCA security of Πkdm. We consider functions of the form

fe

(
sk, ŝk, c∗, d∗

)
= Λsk(e) + f

(
ŝk, c∗, d∗

)
,

where e ∈ C and f : ŜK×C ×K → K is a function. This set of functions includes
affine functions in the actual instantiations.

1. We first change the security game so that we do not need sk to simulate KDM
queries using the projective property and homomorphism of H and subgroup
indistinguishability. Note that we do not need the smoothness of H to make
this change as explained before.
After this change, the answer to a KDM query fe is of the form

Enccpk

(
c · e−1,Pub(pk, c, w) + f

(
ŝk, c∗, d∗

)
, Λ̂ŝk

(
c · e−1

))
.

2. Then, we change the security game so that a decryption query CT made by
A is replied with ⊥ if c /∈ V, where (c, d, π) ← Deccsk(CT). The probability
that this change affects the behavior of A is bounded by the probability that
A makes a decryption query CT such that c /∈ V and π = Λ̂ŝk(c), where
(c, d, π) ← Deccsk(CT). We call such a decryption query a bad decryption
query. Since ŝk is contained in answers to KDM queries, we cannot estimate
the probability at this point. However, as noted above, we can put the esti-
mation off till the end of the sequence of games, and thus we continue the
sequence.

3. By the previous change on how decryption queries are replied, we can use the
smoothness of H. We eliminate csk encrypted in (c∗, d∗) using the smoothness
of H.

4. Then, we can use IND-CCA security of Πcca. We change the security game so
that a KDM query made by A is replied with CT ← Enccpk (0). In this game,
the advantage of A is 0.

To complete the security proof, we need to estimate the probability that A
makes a bad decryption query. In the final game, ŝk is hidden from the view of
A and he cannot obtain any hash value Λ̂ŝk(c) for c /∈ V. Thus, the probabil-
ity is negligible in the final game if Ĥ is 2-universal. In fact, since the univer-
sal property of Ĥ is sufficient for this argument, we use a universal projective
3 Without loss of generality, we assume that the secret-key space of Πcca is K.

134 F. Kitagawa and K. Tanaka

hash function instead of a 2-universal one in the actual construction. Then, the
remaining problem is whether the probability that A makes a bad decryption
query changes during the sequence of games.

The probability does not change by the third step since the view of A before
the third step is statistically close to that after the third step from the smooth-
ness of H. In addition, if we can efficiently detect a bad decryption query made
by A, we can prove that the probability does not change by the fourth step based
on the IND-CCA security of Πcca. For the purpose, in this work, we require there
exist a trapdoor that enables us to efficiently check the membership of V for pro-
jective hash function. We can complete the security proof under the existence of
such a trapdoor.

Instantiations. We instantiate the above framework based on the DDH, QR,
and DCR assumptions by extending the instantiations of KDM(1)-CPA secure
PKE by Wee [19]. Therefore, the DDH based construction is also an extension
of that proposed by Boneh et al. [4], and the QR and DCR based constructions
are also extensions of those proposed by Brakerski and Goldwasser [5]. In all
constructions, we can make a trapdoor for checking the membership of V. We
briefly review the DDH based instantiation.

The DDH based instantiation. In the DDH based instantiation, we set

C = G
� and V = {(gr

1, . . . , g
r
�) |r ∈ Zp} ,

where G is a cyclic group of order p, g1, . . . , g� are random generators of G, and
� is a parameter determined in the analysis. The uniform distribution over C and
V are computationally indistinguishable based on the DDH assumption on G.
Moreover, the discrete logarithms αi such that gi = gαi for every i ∈ [�] can be
used as a trapdoor to efficiently decide the membership of V, where g is another
generator and [�] denotes {1, . . . , �}.

We construct homomorphic projective hash function H exactly in the same
way as Wee [19]. A secret key sk is randomly chosen s = s1 · · · s� ∈ {0, 1}�. The
corresponding public key is g0 =

∏
i∈[�] g

si
i . When hashing c = (c1, . . . , c�) ∈ C,

we compute
∏

i∈[�] c
si
i . We see that this construction satisfies the projective prop-

erty and homomorphism. Moreover, we can prove the (average-case) smoothness
of it based on the leftover hash lemma by taking � appropriately.

We construct a universal projective hash function Ĥ as follows. A secret
key ŝk is randomly chosen (x1, . . . , x�) ∈ Z

�
p. The corresponding public key is

ĝ0 =
∏

i∈[�] g
xi
i . When hashing c = (c1, . . . , c�) ∈ C, we compute

∏
i∈[�] c

xi
i .

This construction can be seen as an extension of that proposed by Cramer and
Shoup [8], and we can prove its projective property and universal property.

The QR and DCR based instantiations. In the QR based construction, we use
the same C, V, and H as Wee [19]. However, in the QR based construction, we
slightly modify how to mask csk in the key generation. Roughly speaking, this is
because a hash value of H uniformly distributes over a group of order 2, and thus
we need parallelization in order to mask csk using the smoothness of H. In the

A Framework for Achieving KDM-CCA Secure PKE 135

modified version of construction, we avoid such parallelization. However, in the
construction of a universal projective hash function Ĥ, we still need a parallelized
construction similarly to IND-CCA secure PKE based on the QR assumption
proposed by Cramer and Shoup [8]. When we consider CCA security, if the
underlying group has a small prime factor, we need a parallelized construction.

In the DCR based construction, we also apply some modifications to the
construction of C, V, and H used by Wee. In the construction of Wee, the under-
lying group has a small prime factor 2. Therefore, in a naive construction, we
need parallelization. However, by defining hash functions so that every time we
compute a hash value, we first perform a squaring, we can make the small factor
useless to attack the scheme without parallelization. By this modification, the
range of hash functions become a group whose order does not have a small prime
factor and we can avoid parallelization.

Overhead of our constructions. The overhead of communicational complexity
(that is, the size of public-keys and ciphertexts) of our KDM(1)-CCA secure
PKE schemes from its KDM(1)-CPA secure counterparts [19] is very small in
the DDH and DCR based constructions. A public-key and hash value of Ĥ are
just a single group element in the DDH and DCR based constructions. Moreover,
we can use highly efficient IND-CCA secure PKE schemes [13,17] as the outer
layer scheme. In this case, the overhead of communicational complexity is only
few group elements.

Extension to Multi User Setting. Although the above framework based on
projective hash function captures only KDM(1)-CCA security, we can prove the
KDM-CCA security in the multi user setting of concrete instantiations.

As noted before, our DDH based construction is an extension of that proposed
by Boneh et al. [4], and our QR and DCR based constructions are extensions of
those proposed by Brakerski and Goldwasser [5]. In both works, they first show
the KDM(1)-CPA security of their schemes, and then prove its KDM-CPA secu-
rity in the multi user setting by extending the proof for KDM(1)-CPA security.

By using similar techniques, we can prove KDM-CCA security in the multi
user setting of our schemes. Especially, we prove the KDM-CCA security in
the multi user setting of our DDH based construction with the same parameter
setting as in the single user setting. We also briefly explain how to prove the
KDM-CCA security in the multi user setting of our QR and DCR based con-
structions after proving the multi user security of the DDH based construction.

2 Preliminaries

We define some cryptographic primitives after introducing some notations and
left-over hash lemma.

Notations. In this paper, x
r←− X denotes choosing an element from a finite set

X uniformly at random, and y ← A(x) denotes assigning to y the output of an

136 F. Kitagawa and K. Tanaka

algorithm A on an input x. For bit strings x and y, x‖y denotes the concatenation
of x and y. For an integer �, [�] denotes the set of integers {1, . . . , �}.

λ denotes a security parameter. PPT stands for probabilistic polynomial
time. A function f(λ) is a negligible function if f(λ) tends to 0 faster than
1
λc for every constant c > 0. We write f(λ) = negl(λ) to denote f(λ) being a
negligible function.

We introduce the left-over hash lemma.

Lemma 1 (Left-over hash lemma). Let X, Y , and Z are sets. Let H :=
{h : X → Y } be a family of 2-universal hash functions. Let aux : X → Z be a

function. Then, the distributions (h, h(x), aux(x)) and (h, y, aux(x)) are
√

|Y ||Z|
4·|X| -

close, where h
r←− H, x

r←− X, and y
r←− Y .

2.1 Public Key Encryption

A public-key encryption (PKE) scheme PKE is a three tuple (KG,Enc,Dec) of
PPT algorithms. Let M be the message space of PKE. The key generation algo-
rithm KG, given a security parameter 1λ, outputs a public key pk and a secret key
sk. The encryption algorithm Enc, given a public key pk and message m ∈ M,
outputs a ciphertext CT. The decryption algorithm Dec, given a secret key sk
and ciphertext CT, outputs a message m̃ ∈ {⊥}∪M. As correctness, we require
Dec(sk,Enc(pk,m)) = m for every m ∈ M and (pk, sk) ← KG(1λ).

Next, we define key dependent message security against chosen ciphertext
attacks (KDM-CCA security) for PKE.

Definition 1 (KDM-CCA security). Let PKE be a PKE scheme, F function
family, and n the number of keys. We define the F-KDM(n)-CCA game between
a challenger and an adversary A as follows. Let SK and M be the secret key
space and message space of PKE, respectively.

1. First, the challenger chooses a challenge bit b
r←− {0, 1}. Next, the challenger

generates n key pairs (pkk, skk) ← KG(1λ) (k ∈ [n]). The challenger sets sk :=
(sk1, . . . , skn) and sends (pk1, . . . , pkn) to A. Finally, the challenger prepares
a list Lkdm which is initially empty.

2. A may adaptively make the following queries polynomially many times.
KDM queries A sends (j, f0, f1) ∈ [n]×F×F to the challenger. We require

that f0 and f1 be functions such that f : SKn → M. The challenger
returns CT ← Enc

(
pkj , f

b(sk)
)

to A. Finally, the challenger adds (j,CT)
to Lkdm.

Decryption queries A sends (j,CT) to the challenger. If (j,CT) ∈ Lkdm,
the challenger returns ⊥ to A. Otherwise, the challenger returns m ←
Dec (skj ,CT) to A.

3. A outputs b′ ∈ {0, 1}.
We say that PKE is F-KDM(n)-CCA secure if for any PPT adversary A, we

have Advkdmcca
PKE,F,A,n(λ) =

∣
∣Pr[b = b′] − 1

2

∣
∣ = negl(λ).

A Framework for Achieving KDM-CCA Secure PKE 137

In addition, we say that PKE is F-KDM-CCA secure if it is F-KDM(n)-CCA
secure for any polynomial n = n(λ).

Remark 1 (Difference with the previous definitions). In the original definition of
KDM security defined by Black et al. [3], an adversary is required to distinguish
an encryption of f(sk) from that of some constant message such as 0, where f
is a function chosen by the adversary.

In our definition of KDM-CCA security, an adversary chooses two functions
(f0, f1) and is required to distinguish an encryption of f0(sk) from that of f1(sk).
Such a definition was previously used by Alperin-sheriff and Peikert [1] when they
defined KDM security for identity-based encryption to simplify their security
proof. We also adopt this definition to simplify our security proofs.

These two types of definitions are equivalent if the function class F contains
a constant function. This is the case for affine functions and projection functions
that we focus on.

IND-CCA security is a special case of KDM-CCA security. More specifically,
we can define IND-CCA security by restricting functions an adversary can query
as KDM queries in the KDM-CCA game to constant functions. Thus, we omit
the definition of IND-CCA security.

2.2 Projective Hash Function

We review the notion of projective hash function introduced by Cramer and
Shoup [8] after introducing the notion of subset membership problem.

Definition 2 (Subset membership problem). Let C be a group and V be a
subgroup of C. We say that the subset membership problem is hard for (C,V) if
uniform distributions over C and V are computationally indistinguishable.

In this work, for a subset membership problem (C,V), we require that there
exist a trapdoor that enables us to efficiently check the membership of V. More-
over, we require that we can efficiently sample c from V with a witness of c ∈ V.

Definition 3 (Projective hash function). A projective hash function H is a
tuple (C,V,K,SK,PK, Λ, μ). C and K are groups and V is a subgroup of C. SK
and PK are sets. The hash function Λsk indexed by sk ∈ SK, given c ∈ C, outputs
a hash value K ∈ K. The projection map μ, given sk ∈ SK, outputs pk ∈ PK.
We require that H be projective, that is, for any sk ∈ SK and c ∈ V, the value
of Λsk(c) is determined only by c and pk = μ(sk). In addition, we require that
there exist a public evaluation algorithm Pub, given pk = μ(sk), c ∈ V, and an
witness w that c ∈ V, outputs Λsk(c), where sk ∈ SK.

In addition, we say that H is homomorphic if for any sk ∈ SK and c0, c1 ∈ C,
it holds that Λsk(c0 ·c1) = Λsk(c0)+Λsk(c1), where “·” and “+” denote operations
in C and K, respectively.

We define two security notions for projective hash function.

138 F. Kitagawa and K. Tanaka

Definition 4 (Average-case smoothness). Let H = (C,V,K,SK,PK, Λ, μ)
be a projective hash function. We say that H is average-case smooth if the dis-
tributions (pk, c, Λsk(c)) and (pk, c,K) are statistically close, where sk

r←− SK,
pk = μ(sk), c

r←− C, and K
r←− K.

Definition 5 (Universal property). Let H = (C,V,K,SK,PK, Λ, μ) be a
projective hash function. We say that H is universal if for any pk ∈ PK , c ∈
C \ V, K ∈ K, we have Pr

sk
r←−SK [Λsk(c) = K|μ(sk) = pk] = negl(λ).

3 KDM(1)-CCA Secure PKE Based on Homomorphic
Projective Hash Function

In this section, we show a framework for achieving KDM(1)-CCA secure PKE
based on homomorphic projective hash function.

Let H = (C,V,K,SK,PK, Λ, μ) be a homomorphic projective hash function
with a public evaluation algorithm Pub. We denote the group operations of
C and K by “·” and “+”, respectively. Let Ĥ =

(
C,V, K̂, ŜK, P̂K, Λ̂, μ̂

)
be a

projective hash function with a public evaluation algorithm ˆPub. Let Πcca =
(KGcca,Enccca,Deccca) be a PKE scheme. We assume that the secret-key space of
Πcca is K for simplicity. Using these building blocks, we construct the following
PKE scheme Πkdm = (KGkdm,Enckdm,Deckdm). The message space of Πkdm is M.
We use an invertible map φ : M → K in the construction.

KGkdm(1λ):
– Generate sk

r←− SK and compute pk ← μ(sk).
– Generate ŝk

r←− ŜK and compute p̂k ← μ̂
(
ŝk
)
.

– Generate (cpk, csk) ← KGcca(1λ).
– Generate c∗ r←− C and compute d∗ ← Λsk(c∗) + csk.
– Return PK :=

(
pk, p̂k, cpk

)
and SK :=

(
sk, ŝk, c∗, d∗

)
.

Enckdm(PK,m):
– Parse

(
pk, p̂k, cpk

)
← PK.

– Generate c
r←− V with an witness w of c ∈ V.

– Compute K ← Pub(pk, c, w) and d ← K + φ(m).
– Compute π ← ˆPub

(
p̂k, c, w

)
.

– Return CT ← Enccca (cpk, (c, d, π)).
Deckdm(SK,CT):

– Parse
(
sk, ŝk, c∗, d∗

)
← SK.

– Compute csk ← d∗ − Λsk(c∗).
– Compute (c, d, π) ← Deccca(csk,CT). If the decryption result is not in

C × K × K̂, return ⊥. Otherwise, compute as follows.
– If π 	= Λ̂ŝk(c), return ⊥. Otherwise, return m ← φ−1 (d − Λsk(c)).

A Framework for Achieving KDM-CCA Secure PKE 139

Correctness. We have Pub(pk, c, w) = Λsk(c) and ˆPub
(
p̂k, c, w

)
= Λ̂ŝk(c) for

c ∈ V, where w is a witness of c ∈ V. Then, the correctness of Πkdm follows from
that of Πcca.

Πkdm is KDM-CCA secure with respect to the function family Fphf consisting
of functions described as

fe

(
sk, ŝk, c∗, d∗

)
= φ−1

(
Λsk(e) + φ

(
f
(
ŝk, c∗, d∗

)))
,

where e ∈ C and f : ŜK × C × K → M is a function. This class corresponds
to affine and projection functions in the instantiations. Formally, we prove the
following theorem.

Theorem 3. Let the subset membership problem (C,V) be hard. Let H be
average-case smooth and Ĥ universal. Let Πcca be IND-CCA secure. Then, Πkdm

is Fphf-KDM(1)-CCA secure.

Proof of Theorem 3. Let A be an adversary that attacks the Fphf -KDM(1)-CCA
security of Πkdm. We proceed the proof via a sequence of games. For every t ∈
{0, . . . , 8}, let SUCt be the event that A succeeds in guessing the challenge bit b
in Game t.

Game 0: This is the original Fphf -KDM(1)-CCA game regarding Πkdm. We have
Advkdmcca

Πkdm,Fphf ,A,1(λ) =
∣
∣Pr[SUC0] − 1

2

∣
∣.

1. The challenger chooses a challenge bit b
r←− {0, 1}, and runs as follows.

(a) Generate sk
r←− SK and compute pk ← μ(sk).

(b) Generate ŝk
r←− ŜK and compute p̂k ← μ̂

(
ŝk
)
.

(c) Generate (cpk, csk) ← KGcca

(
1λ
)
.

(d) Generate c∗ r←− C and compute d∗ ← Λsk(c∗) + csk.
(e) Send PK :=

(
pk, p̂k, cpk

)
to A and prepare a list Lkdm.

2. The challenger responds to queries made by A.
For a KDM query ((e0, f0), (e1, f1)) made by A, the challenger responds
as follows.
(a) Generate c

r←− V with a witness w of c ∈ V.
(b) Compute K ← Pub(pk, c, w) and d ← K+Λsk(eb)+φ

(
f b
(
ŝk, c∗, d∗

))
.

(c) Compute π ← ˆPub
(
p̂k, c, w

)
.

(d) Return CT ← Enccca (cpk, (c, d, π)) to A and add CT to Lkdm.
For a decryption query CT made by A, the challenger returns ⊥ to
A if CT ∈ Lkdm, and otherwise responds as follows.
(a) Compute (c, d, π) ← Deccca(csk,CT). If the decryption result is

not in C × K × K̂, return ⊥ to A. Otherwise, responds as follows.
(b) Return ⊥ if π 	= Λ̂ŝk(c) and m ← φ−1 (d − Λsk(c)) otherwise.

3. A outputs b′ ∈ {0, 1}.

140 F. Kitagawa and K. Tanaka

Game 1: Same as Game 0 except that when A makes a KDM query, the chal-
lenger computes K ← Λsk(c) and π ← Λ̂ŝk(c) instead of K ← Pub(pk, c, w)

and π ← ˆPub
(
p̂k, c, w

)
, respectively.

Due to the projective property of H and Ĥ, this change is only conceptual
and thus we have |Pr[SUC0] − Pr[SUC1]| = 0.

Game 2: Same as Game 1 except that when A makes a KDM query, the chal-
lenger generates c

r←− C.

We have |Pr[SUC1] − Pr[SUC2]| = negl(λ) by the hardness of the subset mem-
bership problem (C,V).

Game 3: Same as Game 2 except that the challenger generates c
r←− C and uses

c′ = c · (eb)−1 instead of c when A makes a KDM query ((e0, f0), (e1, f1)).

We have |Pr[SUC2] − Pr[SUC3]| = 0 since if c uniformly distributes over C,
then so does c · (eb)−1.

By this change, the answer to a KDM query ((e0, f0), (e1, f1)) in Game 3 is
Enccca (cpk, (c′, d, π)), where

c′ = c · (eb)−1, d = Λsk(c · (eb)−1) + Λsk(eb) + φ
(
f b
(
ŝk, c∗, d∗

))
, π = Λ̂ŝk (c′) ,

and c
r←− C. Moreover, by the homomorphism of H, d = Λsk(c) +

φ
(
f b
(
ŝk, c∗, d∗

))
holds.

Game 4: Same as Game 3 except that when A makes a KDM query, the chal-
lenger generates c

r←− V with a witness w of c ∈ V.

We have |Pr[SUC3] − Pr[SUC4]| = negl(λ) by the hardness of the subset mem-
bership problem (C,V).

Game 5: Same as Game 4 except that when A makes a KDM query, the chal-
lenger computes d ← Pub(pk, c, w) + φ

(
f b
(
ŝk, c∗, d∗

))
. Note that the chal-

lenger still computes π with π ← Λ̂ŝk(c
′).

Due to the projective property of H, this change is only conceptual and thus
we have |Pr[SUC4] − Pr[SUC5]| = 0.

At this point, sk is not needed to compute answers to KDM queries. More
precisely, the answer to a KDM query ((e0, f0), (e1, f1)) is Enccca (cpk, (c′, d, π)),
where

c′ = c · (eb)−1, d = Pub(pk, c, w) + φ
(
f b
(
ŝk, c∗, d∗

))
, π = Λ̂ŝk (c′) ,

c
r←− V, and w is a witness of c ∈ V.

A Framework for Achieving KDM-CCA Secure PKE 141

Game 6: Same as Game 5 except how the challenger responds decryption
queries made by A. In this game, the challenger returns ⊥ for a decryption
query related to c /∈ V. More precisely, the challenger responds as follows.

For a decryption query CT made by A, the challenger returns ⊥ to A if
CT ∈ Lkdm, and otherwise responds as follows.
1. Compute (c, d, π) ← Deccca(csk,CT). If the decryption result is not in

V × K × K̂, return ⊥ to A. Otherwise, respond as follows.
2. Return ⊥ if π 	= Λ̂ŝk(c) and m ← φ−1 (d − Λsk(c)) otherwise.

We define the following event in Game t (t = 5, · · · , 8).

BDQt: A makes a decryption query CT /∈ Lkdm which satisfies c ∈ C \ V and
π = Λ̂ŝk(c), where (c, d, π) ← Deccca(csk,CT). We call such a decryption
query a “bad decryption query”.

Games 5 and 6 are identical games unless A makes a bad decryption query
in each game. Therefore, we have |Pr[SUC5] − Pr[SUC6]| ≤ Pr[BDQ6].

Below, we let td be a trapdoor for efficiently deciding the membership of V.

Game 7: Same as Game 6 except that the challenger generates d∗ r←− K.

By the previous change, A cannot obtain information of sk other than pk
through decryption queries in Games 6 and 7. Moreover, as noted above, KDM
queries are replied without using sk in Games 6 and 7. Thus, the view of A in
Games 6 and 7 can be perfectly simulated by (pk, c∗, Λsk(c∗)) and (pk, c∗, d∗),
respectively, where sk

r←− SK, pk ← μ(sk), c∗ r←− C, and d∗ r←− K. Therefore, we
have |Pr[SUC6] − Pr[SUC7]| = negl(λ) and |Pr[BDQ6] − Pr[BDQ7]| = negl(λ) from
the average-case smoothness of H.4

csk is now eliminated from the view of A. Thus, we can use IND-CCA security
of Πcca.

Game 8: Same as Game 7 except that when A makes a KDM query, the chal-
lenger computes CT ← Enccca

(
cpk,

(
1C , 1K, 1K̂

))
, where 1C , 1K, and 1K̂ are

identity elements of C, K, and K̂, respectively.

From the IND-CCA security of Πcca, we have |Pr[SUC7] − Pr[SUC8]| = negl(λ).
Moreover, since reduction algorithms for IND-CCA security of Πcca can detect

a bad decryption query made by A by utilizing decryption queries, td, and ŝk,
we obtain |Pr[BDQ7] − Pr[BDQ8]| = negl(λ) from the IND-CCA security of Πcca.
4 In terms of reduction, we can construct a computationally unbounded adversary B

that given (pk, c∗, d∗), distinguishes whether d∗ ← Λsk(c
∗) or d∗ r←− K using A. The

only non-trivial part of the construction of B is how B responds to decryption queries
made by A. After Game 6, bad decryption queries made by A are replied with ⊥.
In addition, if a decryption query is not a bad decryption query, computationally
unbounded B can reply to the decryption query correctly without using sk. This is
done by extracting a witness related to the decryption query and computing the
hash value with Pub.

142 F. Kitagawa and K. Tanaka

We see that the value of b is information theoretically hidden from the view
of A in Game 8. Thus, we have

∣
∣Pr[SUC8] − 1

2

∣
∣ = 0.

We estimate Pr[BDQ8]. In Game 8, ŝk is hidden from the view of A except p̂k.
Moreover, A cannot obtain any hash value Λ̂ŝk(c) for c ∈ C \ V since an answer
to a KDM query is computed as CT ← Enccca

(
cpk,

(
1C , 1K, 1K̂

))
in Game 8.

Therefore, from the universal property of Ĥ, we obtain Pr[BDQ8] = negl(λ).5

From the above arguments, we see that Advkdmcca
Πkdm,Fphf ,A,1(λ) = negl(λ). Since

the choice of A is arbitrary, Πkdm is Fphf -KDM(1)-CCA secure. � (Theorem 3)

Remark 2. (Shrink secret keys). We do not need to require any structure and
homomorphism for ŝk and csk. Then, we can shrink them into a single pseudo-
random function key Kprf and modify the construction so that Λsk (c∗) masks
Kprf . Moreover, we can maintain c∗ and d∗ = Λsk (c∗) + Kprf as a part of the
corresponding public key. If we do so, the resulting secret key is just sk.

4 Instantiation Based on the DCR Assumption

We can instantiate our framework shown in Sect. 3 under the DDH, QR, and
DCR assumptions. Due to the space constraints, we show the instantiation under
the DCR assumption only. For Instantiations under the DDH and QR assump-
tions, See full version of this paper.

Definition 6 (DCR assumption). Let N = PQ be a Blum integer for λ-bit
safe primes P,Q ≡ 3 mod 4 such that P = 2p + 1 and Q = 2q + 1 for primes p
and q. Let n = pq. We can decompose Z

∗
N2 as an internal direct product GN ⊗

〈−1〉 ⊗ Gn ⊗ G2, where 〈−1〉 is the subgroup of Z∗
N2 generated by −1 mod N2,

and GN , Gn, and G2 are cyclic groups of order N , n, and 2, respectively. Let
T = 1 + N ∈ Z

∗
N2 . T has order N , and thus it generates GN .

We say that the DCR assumption holds if for any PPT algorithm A, we have
|Pr[A(N, y) = 1]−Pr[A(N, y′) = 1]| = negl(λ), where y

r←− GN ⊗〈−1〉⊗Gn and
y′ r←− 〈−1〉 ⊗ Gn.

We define N , GN , Gn, 〈−1〉, and T as in Definition 6. Let g1, . . . , g� be random
generators of Gn, where � is determined later. We can generate a random gen-
erator g of Gn by generating μ

r←− Z
∗
N2 and setting g = μ2N mod N2. Then, g is

a generator of Gn with high probability.
We define C and V as

C =
{(

T d1 · (−1)γ1 · gr
1, . . . , T

d� · (−1)γ� · gr
�

)

|d1, . . . , d� ∈ ZN , γ1, . . . , γ� ∈ Z2, r ∈ Zn

}
, and

V = {((−1)γ1 · gr
1, . . . , (−1)γ� · gr

�) |γ1, . . . , γ� ∈ Z2, r ∈ Zn} .

5 Similarly to the estimation of |Pr[SUC6] − Pr[SUC7]|, in terms of reduction, we can
construct a computationally unbounded reduction that responds a decryption query
from A correctly without knowing ŝk by extracting a witness and using ˆPub.

A Framework for Achieving KDM-CCA Secure PKE 143

V is a subgroup of C and subset membership problem of (C,V) is hard under
the DCR assumption. As shown by previous works [5,19], two distributions{
T di · (−gi)r

}
i∈[�]

and {(−gi)r}i∈[�] are computationally indistinguishable under

the DCR assumption, where di
r←− ZN for every i ∈ [�] and r

r←− Z2n. We see that
uniform distributions over C and V are also computationally indistinguishable
under the DCR assumption.

Let g be another generator of Gn. Then, there exists αi ∈ Z
∗
n such that

gαi = gi for every i ∈ [�]. The trapdoor for checking the membership of V is P ,
Q, and {αi}i∈[�].

When sampling a random element c = (c1, . . . , c�) from V, we randomly
choose r

r←− ZN−1
4

and γi
r←− Z2 for every i ∈ [�], and set ci ← (−1)γi · gr

i for
every i ∈ [�]. The distribution of c is statistically close to the uniform distribution
over V. Moreover, r is a witness of c ∈ V. We can sample a random element from
C in a similar fashion.

For (C,V) defined above, we construct two projective hash functions H =
(C,V,K,SK,PK, Λ, μ) and Ĥ =

(
C,V, K̂, ŜK, P̂K, Λ̂, μ̂

)
. The construction of

H is a slightly modified version of projective hash function based on the DCR
assumption proposed by Wee [19] thus is a generalization of the KDM-CPA
secure PKE scheme proposed by Brakerski and Goldwasser [5]. For the reason
we need a modification, see Remark 3 after the constructions.

4.1 Construction of H
We define QRNs = GNs−1 ⊗Gn and JNs = GNs−1 ⊗〈−1〉⊗Gn = 〈−1〉⊗QRNs .
We define SK = {0, 1}�, PK = Gn, and K = QRNs . For every sk = s1 · · · s� ∈
{0, 1}� and c = (c1, . . . , c�) ∈ C, we also define μ and Λ as

μ(sk) =
∏

i∈[�]

g2si
i and Λsk(c) =

∏

i∈[�]

c2si
i .

Projective property. Let sk = s1 · · · s� ∈ {0, 1}�, pk =
∏

i∈[�] g
2si
i , and c =

((−1)γ1 · gr
1, . . . , (−1)γ� · gr

�), where r ∈ Zn and γi ∈ Z2 for every i ∈ [�]. We
define the public evaluation algorithm Pub as Pub(pk, c, r) = pkr. We see that

pkr =

⎛

⎝
∏

i∈[�]

g2si
i

⎞

⎠

r

=
∏

i∈[�]

(gr
i)2si =

∏

i∈[�]

((−1)γi · gr
i)2si = Λsk(c)

and thus H satisfies projective property.

Homomorphism. For every sk = s1 · · · s� ∈ {0, 1}�, c = (c1, . . . , c�) ∈ C, and
c′ = (c′

1, . . . , c
′
�) ∈ C, we have

Λsk(c) · Λsk(c′) =
∏

i∈[�]

c2si
i ·

∏

i∈[�]

(c′
i)

2si =
∏

i∈[�]

(ci · c′
i)

2si = Λsk(c · c′)

and thus H is homomorphic.

144 F. Kitagawa and K. Tanaka

Average-case smoothness. Similarly to Wee [19], we prove a weaker property that
is sufficient for our construction.

For an element e = T d · gr ∈ QRNs , we define e mod Gn = T d. Let c =
(c1, . . . , c�) =

(
T d1 · (−1)γ1 · gr

1, . . . , T
d� · (−1)γ� · gr

�

)
, where d1, . . . , d� ∈ ZN ,

γ1, . . . , γ� ∈ Z2, and r ∈ Zn. We have

Λsk(c) mod Gn =
∏

i∈[�]

(
T di · gr

i

)2si mod Gn = T 2
∑

i∈[�] disi mod N .

The leftover hash lemma implies that the following two distributions
⎛

⎝c,
∑

i∈[�]

disi mod N,
∏

i∈[�]

g2si
i

⎞

⎠ and

⎛

⎝c,K,
∏

i∈[�]

g2si
i

⎞

⎠

are
√

N ·n
4·2� -close, where sk = s1 · · · s�

r←− {0, 1}�, c = (c1, . . . , c�)
r←− C, and

K
r←− ZN . Moreover, if K is uniformly at random over ZN , then so does 2K mod N .

Therefore, by setting � = 3 log N , the distribution of Λsk(c) mod Gn is statisti-
cally close to uniform over GN .

4.2 Construction of Ĥ
We define ŜK = Z

�
Nn,6 P̂K = Gn, and K̂ = QRNs . For every ŝk = (x1, . . . , x�) ∈

ŜK and c = (c1, . . . , c�) ∈ C, we also define μ̂ and Λ̂ as

μ̂
(
ŝk
)

=
∏

i∈[�]

g2xi
i and Λ̂ŝk(c) =

∏

i∈[�]

c2xi
i .

Projective property. For every ŝk = (x1, . . . , x�) ∈ ŜK, p̂k =
∏

i∈[�] g
2xi
i , and

c = ((−1)γ1 · gr
1, . . . , (−1)γ� · gr

�), where r ∈ Zn and γi ∈ Z2 for every i ∈ [�], we

define the public evaluation algorithm ˆPub as ˆPub
(
p̂k, c, r

)
= p̂k

r
. Similarly to

H, we see that Ĥ satisfies projective property.

Universal property. We need to prove that the universal property holds not only
for all c ∈ C \ V but also all c ∈ J

�
Ns \ C. This is because we cannot efficiently

check the membership of C. Note that we can check the membership of JNs by
computing Jacobi symbol with respect to N , and Jacobi symbol with respect to
N can be computed without factorizations of N , that is P and Q [18, Sect. 12.3].

For every c ∈ J
�
Ns \ C, we define Λ̂ŝk(c) in the same way as above. For every

p̂k ∈ P̂K, c = (c1, . . . , c�) ∈ J
�
Ns , and π ∈ K̂, we consider the following probability

6 In the actual construction, we sample ŝk from Z
λ×�
N(N−1)

4

to sample ŝk without knowing

n. The uniform distributions over Z
λ×�
Nn and Z

λ×�
N(N−1)

4

are statistically close.

A Framework for Achieving KDM-CCA Secure PKE 145

Pr
xi

r←−ZNn

⎡

⎣
∏

i∈[�]

c2xi
i = π

∣
∣
∣
∣
∣
∣

∏

i∈[�]

g2xi
i = p̂k

⎤

⎦

= Pr
xi

r←−ZNn

⎡

⎣
∏

i∈[�]

c2xi
i = π

∣
∣
∣
∣
∣
∣

∏

i∈[�]

g
2(xi mod n)
i = p̂k

⎤

⎦ . (1)

We first consider the case where at least one element of c = (c1, . . . , c�) is
not in 〈−1〉 ⊗ Gn. Suppose that ci∗ ∈ JNs \ 〈−1〉 ⊗ Gn for some i∗ ∈ [�].

For two elements e0, e1 ∈ QRNs , we write e0 ≡ e1 mod Gn to denote that
e0 mod Gn = e1 mod Gn. For two elements e0, e1 ∈ QRNs , if e0 = e1 holds, then
so does e0 ≡ e1 mod Gn. Thus, the probability of Eq. 1 is bounded by

Pr
xi

r←−ZNn

⎡

⎣
∏

i∈[�]

c2xi
i ≡ π mod Gn

∣
∣
∣
∣
∣
∣

∏

i∈[�]

g
2(xi mod n)
i = p̂k

⎤

⎦ .

For every i ∈ [�], c2xi
i mod Gn is determined by only xi mod N and independent

of xi mod n from the Chinese Remainder Theorem since N = PQ and n = pq
are relatively prime. Therefore, the above probability is

Pr
xi

r←−ZNn

⎡

⎣
∏

i∈[�]

c2xi
i ≡ π mod Gn

⎤

⎦ .

Since ci∗ /∈ 〈−1〉 ⊗ Gn, we can write ci∗ = T di∗ · (−1)γi∗ · gri∗ , where di∗ ∈ ZN

such that di∗ 	= 0, γi∗ ∈ Z2, and ri∗ ∈ Zn. We have

c2xi∗
i∗ = T 2di∗ (xi∗ mod N) · g2ri∗ (xi∗ mod n).

Then, the above probability is the same as

Pr
xi

r←−ZNn

⎡

⎢
⎣T 2di∗ (xi∗ mod N) ≡ π ·

⎛

⎝
∏

i∈[�],i �=i∗
c2xi
i

⎞

⎠

−1

mod Gn

⎤

⎥
⎦ .

This probability is smaller than 1
P or 1

Q . Thus, in this case, the probability of
Eq. 1 is negligible in λ.

We next consider the case where all elements of c = (c1, . . . , c�) /∈ V are in
〈−1〉⊗Gn. In this case, we can write ci = (−1)γi ·gri

i , where γi ∈ Z2 and ri ∈ Zn

for every i ∈ [�]. Since c /∈ V, there exist i1, i2 ∈ [�] such that ri1 	= ri2 . Let g be
a generator of Gn. Since gi is a generator of Gn, there exists αi ∈ Z

∗
n such that

gi = gαi for every i ∈ [�]. The probability of Eq. 1 is 0 if π /∈ Gn, and thus we
consider cases of π ∈ Gn. Then, the probability of Eq. 1 is the same as

Pr
xi

r←−Zn

⎡

⎣2
∑

i∈[�]

αirixi ≡ logg π mod n

∣
∣
∣
∣
∣
∣
2
∑

i∈[�]

αixi ≡ logg p̂k mod n

⎤

⎦ .

146 F. Kitagawa and K. Tanaka

Since r1 	≡ r2 mod n, either ri1 	≡ ri2 mod p or ri1 	≡ ri2 mod q holds. Without
loss of generality, we assume that ri1 	≡ ri2 mod p. Since p and q are primes, the
above probability is bounded by

Pr
xi

r←−Zn

⎡

⎣
∑

i∈[�]

αirixi ≡ 2−1 · logg π mod p

∣
∣
∣
∣
∣
∣

∑

i∈[�]

αixi ≡ 2−1 · logg p̂k mod p

⎤

⎦ .

Since ri1 	≡ ri2 mod p, two equations
∑

i∈[�]

αirixi ≡ 2−1 · logg π mod p, and
∑

i∈[�]

αixi ≡ 2−1 · logg p̂k mod p

are linearly independent. Therefore, the above probability is 1
p .

Thus, for every c ∈ J
�
Ns \ V, the probability of Eq. 1 is negligible in λ.

Remark 3 (Difference with previous works [5,19]). The difference between our
construction and previous works is that when we compute a hash value of c, we
first square each element of c. By this operation, the ranges of H and Ĥ are
QRNs = GN · Gn.

If we do not perform squaring, the ranges will be JNs = GN · 〈−1〉 · Gn and
hash values of some elements can be predicted with high probability since the
order of 〈−1〉 is 2. In fact, we can correctly guess the hash value of (−1, . . . ,−1) ∈
〈−1〉� with probability at least 1

2 . In this case, to achieve universal property of
Ĥ, we need parallelization similarly to the QR based construction.

One might think we have another option where C and V are defined as sub-
groups of QRNs and Gn, respectively. This option is not working. The reason is
that we cannot efficiently check the membership of QRNs . Therefore, if we use
such C and V, we still need to take elements of JNs into account, and thus we
need squaring.

4.3 Associated Function Class

The message space of the DCR based construction is ZN . We define φ(m ∈
ZN) = Tm. Let Fdcr be a family of functions described as

fe

(
sk, ŝk, c∗, d∗

)
= φ−1

(
Λsk

(
T e1/2, . . . , T e�/2

)
+ φ

(
f
(
ŝk, c∗, d∗

)))

= φ−1
(
T

∑
i∈[�] eisi+f(ŝk,c∗,d∗)

)

=

⎛

⎝
∑

i∈[�]

eisi + f
(
ŝk, c∗, d∗

)
⎞

⎠ mod N,

where 1
2 denotes the inverse of 2 modulo N , ei ∈ ZN for every i ∈ [�], and f is a

function whose range is ZN . The DCR based construction is Fdcr-KDM(1)-CCA
secure. In the construction, we can maintain ŝk, c∗, and d∗ as bit strings. In this
case, the above function class includes affine functions and projection functions.

A Framework for Achieving KDM-CCA Secure PKE 147

5 KDM-CCA Secure PKE from the DDH Assumption

Although our framework shown in Sect. 3 captures only KDM(1)-CCA secu-
rity, we can prove the KDM-CCA security of concrete instantiations. In this
section, we prove that our concrete instantiation based on the DDH assumption
is KDM-CCA secure. We also briefly explain how to prove the multi user security
of our QR and DCR based schemes in Remark 5 at the end of this section. We
first introduce the DDH assumption, and then provide the construction.

Definition 7 (DDH assumption). Let G be a cyclic group of order p and g a
random generator of G. We say that the DDH assumption holds if for any PPT
algorithm A, |Pr[A(p, g, gx, gy, gxy) = 1] − Pr[A(p, g, gx, gy, gz) = 1] = negl(λ)|
holds, where x, y, z

r←− Zp.

Let G be a cyclic group of prime order p and g a random generator of G. Let
Πcca = (KGcca,Enccca,Deccca) be a PKE scheme. We assume that the secret-
key space of Πcca is G for simplicity. We construct the following PKE scheme
Πddh = (KGddh,Encddh,Decddh). The message space of Πddh is {0, 1}.

KGddh(1λ):
– Generate g1, . . . , g�

r←− G.
– Generate s = s1 · · · s�

r←− {0, 1}� and x1, . . . , x�
r←− Zp.

– Compute g0 ←∏
i∈[�] g

si
i and ĝ0 ←∏

i∈[�] g
xi
i .

– Generate (cpk, csk) ← KGcca(1λ).
– Generate wi

r←− Zp and set ei ← gwi
i for every i ∈ [�].

– Compute e0 ←∏
i∈[�] e

si
i and u ← e0 · csk.

– Set v := {xi}i∈[�] ‖ {ei}i∈[�] ‖u.

– Return PK :=
(
{gi}i∈[�] , g0, ĝ0, cpk

)
and SK := (s, v).

Encddh(PK,m):
– Parse

(
{gi}i∈[�] , g0, ĝ0, cpk

)
← PK.

– Generate r
r←− Zp and compute ci ← gr

i for every i ∈ [�].
– Compute d ← gm · gr

0 and π ← ĝr
0.

– Return CT ← Enccca

(
cpk,

(
{ci}i∈[�] , d, π

))
.

Decddh(SK,CT):
– Parse

(
s, {xi}i∈[�] ‖ {ei}i∈[�] ‖u

)
← SK.

– Compute csk ← u ·
(∏

i∈[�] e
si
i

)−1

.

– Compute
(
{ci}i∈[�] , d, π

)
← Deccca(csk,CT). If the decryption result is

not in G
�+2, returns ⊥. Otherwise, compute as follows.

– Return ⊥ if π 	= ∏
i∈[�] c

xi
i and m ← logg

(
d ·
(∏

i∈[�] c
si
i

)−1
)

otherwise.

148 F. Kitagawa and K. Tanaka

Correctness. In the decryption algorithm, we need to compute discrete logarithm
on G. We can efficiently perform this operation since we restrict the message

space to {0, 1}. The decryption algorithm returns ⊥ if d ·
(∏

i∈[�] c
si
i

)−1

/∈ {1, g}.
Then, the correctness of Πddh follows from that of Πcca.

Let n be the number of key pairs in the security game. We define Fddh as a
function family consisting of functions described as

f ′
(
{sk, vk}k∈[n]

)
=
∑

k∈[n]

〈ak, sk〉 + f
(
{vk}k∈[n]

)
,

where 〈·, ·〉 denotes inner product over Z, ak ∈ {0, 1}�, and f is a function such
that

∑
k∈[n] 〈ak, sk〉 + f

(
{vk}k∈[n]

)
∈ {0, 1} for every {sk}k∈[n] and {vk}k∈[n].

By maintaining {vk}k∈[n] as bit strings, Fddh includes projection functions of
single-bit output. Πkdm is KDM-CCA secure with respect to Fddh. Formally, we
prove the following theorem.

Theorem 4. Let Πcca be IND-CCA secure. Assuming the DDH problem is hard
on G, Πddh is Fddh-KDM-CCA secure.

Remark 4 (Extension to affine functions). We can construct a DDH based PKE
scheme that is KDM-CCA secure with respect to affine functions by applying
the following modifications to the above construction. We set the message space
as G. Let SK ∈ {0, 1}L be a bit string that is a concatenation of s and bit
representation of v. We maintain a secret-key SK = s1 · · · sL as (gs1 , . . . , gsL).
Then, the construction is Faff -KDM-CCA secure, where Faff is a function class
consisting of functions described as

f (SK1, . . . ,SKn) =

⎛

⎝
∏

i∈[L]

(gski)aki

⎞

⎠ · a0,

where SKk = sk1 · · · skL for every k ∈ [n], a0 ∈ G and aki ∈ Zp for every i ∈ [�]
and k ∈ [n]. This is exactly the affine functions defined by Boneh et al. [4].

Proof of Theorem 4. Let n be the number of keys. Let A be an adversary
that attacks the Fddh-KDM-CCA security of Πddh. We proceed the proof via
a sequence of games. For every t ∈ {0, . . . , 11}, let SUCt be the event that A
succeeds in guessing the challenge bit b in Game t.

Game 0: This is the original Fddh-KDM(n)-CCA game regarding Πddh. We have
Advkdmcca

Πddh,Fddh,A,n(λ) =
∣
∣Pr[SUC0] − 1

2

∣
∣.

1. The challenger chooses b
r←− {0, 1} and generates (PKk,SKk) for every

k ∈ [n] as follows.
(a) Generate gk1, . . . , gk�

r←− G.
(b) Generate sk = sk1 · · · sk�

r←− {0, 1}� and xk1, . . . , xk�
r←− Zp.

A Framework for Achieving KDM-CCA Secure PKE 149

(c) Compute gk0 ←∏
i∈[�] (gki)

ski and ĝk0 ←∏
i∈[�] (gki)

xki .
(d) Generate (cpkk, cskk) ← KGcca(1λ).
(e) Generate wki

r←− Zp and set eki ← (gki)
wki for every i ∈ [�].

(f) Compute ek0 ←∏
i∈[�] (eki)

ski and uk ← ek0 · cskk.
(g) Set vk := {xki}i∈[�] ‖ {eki}i∈[�] ‖uk.

(h) Set PKk :=
(
cpkk, {gki}i∈[�] , gk0, ĝk0

)
and SKk := (sk, vk).

The challenger sends {PKk}k∈[n] to A and prepares a list Lkdm.
2. The challenger responds to queries made by A.

For a KDM query
(
j,
({

a0
k

}
k∈[n]

, f0
)

,
({

a1
k

}
k∈[n]

, f1
))

made by A, the
challenger responds as follows.
(a) Set m :=

∑
k∈[n]

〈
ab

k, sk

〉
+ f b

(
{vk}k∈[n]

)
.

(b) Generate r
r←− Zp and compute ci ← (gji)

r for every i ∈ [�].
(c) Compute d ← gm · (gj0)

r and π ← (ĝj0)
r.

(d) Return CT ← Enccca

(
cpkj ,

(
{ci}i∈[�] , d, π

))
and add (j,CT) to Lkdm.

For a decryption query (j,CT) made by A, the challenger returns ⊥
to A if (j,CT) ∈ Lkdm, and otherwise responds as follows.

(a) Compute
(
{ci}i∈[�] , d, π

)
← Deccca(cskj ,CT). If the decryption result

is not in G
�+2, return ⊥ and otherwise respond as follows.

(b) Return ⊥ if π 	= ∏
i∈[�] c

xji

i and m ← logg

(
d ·
(∏

i∈[�] c
sji

i

)−1
)

oth-

erwise.
3. A outputs b′ ∈ {0, 1}.

Game 1: Same as Game 0 except how the challenger computes {eki}i∈[�],k∈[n].

The challenger generates wi
r←− Zp for every i ∈ [�] and computes eki ←

(gki)
wi for every i ∈ [�] and k ∈ [n].

We have |Pr[SUC0] − Pr[SUC1]| = negl(λ) since ((g1i)w1i , . . . , (gni)wni) and
((g1i)wi , . . . , (gni)wi) are computationally indistinguishable by the DDH assump-
tion for every i ∈ [�].

Game 2: Same as Game 1 except how the challenger generates {sk}k∈[n] and

{gki}i∈[�],k∈[n]. The challenger first generates s = s1 · · · s�
r←− {0, 1}� and

g1, . . . g�
r←− G. Then, for every k ∈ [n], the challenger generates Δk

r←− {0, 1}�

and computes sk ← s ⊕ Δk. In addition, for every i ∈ [�] and k ∈ [n], the
challenger generates γki

r←− Zp and computes gki ← gγki

i .

|Pr[SUC1] − Pr[SUC2]| = 0 holds since the difference between Game 1 and 2 is
only conceptual.

From Game 3 to 7, we change the game so that we do not need s to respond
to KDM queries made by A.

150 F. Kitagawa and K. Tanaka

In Game 2, we have gk0 =
∏

i∈[�] (gki)
ski =

∏
i∈[�] (g

γki

i)si⊕Δki , where Δki is
the i-th bit of Δk for every i ∈ [�]. For every i ∈ [�] and k ∈ [n], we have

si ⊕ Δki =

{
si (Δki = 0)
1 − si (Δki = 1)

.

Thus, by defining

δki =

{
1 (Δki = 0)
−1 (Δki = 1)

, (2)

for every i ∈ [�] and k ∈ [n], we have

gk0 =
∏

i∈Δk

gγki

i ·
∏

i∈[�]

gδkiγkisi

i =
∏

i∈Δk

gki ·
∏

i∈[�]

gδkiγkisi

i

for every k ∈ [n], where
∏

i∈Δk
Xi denotes

∏
i∈[�] X

Δki
i .7

Game 3: Same as Game 2 except that the challenger uses δkiγki instead of
γki for every i ∈ [�] and k ∈ [n]. More precisely, the challenger computes
gki ← gδkiγki

i for every i ∈ [�] and k ∈ [n], and gk0 ←∏
i∈Δk

gki ·∏i∈[�] g
γkisi

i

for every k ∈ [n]. Note that δki · δki = 1 for every i ∈ [�] and k ∈ [n].

If γki distributes uniformly at random, then so does δkiγki for every i ∈ [�]
and k ∈ [n]. Therefore, we have |Pr[SUC2] − Pr[SUC3]| = 0.

Game 4: Same as Game 3 except how the challenger computes gk0, gk1, . . . , gk�

for every k ∈ [n]. The challenger generates γk for every k ∈ [n] and computes
gki ← gγkδki

i for every i ∈ [�] and k ∈ [n]. Moreover, the challenger computes
gk0 ←∏

i∈Δk
gki ·∏i∈[�] g

γksi

i for every k ∈ [n].

|Pr[SUC3] − Pr[SUC4]| = negl(λ) holds since (gγk1
1 , . . . , gγk�

�) and (gγk

1 , . . . , gγk

�)
are computationally indistinguishable by the DDH assumption for every k ∈ [n].

Below, we let g0 =
∏

i∈[�] g
si
i . In Game 4, for every k ∈ [n], we have

gki = gγkδki

i (i ∈ [�]) , and

gk0 =
∏

i∈Δk

gki ·
∏

i∈[�]

gγksi

i =

(
∏

i∈Δk

gki

)

· gγk

0 .

Then, the answer to a KDM query
(
j,
({

a0
k

}
k∈[n]

, f0
)

,
({

a1
k

}
k∈[n]

, f1
))

in

Game 4 is Enccca

(
cpkj ,

(
{ci}i∈[�] , d, π

))
, where

ci = (gji)r = (gr
i)γjδji (i ∈ [�]) , d = g

∑
k∈[k]〈ab

k,sk〉+fb({vk}k∈[n]) · (gj0)r ,

π = (ĝj0)
r =

∏

i∈[�]

c
xji

i , and r
r←− Zp.

7 That is,
∏

i∈Δk
Xi denotes the summation of Xi over positions i such that Δki = 1.

A Framework for Achieving KDM-CCA Secure PKE 151

We also have
∑

k∈[n]

〈
ab

k, sk

〉
=
∑

k∈[n]

〈
ab

k, s ⊕ Δk

〉
=
∑

k∈[n]

∑

i∈Δk

ab
ki +

∑

k∈[n]

∑

i∈[�]

ab
kiδkisi,

where summation is done over Z and ab
ki is the i-th bit of ab

k for every i ∈ [�].
Thus, by defining

Y b =
∑

k∈[n]

∑

i∈Δk

ab
ki + f b

(
{vk}k∈[n]

)
and μb

i =
∑

k∈[n]

ab
kiδki (i ∈ [�]) , (3)

we have

d = gY b+
∑

i∈[�] μb
isi ·

⎛

⎝
∏

i∈Δj

gji

⎞

⎠

r

·
⎛

⎝
∏

i∈[�]

gsi
i

⎞

⎠

γjr

= gY b ·
∏

i∈Δj

ci ·
∏

i∈[�]

(
gμb

i · (gr
i)γj

)si

.

Note that Y b and
{
μb

i

}
i∈[�]

are computed from
({

ab
k

}
k∈[n]

, f b
)

and
{δki}i∈[�],k∈[n].

Hereafter, we show the difference from the previous game by colored parts.

Game 5: Same as Game 4 except how the challenger responds to KDM queries.
For a KDM query

(
j,
({

a0
k

}
k∈[n]

, f0
)

,
({

a1
k

}
k∈[n]

, f1
))

made by A, the
challenger responds as follows.
1. Compute Y b and

{
μb

i

}
i∈[�]

as Eq. 3.

2. Generate r1, . . . , r�
r←− Zp.

3. Compute ci ← (gri
i)γjδji for every i ∈ [�].

4. Compute d ← gY b ·∏i∈Δj
ci ·∏i∈[�]

(
gμb

i · (gri
i)γj

)si

.

5. Compute π ←∏
i∈[�] c

xji

i .

6. Return CT ← Enccca

(
cpkj ,

(
{ci}i∈[�] , d, π

))
and add (j,CT) to Lkdm.

By the DDH assumption, (gr
1, . . . , g

r
�) and (gr1

1 , . . . , gr�

�) are computationally
indistinguishable. Thus, we have |Pr[SUC4] − Pr[SUC5]| = negl(λ).

Game 6: Same as Game 5 except how the challenger responds to KDM queries.
For a KDM query

(
j,
({

a0
k

}
k∈[n]

, f0
)

,
({

a1
k

}
k∈[n]

, f1
))

made by A, the
challenger responds as follows.
1. Compute Y b and

{
μb

i

}
i∈[�]

as Eq. 3.

2. Generate r1, . . . , r�
r←− Zp.

3. Compute ci ←
(
g−μb

i · gri
i

)δji

for every i ∈ [�].

152 F. Kitagawa and K. Tanaka

4. Compute d ← gY b ·∏i∈Δj
ci ·∏i∈[�] g

risi
i .

5. Compute π ←∏
i∈[�] c

xji

i .

6. Return CT ← Enccca

(
cpkj ,

(
{ci}i∈[�] , d, π

))
and add (j,CT) to Lkdm.

We can make this change in two steps. We first replace g
riγj

i with gri
i . We

then replace gri
i with g−μb

i · gri
i . Since ri is uniformly at random for every i ∈ [�],

the answer to a KDM query made by A identically distributes between Game 5
and 6. Thus, we have |Pr[SUC5] − Pr[SUC6]| = 0.

Game 7: Same as Game 6 except how the challenger responds to KDM queries.
For a KDM query

(
j,
({

a0
k

}
k∈[n]

, f0
)

,
({

a1
k

}
k∈[n]

, f1
))

made by A, the
challenger responds as follows.
1. Compute Y b and

{
μb

i

}
i∈[�]

as Eq. 3.

2. Generate r
r←− Zp.

3. Compute ci ←
(
g−μb

i · gr
i

)δji

for every i ∈ [�].

4. Compute d ← gY b ·∏i∈Δj
ci ·∏i∈[�] g

rsi
i .

5. Compute π ←∏
i∈[�] c

xji

i .

6. Return CT ← Enccca

(
cpkj ,

(
{ci}i∈[�] , d, π

))
and add (j,CT) to Lkdm.

By the DDH assumption, (gr
1, . . . , g

r
�) and (gr1

1 , . . . , gr�

�) are computationally
indistinguishable. Thus, |Pr[SUC6] − Pr[SUC7]| = negl(λ) holds.

In Game 7, d generated to respond to a KDM query is of the form

d = gY b ·
∏

i∈Δj

ci ·
∏

i∈[�]

grsi
i = gY b ·

⎛

⎝
∏

i∈Δj

ci

⎞

⎠ · gr
0.

Thus, we can reply to a KDM query made by A using g0 instead of s in Game 7.
Next, we eliminate secret keys of Πcca from the view of A. For this aim, we

make ek0 that is used to mask cskk uniformly at random for every k ∈ [n]. We
first change how the challenger responds to decryption queries made by A.

Game 8: Same as Game 7 except how the challenger responds to decryption
queries.
For a decryption query (j,CT) made by A, the challenger returns ⊥ to A if
(j,CT) ∈ Lkdm, and otherwise responds as follows.

1. Compute
(
{ci}i∈[�] , d, π

)
← Deccca (cskj ,CT). If the decryption result is

not in G
�+2, return ⊥. Otherwise, compute as follows.

2. Let ci = (gji)
ri for every i ∈ [�].8 If there exists i′ ∈ {2, . . . , �} such that

r1 	= ri′ , return ⊥. Otherwise, respond as follows.
8 Note that such ri exists unless gji is the identity element since ci ∈ G for every

i ∈ [�]. The probability that gji is the identity element is negligible. Thus, we ignore
this issue for simplicity.

A Framework for Achieving KDM-CCA Secure PKE 153

3. Return ⊥ if π 	=∏i∈[�] c
xji

i and otherwise m ← logg

(
d ·
(∏

i∈[�] c
sji

i

)−1
)

.

We define the following event in Game i (i = 7, . . . , 11).

BDQi: A makes a decryption query (j,CT) /∈ Lkdm which satisfies the following
conditions, where

(
{ci}i∈[�] , d, π

)
← Deccca (cskj ,CT).

–
(
{ci}i∈[�] , d, π

)
∈ G

�+2. Then, let ci = gri
ji , where ri ∈ Zp for every i ∈ [�].

– There exists i′ ∈ {2, . . . , �} such that r1 	= ri′ .
– π =

∏
i∈[�] c

xji

i .

We call such a decryption query a “bad decryption query”.
Games 7 and 8 are identical games unless A make a bad decryption query in

each game. Therefore, we have |Pr[SUC7] − Pr[SUC8]| ≤ Pr[BDQ8].
For every k ∈ [n], we have

eki = (gki)wi = (gwi
i)γkδki (i ∈ [�])

ek0 =
∏

i∈[�]

(eki)ski =

(
∏

i∈Δk

eki

)
∏

i∈[�]

(eki)
δkisi =

(
∏

i∈Δk

eki

)⎛

⎝
∏

i∈[�]

gwisi
i

⎞

⎠

γk

.

Note that δki · δki = 1 for every i ∈ [�] and k ∈ [n].

Game 9: Same as Game 8 except that e0
r←− G is used instead of

∏
i∈[�] g

wisi
i .

The view of A in Games 8 and 9 can be perfectly simulated by
⎛

⎝g1, . . . , g�, g
w1
1 , . . . , gw�

� ,
∏

i∈[�]

gwisi
i , g0

⎞

⎠ and (g1, . . . , g�, g
w1
1 , . . . , gw�

� , e0, g0) ,

respectively, where gi
r←− G and wi

r←− Zp for every i ∈ [�], s = s1 · · · s�
r←−

{0, 1}�, e0
r←− G, and g0 =

∏
i∈[�] g

si
i . By the leftover hash lemma, the view

of A in Game 8 is 2− �−2λ
2 -close to that in Game 9. Thus, by setting � = 3λ,

|Pr[SUC8] − Pr[SUC9]| = negl(λ) and |Pr[BDQ8] − Pr[BDQ9]| = negl(λ) hold.
There exists αi ∈ Zp such that gαi = gi for every i ∈ [�]. Then, for every

k ∈ [n], we have

gki = gαiγkδki = (gγk)αiδki (i ∈ [�]) , gk0 =
∏

i∈[�]

(gki)ski

eki = (gki)wi (i ∈ [�]) , and ek0 =

(
∏

i∈Δk

eki

)

eγk

0 .

Game 10: Same as Game 9 except that for every k ∈ [n], the challenger gener-
ates ek0 ← (∏

i∈Δk
eki

)
ezk
0 , where zk

r←− Zp.

154 F. Kitagawa and K. Tanaka

|Pr[SUC9] − Pr[SUC10]| = negl(λ) holds since (g, e0, g
γk , eγk

0) and (g, e0, g
γk ,

ezk
0) are computationally indistinguishable by the DDH assumption for every

k ∈ [n].
Moreover, we can efficiently check whether A makes a bad decryption query

or not by using {cskk}k∈[n], {αi}i∈[�], and {xki}i∈[�],k∈[n]. Therefore, we also have
|Pr[BDQ9] − Pr[BDQ10]| = negl(λ) by the DDH assumption.

In Game 10, ek0 distributes uniformly at random for every k ∈ [n]. Therefore,
A cannot obtain any information of cskk from uk = ek0 · cskk for every k ∈ [n],
and thus we can use IND-CCA security of Πcca.

Game 11: Same as Game 10 except that the challenger responds to KDM
queries made by A with CT ← Enccca

(
cpkj , 0(�+2)·|g|).

By the IND-CCA security of Πcca, we obtain |Pr[SUC10] − Pr[SUC11]| =
negl(λ).

Moreover, we can efficiently check whether A makes a bad decryption query
or not by using decryption queries for Πcca, {αi}i∈[�], and {xki}i∈[�],k∈[n]. Thus,
|Pr[BDQ10] − Pr[BDQ11]| = negl(λ) also holds by the IND-CCA security of Πcca.

The value of b is information theoretically hidden from the view of A in
Game 11. Thus, we have

∣
∣Pr[SUC11] − 1

2

∣
∣ = 0.

In Game 11, xk1, . . . , xk� are hidden from the view of A except ĝk0 =∏
i∈[�] (gki)

xki for every k ∈ [n]. Note that A cannot obtain information of
xk1, . . . , xk� other than ĝk0 through decryption queries for every k ∈ [n]. The
reason is as follows. If a decryption query (j,CT) made by A is not a bad decryp-
tion query, there exists r1 ∈ Zp such that ci = (gji)r1 for every i ∈ [�], where(
{ci}i∈[�] , d, π

)
← Deccca (cskj ,CT). Then, we have

∏

i∈[�]

c
xji

i =
∏

i∈[�]

(gji)
r1xji =

⎛

⎝
∏

i∈[�]

(gji)
xji

⎞

⎠

r1

= (ĝj0)
r1 .

In addition, bad decryption queries made by A are replied with ⊥ in Game 11.
This means that for every k ∈ [n], A cannot obtain information of xk1, . . . , xk�

other than ĝk0 through decryption queries.
We estimate Pr[BDQ11]. Let (j,CT) be a decryption query made by A and

let
(
{ci}i∈[�] , d, π

)
← Deccca (cskj ,CT). Suppose that

(
{ci}i∈[�] , d, π

)
∈ G

�+2,

ci = (gji)
ri for every i ∈ [�], and there exists i′ ∈ {2, . . . , �} such that r1 	= ri′ .

The probability that this query is a bad decryption query is

Pr
xji

r←−Zp

⎡

⎣
∏

i∈[�]

c
xji

i = π

∣
∣
∣
∣
∣
∣

∏

i∈[�]

(gji)
xji = ĝj0

⎤

⎦ . (4)

This probability is the same as

Pr
xji

r←−Zp

⎡

⎣
∑

i∈[�]

αiγjδjirixji = logg π mod p

∣
∣
∣
∣
∣
∣

∑

i∈[�]

αiγjδjixji = logg ĝj0 mod p

⎤

⎦ .

A Framework for Achieving KDM-CCA Secure PKE 155

αi 	= 0 and γj 	= 0 holds for every i ∈ [�] and j ∈ [n] with high probability and
thus we assume so. Then, two equations

∑

i∈[�]

αiγjδjirixji = logg π mod p and
∑

i∈[�]

αiγjδjixji = logg ĝj0 mod p

are linearly independent, and thus the probability shown in Eq. 4 is 1
p . Therefore,

we obtain Pr[BDQ11] = negl(λ).
From the above arguments, we have Advkdmcca

Πddh,Fddh,A,n(λ) = negl(λ). Since the
choice of A and n is arbitrary, Πddh is Fddh-KDM-CCA secure. � (Theorem 4)

Remark 5 (The multi user security of the QR and DCR based schemes). Our
QR and DCR based constructions are based on those proposed by Brakerski
and Goldwasser [5]. If we allow the length of secret keys to depend on the num-
ber of users n, we can prove that our QR and DCR based constructions are
KDM(n)-CCA secure using a technique similar to Brakerski and Goldwasser.

To prove KDM(n)-CCA security, we need to eliminate encrypted n secret
keys of the outer IND-CCA secure PKE scheme contained in secret keys of the
KDM-CCA secure scheme. In the above proof of DDH based scheme, by using
the self reducibility of the DDH problem, we complete such a task by making a
single group element

∏
i∈[�] g

wisi
i random using the leftover hash lemma.

However, when proving the KDM(n)-CCA security of the QR and DCR based
constructions, to complete such a task, we need to make n group elements ran-
dom using the leftover hash lemma. Therefore, in that case, we need to set the
length of secret keys depending on n similarly to the proof of KDM(n)-CPA
security by Brakerski and Goldwasser.

Acknowledgement. A part of this work was supported by Input Output Hong
Kong, Nomura Research Institute, NTT Secure Platform Laboratories, Mitsubishi
Electric, JST CREST JPMJCR14D6, JST OPERA, JSPS KAKENHI JP16H01705,
JP16J10322, JP17H01695.

References

1. Alperin-Sheriff, J., Peikert, C.: Circular and KDM security for identity-based
encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 334–352. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-30057-8 20

2. Applebaum, B.: Key-dependent message security: generic amplification and com-
pleteness. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 527–
546. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 29

3. Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence
of key-dependent messages. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 62–75. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
36492-7 6

https://doi.org/10.1007/978-3-642-30057-8_20
https://doi.org/10.1007/978-3-642-30057-8_20
https://doi.org/10.1007/978-3-642-20465-4_29
https://doi.org/10.1007/3-540-36492-7_6
https://doi.org/10.1007/3-540-36492-7_6

156 F. Kitagawa and K. Tanaka

4. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from
decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 108–125. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
85174-5 7

5. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption
under subgroup indistinguishability (or: Quadratic residuosity strikes back). In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 1–20. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14623-7 1

6. Camenisch, J., Chandran, N., Shoup, V.: A public key encryption scheme secure
against key dependent chosen plaintext and adaptive chosen ciphertext attacks.
In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 351–368. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9 20

7. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44987-6 7

8. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 4

9. Han, S., Liu, S., Lyu, L.: Efficient KDM-CCA secure public-key encryption for
polynomial functions. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS,
vol. 10032, pp. 307–338. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53890-6 11

10. Hofheinz, D.: Circular chosen-ciphertext security with compact ciphertexts. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881,
pp. 520–536. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
38348-9 31

11. Hohenberger, S., Lewko, A., Waters, B.: Detecting dangerous queries: a new app-
roach for chosen ciphertext security. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 663–681. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29011-4 39

12. Kitagawa, F., Matsuda, T., Hanaoka, G., Tanaka, K.: Completeness of single-bit
projection-KDM security for public key encryption. In: Nyberg, K. (ed.) CT-RSA
2015. LNCS, vol. 9048, pp. 201–219. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-16715-2 11

13. Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption scheme. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 26

14. Lu, X., Li, B., Jia, D.: KDM-CCA security from RKA secure authenticated encryp-
tion. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol.
9056, pp. 559–583. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46800-5 22

15. Myers, S., Shelat, A.: Bit encryption is complete. In: 50th FOCS, pp. 607–616
(2009)

16. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: 22nd ACM STOC, pp. 427–437 (1990)

17. Shoup, V.: Using hash functions as a hedge against chosen ciphertext attack. In:
Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 275–288. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6 19

https://doi.org/10.1007/978-3-540-85174-5_7
https://doi.org/10.1007/978-3-540-85174-5_7
https://doi.org/10.1007/978-3-642-14623-7_1
https://doi.org/10.1007/978-3-642-01001-9_20
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/978-3-662-53890-6_11
https://doi.org/10.1007/978-3-662-53890-6_11
https://doi.org/10.1007/978-3-642-38348-9_31
https://doi.org/10.1007/978-3-642-38348-9_31
https://doi.org/10.1007/978-3-642-29011-4_39
https://doi.org/10.1007/978-3-319-16715-2_11
https://doi.org/10.1007/978-3-319-16715-2_11
https://doi.org/10.1007/978-3-540-28628-8_26
https://doi.org/10.1007/978-3-662-46800-5_22
https://doi.org/10.1007/978-3-662-46800-5_22
https://doi.org/10.1007/3-540-45539-6_19

A Framework for Achieving KDM-CCA Secure PKE 157

18. Shoup, V.: A Computational Introduction to Number Theory and Algebra.
Cambridge University Press, Cambridge (2006)

19. Wee, H.: KDM-security via homomorphic smooth projective hashing. In: Cheng,
C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016, Part II. LNCS,
vol. 9615, pp. 159–179. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49387-8 7

https://doi.org/10.1007/978-3-662-49387-8_7
https://doi.org/10.1007/978-3-662-49387-8_7

	A Framework for Achieving KDM-CCA Secure Public-Key Encryption
	1 Introduction
	1.1 Backgrounds
	1.2 Our Results
	1.3 Technical Overview

	2 Preliminaries
	2.1 Public Key Encryption
	2.2 Projective Hash Function

	3 KDM(1)-CCA Secure PKE Based on Homomorphic Projective Hash Function
	4 Instantiation Based on the DCR Assumption
	4.1 Construction of H
	4.2 Construction of
	4.3 Associated Function Class

	5 KDM-CCA Secure PKE from the DDH Assumption
	References

