
Multi-key Homomorphic Signatures
Unforgeable Under Insider Corruption

Russell W. F. Lai1,2, Raymond K. H. Tai1, Harry W. H. Wong1,
and Sherman S. M. Chow1(B)

1 Chinese University of Hong Kong, Sha Tin, Hong Kong
{raymondtai,whwong,sherman}@ie.cuhk.edu.hk

2 Friedrich-Alexander-Uiversität Erlangen-Nürnberg, Erlangen, Germany
russell.lai@cs.fau.de

Abstract. Homomorphic signatures (HS) allows the derivation of the
signature of the message-function pair (m, g), where m = g(m1, . . . , mK),
given the signatures of each of the input messages mk signed under
the same key. Multi-key HS (M-HS) introduced by Fiore et al. (ASI-
ACRYPT’16) further enhances the utility by allowing evaluation of
signatures under different keys. The unforgeability of existing M-HS
notions assumes that all signers are honest. We consider a setting where
an arbitrary number of signers can be corrupted, called unforgeability
under corruption, which is typical for natural applications (e.g., veri-
fiable multi-party computation) of M-HS. Surprisingly, there is a huge
gap between M-HS (for arbitrary circuits) with and without unforge-
ability under corruption: While the latter can be constructed from stan-
dard lattice assumptions (ASIACRYPT’16), we show that the former
likely relies on non-falsifiable assumptions. Specifically, we propose a
generic construction of M-HS with unforgeability under corruption from
zero-knowledge succinct non-interactive argument of knowledge (ZK-
SNARK) (and other standard assumptions), and then show that such
M-HS implies zero-knowledge succinct non-interactive arguments (ZK-
SNARG). Our results leave open the pressing question of what level of
authenticity and utility can be achieved in the presence of corrupt signers
under standard assumptions.

Keywords: Homomorphic Signatures · Multi-key · Insider
ZK-SNARK

1 Introduction

In a basic signature scheme, a signer can use a secret key to sign messages which
are verifiable using the corresponding public key. The signatures are required to
be unforgeable, meaning that no efficient adversaries can forge a valid signature

A previous version of this paper is known as “A Zoo of Homomorphic Signatures:
Multi-Key and Key-Homomorphism.”

c© International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11273, pp. 465–492, 2018.
https://doi.org/10.1007/978-3-030-03329-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03329-3_16&domain=pdf

466 R. W. F. Lai et al.

on any message without the secret key. This requirement, however, limits the
utility of the signed messages. For example, without the secret key, one cannot
derive a signature of the result of a computation over the signed messages.

Homomorphic signature (HS) schemes [39] allow a third-party evaluator to
compute any functions from a class of admissible functions over signed mes-
sages (from a single signer), and derive signatures of the computation results,
without knowing the secret signing keys. HS is a handy tool for applications
which require computation on authenticated data. For example, it is useful when
computationally inferior data producers (e.g., sensors in Internet-of-Things [23])
need to outsource expensive computations to a third-party (e.g., the cloud) while
assuring the authenticity of the computation result.

Since homomorphic evaluation of messages and signatures is allowed, the
standard unforgeability notion can no longer be satisfied. There are two com-
mon meaningful relaxations. The first one is considered for linear homomorphic
signatures [11], where only linear functions are admissible. Unforgeability of lin-
ear HS requires that no adversary can derive a signature of a vector which is
not a linear combination of any honestly signed vectors. This relaxation is not
suitable for fully homomorphic signatures [15,37] where all polynomials/circuits
are admissible, as signatures for a wide range of messages can often be derived
from just a single signed message. Thus, the second approach is to have the
signature not only certify the message, but also the function that is used to
compute the message. Unforgeability here means that no adversary can derive a
signature of a message-function pair (m, g), such that m is not a function value
of g evaluated over any honestly signed messages. This work considers HS for
general functionality, hence we adopt the second approach.

1.1 Multi-key Homomorphic Signatures

To further extend the utility of HS, multi-key HS (M-HS) has recently received
attention [28,29]. This extension of HS allows homomorphic evaluation of sig-
natures signed under different keys. An evaluated signature is verifiable using
a combined public key, e.g., the ordered tuple consisting of all public keys of
the signatures being evaluated. M-HS allows multiple data producers, who do
not or should not share the same key, to contribute signed data for verifiable
computation. Unfortunately, existing work [28,29] only considers weaker secu-
rity models (see further discussion in Sect. 2.2), which do not capture insider
attacks from malicious contributors. In fact, a malicious signer in the scheme of
Fiore et al. [29] is able to create a signature on any message-function pairs (m, g)
regardless of the honest signer inputs (see AppendixA). This problem seems to
be inherent in all existing lattice-based signatures with trapdoors.

For certain classes of computation such as the majority vote, if the M-HS
scheme is not secure against insider attacks, it might be possible that a com-
promised signer can manipulate the voting result. This limits the usefulness of
existing M-HS solutions since it is often unrealistic to assume that all contribu-
tors to a multi-party computation are honest. We thus see a need for a stronger
notion which provides unforgeability even in the presence of corrupt signers.

Multi-key Homomorphic Signatures Unforgeable Under Insider Corruption 467

1.2 Our Results

Multi-key Homomorphic Signatures Unforgeable Under Insider Corruption. In
Sect. 4, we revisit the notion of multi-key homomorphic signatures (M-HS).
M-HS is a generalization of homomorphic signatures which allows a public
evaluator to apply a function g to transform signatures of different messages
(m1, . . . ,mK) each signed under possibly different public keys to a signature of
(g(m1, . . . ,mK), g) signed under a combined public key. Existing work [28,29]
assumes all signers are honest when defining and analyzing unforgeability. In
contrast, we define a strong security notion of M-HS called existential unforge-
ability under corruption and chosen message attack (cEUF-CMA), where the
adversary controls a set of malicious signers. A signature of (m, g) is a valid
forgery if the resulting message m is not in the range of g restricted by the input
of the honest signer. Interestingly, cEUF-CMA-security also makes sense in the
single-key setting, where we require that even the (possibly malicious) signer
itself cannot produce a signature on (m, g) where m is not in the range of g.

Relations to Existing Notions. We study how cEUF-CMA-secure M-HS is
related to other notions. First, we show in Sect. 5 that such M-HS can be con-
structed from zero-knowledge succinct non-interactive arguments of knowledge
(ZK-SNARK) together with digital signatures. There are some impossibility
results regarding the security of SNARKs in the presence of (signing) oracles
(O-SNARK) [30]. In particular, there exists a secure signature scheme Σ such
that no candidate construction of O-SNARK satisfies proof of knowledge with
respect to the signing oracle of Σ. Fortunately, there are at least two ways to
circumvent this impossibility result. The first approach is to use a ZK-SNARK
with a “strong” proof of knowledge property [16,30], where the extractor takes
as input an additional trapdoor and does not make use of the random tape of the
adversary. In other words, the extractor does not need to simulate the signing
oracle. The second approach is to use an underlying signature scheme for which
there exists a secure O-SNARK [30, Sect. 5]. Either way, by a recursive witness
extraction technique, we show that strong ZK-SNARKs implies a “poly-depth”
M-HS, and O-SNARKs yields a “constant-depth” M-HS.

Then, in Sect. 6.1, we show that succinct functional signatures (FS) [16] can
be constructed from a cEUF-CMA-secure two-key M-HS (2-HS). Since the exis-
tence of succinct functional signatures implies the existence of succinct non-
interactive arguments (SNARG), we obtain as a corollary that the existence of
cEUF-CMA-secure 2-HS implies the existence of SNARG.

The above implication is a bit unsatisfactory as it requires a 2-HS. We thus
further show in Sect. 6.2 that the existence of cEUF-CMA-secure single-key HS
is sufficient to imply that of SNARG. This makes cEUF-CMA-secure (M-)HS
sits nicely between SNARK and SNARG, which only differ by the existence of
the knowledge extractor.

Since it is known that the security of SNARGs cannot be based on falsifi-
able assumptions via black-box reductions [36], it follows that the cEUF-CMA-
security of M-HS must also be based on non-falsifiable assumptions or proven via

468 R. W. F. Lai et al.

non-black-box techniques. This impossibility result puts us into an unfortunate
situation where, either we rely on strong assumptions for our authenticity guar-
antee or we settle for some weaker authenticity guarantee. It would be interesting
to construct M-HS schemes which can withstand a lower but still reasonable level
of corruption from standard assumptions.

Note that the above implications concern about argument systems and HS
schemes for the complexity class NP. Another direction of circumventing the
impossibility would be to consider restricted classes of admissible functions.

Applications. Being such a powerful primitive, cEUF-CMA-secure M-HS implies
most if not all other notions of signatures [23]. This paper describes two exten-
sions in particular, namely, (multi-key) delegatable homomorphic signatures
and (multi-key) attribute-message-homomorphic signatures. As these extensions
mainly introduce more complicated syntax/functionalities without too much
technicality, we only briefly describe them below but omit the details.

1.3 Extensions

We introduce two extensions, multi-key delegatable homomorphic signatures
(M-DHS) and multi-key attribute-message-homomorphic signatures (M-AMHS),
which are immediate applications of cEUF-CMA-secure M-HS but seem not to
be realizable from non-corruption-resistant M-HS. M-DHS allows a group of sign-
ers to jointly fill in data according to a template. If it is not corruption-resistant,
a signer may overwrite the template entries filled out by other signers. M-AMHS
allows evaluation not only on data but also on attributes, e.g., the trustworthi-
ness of the data provider. If it is not corruption-resistant, a signer may fake its
attributes. Here we consider M-HS schemes which support homomorphic evalua-
tion of labeled-data [35] (to be explained in Sect. 4.1). In a nutshell, such schemes
ensure that data with “incompatible” labels cannot be used for computation.

Delegation. M-DHS can be viewed as an extension to append-only signatures
(AOS) [8,40]. It is motivated by the following scenario. Suppose that multiple
data producers engage in a verifiable multi-party computation. Instead of con-
tributing independently, these data producers are organized to form groups called
delegation chains. Similar to AOS, in each of these chains, the first data producer
contributes a template which is passed to each of the data producers along the
chain, who fills out some of the entries in the template. The last data producer
in each chain then passes the completed template to a third party evaluator,
who performs computation over the collection of completed templates. M-DHS
is easily realizable using cEUF-CMA-secure M-HS. To delegate, the delegator
simply signs the (partially-filled) template labeled by the public key of the del-
egatee. By the corruption resistance of the M-HS, a delegatee cannot overwrite
the template entries filled out by the delegators up the delegation chain.

Attribute-Homomorphism. M-AMHS allows “attribute-homomorphism” on top
of the message-homomorphism of (M-)HS. Consider our running example of ver-
ifiable multi-party computation again. M-AMHS is useful when the computation

Multi-key Homomorphic Signatures Unforgeable Under Insider Corruption 469

not only depends on the data contributed by the data producers, but also their
attributes such as trustworthiness, accuracy, and ranks [23]. For such a scenario,
it is natural to have the authorities issue certificates to the data producers. A
certificate is a signature on the attribute of the data producer labeled by its pub-
lic key. The data producer signs its data as in M-HS, except that the evaluator
now evaluates functions over both signatures produced by the data producers
and the certificates. By the corruption resistance of the M-HS, it is infeasible for
a data producer to fake its attributes.

2 Related Work

2.1 Existing Homomorphic Signatures

Homomorphic signatures have undergone great development, notably from sup-
porting only addition or multiplication [9,11,19,32,34,44] to bounded-degree
polynomials [10,20], and to (leveled) fully homomorphic operations which allow
evaluation of general circuits of apriori bounded depth [15,37]. Beyond unforge-
ability, some works also consider privacy notions such as context hiding [1,3,4].

2.2 Existing Multi-key Homomorphic Signatures

The study of HS was restricted to the single-key setting until the recent works
of Fiore et al. [29] and Derler and Slamanig [28], who defined multi-key homo-
morphic signatures with varying level of security. Independent of their work, we
initiate the study of multi-key HS with unforgeability under corruption.

Fiore et al. [29] proposed the notion of multi-key homomorphic authen-
ticators, which generalizes the multi-key homomorphic version of signatures
and message authentication codes (MAC). They extended the HS by Gor-
bunov et al. [37] to an M-HS based on standard lattice assumptions, and intro-
duce multi-key homomorphic MAC based on pseudorandom functions.

While the model of Fiore et al. allows the adversary to corrupt signers, a
forgery is valid only if it passes verification under non-corrupt keys. In practice,
it means that if any signer involved in the computation is corrupted, the authen-
ticity of the derived result is no longer guaranteed. Indeed, as acknowledged [29],
their construction is vulnerable to insider attacks. They claimed that preventing
insider attacks is impossible, by arguing that, for general functions, controlling a
few inputs implies controlling the function output. We find the claim inaccurate
as there is a large class of functions which may not exhibit this property, e.g.,
functions with majority gates and threshold gates. Our work, in contrast, con-
structs M-HS which prevent insider attacks, at the cost of stronger assumptions,
i.e., the existence of SNARKs.

Another independent work by Derler and Slamanig [28] also defined M-HS,
with a stronger security model than that of Fiore et al. [29] but weaker than
ours. Specifically, it allows corruption of all but one signer, and the forgery must
pass verification under a set of public keys including the non-corrupted one.

470 R. W. F. Lai et al.

In contrast, our model allows corruption of all signers, whose public keys are
involved in the verification of the forgery.

Derler et al. [27] introduced homomorphic proxy re-authenticators, in which
a proxy can evaluate functions over signed data and derive a corresponding MAC
under a key of the receiver. To do so, the proxy needs to use some keys derived
from the secrets of the signers and the MAC key. In contrast, homomorphic eval-
uation and verification of M-HS can be performed publicly without any secret.

2.3 Key-Homomorphism

Key-homomorphism has been studied in the context of threshold fully homo-
morphic encryption [2] and pseudorandom functions [13]. The main inspiration
for considering attribute-homomorphism in M-AMHS comes from the study of
key-homomorphic encryption (KHE) by Boneh et al. [12], who formulated KHE
and constructed it based on lattice assumptions. Furthermore, they used KHE to
construct attribute-based encryption for general circuits with short secret keys.

Although KHE is named with the term “key-homomorphic”, the “public
keys” in KHE are actually attributes possibly with semantic meaning. Unlike
homomorphic encryption (HE) which allows homomorphic operations on the
ciphertexts with respect to the plaintexts, KHE allows homomorphic operations
on the ciphertexts with respect to the attributes. As the plaintexts are private
while the attributes are public, KHE and HE are inherently different. For M-
AMHS, both messages and attributes are public. We thus treat attributes as
messages and have the authorities sign them using M-HS.

Derler and Slamanig [28] investigate key-homomorphic signatures in the more
literal setting, i.e., the homomorphism is over the randomly sampled keys. Their
goal is to use a milder assumption to generalize more basic primitives such as
ring signatures [17,25] and universal designated-verifier signatures [24,50].

Key-homomorphism in signatures is also considered in different extents in del-
egatable functional signatures (DFS) [6] and the operational signature scheme
(OSS) [5]. In the former, the evaluator must use its secret key to derive signa-
tures. The verification algorithm then takes as input both the public key of the
original signature as well as the public key of the evaluator. In the latter, the
evaluation algorithm takes as input tuples consisting of an identity, a message,
and a signature. It outputs another tuple to a targeted identity. DFS is con-
structed generically from trapdoor permutations, while OSS is constructed from
indistinguishability obfuscation and one-way functions. They thus serve as proof-
of-concept without giving much intuition of how to achieve key-homomorphism
in signatures. Other related notions include policy-based signatures [7], in which
a policy-dependent signing key can only sign messages satisfying the policy, and
functional signatures [16], in which a functional signing key can only sign mes-
sages in the range of the specified function.

Multi-key Homomorphic Signatures Unforgeable Under Insider Corruption 471

3 Preliminaries

Let λ ∈ N be the security parameter. Let negl(λ) be functions which are negli-
gible in λ. [n] = {1, . . . , n} denotes the set of positive integers at most n where
n ∈ N. For an algorithm A, x ∈ A(·) denotes that x is in the output range of A.
x ← A(·) denotes assigning the output from the execution of algorithm A to
the variable x. For a set S, x ← S denotes sampling uniformly at random an
element from S and naming it x. We use := to denote the assignment operation.
The empty string and the empty set are denoted by ε and ∅ respectively.

3.1 Succinct Non-Interactive Arguments

Definition 1 (SNARG). A tuple of PPT algorithms Π = (Gen,Prove,Vf) is
a succinct non-interactive argument (SNARG) for a language L ∈ NP with the
witness relation R if it satisfies the following:

– Completeness: For all x,w such that R(x,w) = 1, and for all common
reference strings crs ∈ Gen(1λ), we have Vf(crs, x,Prove(crs, x, w)) = 1.

– Soundness: For all PPT adversaries A,

Pr[Vf(crs, x, π) = 1 ∧ x /∈ L : crs ← Gen(1λ); (x, π) ← A(crs)] ≤ negl(λ) .

– Succinctness: For all x,w such that R(x,w) = 1, crs ∈ Gen(1λ) and π ∈
Prove(crs, x, w), there exists a universal polynomial p(·) that does not depend
on the relation R, such that |π| ≤ O(p(λ)).

Definition 2 (ZK-SNARG). A SNARG Π = (Gen,Prove,Vf) is zero-
knowledge (ZK) if there exists a PPT algorithm S = (Scrs,SProve) such that,
for all PPT adversaries A, we have

| Pr[AProve(crs,·,·)(crs) = 1 : crs ← Gen(1λ)]−
Pr[AS′(crs,td,·,·)(crs) = 1 : (crs, td) ← Scrs(1λ)]| ≤ negl(λ)

where S ′(crs, td, x, w) = SProve(crs, td, x).

Definition 3 (Strong SNARK [16,30]). A SNARG Π = (Gen,Prove,Vf)
is a strong succinct non-interactive argument of knowledge (SNARK) if there
exists a PPT algorithm E = (E1,E2) such that for all PPT provers A, and for
every distinguisher D,

| Pr[D(crs) = 1 : crs ← Gen(1λ)]−
Pr[D(crs) = 1 : (crs, td) ← E1(1λ)]| ≤ negl(λ) .

Furthermore,

|Pr[Vf(crs, x, π) = 1 ∧ (x,w∗) /∈ R : (crs, td) ← E1(1λ),

(x, π) ← A(crs), w∗ ← E2(crs, td, x, π)]| ≤ negl(λ)

where the probabilities are taken over the random coins of E. Here, the extractor
is not required to take the random tape of the adversary as part of its input.

472 R. W. F. Lai et al.

Definition 4 (O-SNARK [30]). A SNARG Π = (Gen,Prove,Vf) is a suc-
cinct non-interactive argument of knowledge in the presence of oracles for O

(O-SNARK) for the oracle family O if for all PPT provers A, there exists a
PPT algorithm EA such that

|Pr[Vf(crs, x, π) = 1 ∧ (x,w∗) /∈ R : crs ← Gen(1λ),

O ← O; (x, π) ← AO(crs), w∗ ← EA(crs, qt)]| ≤ negl(λ)

where qt = {qi,O(qi)} is the transcript of all oracle queries and answers made
and received by A during its execution.

3.2 Signatures

Definition 5 (Digital Signatures). A signature scheme for a message space
M is a tuple of PPT algorithms DS.(KGen,Sig,Vf) defined as follows:

– (pk, sk) ← KGen(1λ): The key generation algorithm takes as input the security
parameter λ and generates a key pair (pk, sk).

– σ ← Sig(sk,m): The signing algorithm takes as input a secret key sk and a
message m ∈ M. It outputs a signature σ.

– b ← Vf(pk,m, σ): The verification algorithm takes as input a public key pk, a
message m, and a signature σ. It outputs a bit b.

Correctness. The scheme is correct if, for all λ ∈ N, all key pairs (pk, sk) ∈
KGen(1λ), all messages m ∈ M, and all signatures σ ∈ Sig(sk,m), it holds that
Vf(pk,m, σ) = 1.

Definition 6 (Existential Unforgeability). A signature scheme DS is exis-
tentially unforgeable under chosen message attacks (EUF-CMA-secure) if,

Pr[EUF-CMADS,A(1λ) = 1] ≤ negl(λ)

for all PPTadversaries A, where the experiment EUF-CMADS,A is as follows:

– The challenger C generates (pk, sk) ← KGen(1λ) and gives pk to A.
– The adversary A is given access to a signing oracle OSig(sk, ·).
– Eventually, A outputs a forgery (m∗, σ∗).
– If the signing oracle was not queried on m∗, the experiment outputs

Vf(pk,m∗, σ∗). Otherwise, the experiment outputs 0.

3.3 Functional Signatures

Definition 7 (Functional Signatures [16]). A functional signature (FS)
scheme for a message space M and a function family F = {f : Df → M}
consists of algorithms FS.(Setup,KGen,Sig,Vf).

– (mpk,msk) ← FS.Setup(1λ): This algorithm takes in the security parame-
ter λ. It outputs the master public key mpk and the master secret key msk.

Multi-key Homomorphic Signatures Unforgeable Under Insider Corruption 473

– skf ← FS.KGen(msk, f): This algorithm takes as input the master secret key
msk and a function f ∈ F . It outputs a secret key skf for f .

– (f(m), σ) ← FS.Sig(f, skf ,m): This algorithm takes as input a function f ∈
F , the secret key skf for the function f , and a message m ∈ Df . It outputs
f(m) and a signature of f(m).

– b ← FS.Vf(mpk,m, σ): This algorithm takes as input the master public key
mpk, a message m, and a signature σ. It outputs 1 for a valid signature.

Correctness. We require that a signature signed under an honestly generated
secret key to be valid. Formally, for any λ ∈ N, any (mpk,msk) ∈ FS.Setup(1λ),
any f ∈ F , any skf ∈ FS.KGen(msk, f), any m ∈ Df , if (m∗, σ) ←
FS.Sig(f, skf ,m), then FS.Vf(mpk,m∗, σ) = 1.

With a secret key of a function, one can only produce new signatures on the
range of that function.

Definition 8 (Unforgeability). An FS scheme FS is unforgeable if for any
PPT adversary A the probability that it wins in the following game is negligible:

– The challenger generates (mpk,msk) ← FS.Setup(1λ), and gives mpk to A.
– A is allowed to query a key generation oracle Okey and a signing oracle

Osign defined as follows. These oracles share a dictionary indexed by tuples
(f, i) ∈ F ×N, whose entries are signing keys: skf ← FS.KGen(msk, f). This
dictionary keeps track of the keys that have been previously generated.

• Okey(f, i)
∗ If there exists an entry for the key (f, i) in the dictionary, output the
corresponding value ski

f .
∗ Otherwise, sample a fresh key ski

f ← FS.KGen(msk, f), then add an
entry (f, i) → ski

f to the dictionary and output ski
f .

• Osign(f, i,m)
∗ If there exists an entry for the key (f, i) in the dictionary, output

σ ← FS.Sig(f, ski
f ,m).

∗ Otherwise, sample a fresh key ski
f ← FS.KGen(msk, f), then add it to

the entry (f, i) of the dictionary, and output σ ← FS.Sig(f, ski
f ,m).

– A wins if it can produce (m∗, σ) such that:
• FS.Vf(mpk,m∗, σ) = 1;
• There does not exist m such that m∗ = f(m) for any f which was sent

as a query to the Okey oracle;
• There does not exist a query (f,m) to Osign where m∗ = f(m).

We require the signatures on a message generated by different secret keys to
be indistinguishable even if the master signing key and the secret keys are given.

474 R. W. F. Lai et al.

Definition 9 (Function-Privacy). An FS scheme FS is function-private if
for any PPT adversary A the probability that it wins in the following game is
negligible:

– The challenger honestly generates (mpk,msk) ← FS.Setup(1λ), and gives
mpk and msk (w.l.o.g. this includes the randomness used in Setup) to A.

– A chooses a function f0 and receives an honestly generated secret key skf0 ←
FS.KGen(msk, f0).

– A chooses a second function f1 for which |f0| = |f1| (where padding can be
useful if there is a known upper bound) and receives an honestly generated
secret key skf1 ← FS.KGen(msk, f1).

– A chooses a pair of values m0, m1 s.t. |m0| = |m1| and f0(m0) = f1(m1).
– The challenger selects a random bit b ← {0, 1} and generates a signature on

the image message m′ = f0(m0) = f1(m1) using secret key skfb
, and gives

the resulting signature σ ← FS.Sig(f, skfb
,mb) to A.

– A outputs a bit b′, and wins the game if b′ = b.

We require the signature size to be independent of the size |m| of the input
to the function, and the description size |f | of the function f .

Definition 10 (Succinctness). An FS scheme FS is succinct, if there exists
a polynomial s(·) such that for every λ ∈ N, f ∈ F , m ∈ Df , (mpk,msk) ∈
FS.Setup(1λ), skf ∈ FS.KGen(msk, f), (f(m), σ) ∈ FS.Sig(f, skf ,m), it holds
that the signature σ on f(m) has size |σ| ≤ O(s(λ)).

4 Insider-Secure Multi-key Homomorphic Signatures

Our aim is to define and construct multi-key homomorphic signatures (M-HS)
which is unforgeable under insider corruption and study its relation to existing
notions. M-HS allows an arbitrary number of signers to generate keys and sign
messages independently. In a simplified setting where messages are not labeled,
suppose that each signer k signs a message mk using its secret key skk, resulting
in a set of signatures {σk}. An evaluator can then publicly evaluate a function g
over the message-signature pairs (mk, σk) to derive a signature of (m, g) where
m = g(m1, . . . ,mK). Syntactically, M-HS generalizes the normal homomorphic
signatures (HS) since it reduces to HS when all the signatures are generated by
the same secret key.

In the multi-signer setting, we must carefully analyze unforgeability when
the adversary can corrupt some signers or even maliciously generate some key
pairs. Such an insider attack is unnatural in HS since there is only one signer and
hence one signing key involved with a signature. We formulate the unforgeability
against insider corruption, which requires that such group of corrupt signers
cannot produce signatures of (m, g), where the message m is outside the range
of the function g restricted by the inputs of the non-corrupt signers. Security
against insider attack is especially useful when the output of the function cannot
be fully controlled by a few inputs, e.g., functions with majority and threshold

Multi-key Homomorphic Signatures Unforgeable Under Insider Corruption 475

gates. To illustrate the meaning of a forgery, consider the following configuration:
Let g(m1, . . . ,mK) =

∏K
k=1 mk be the product function and mk ∈ R for some

ring R. As long as mk = 0 for some non-corrupt signer k, the adversary should
not be able to produce a signature of (m, g) where m �= 0.

Interestingly, this requirement actually still makes sense even when there is
only one signer who is also the adversary. In this case, unforgeability against
insider corruption implies that even the only signer cannot produce a signature
of (m, g) if there does not exist m′ such that m = g(m′). Furthermore, if the
signature scheme is context hiding, meaning that the signature of (m, g) reveals
nothing more than the tuple (m, g) itself, then it can be regarded as an adap-
tive zero-knowledge succinct non-interactive argument (ZK-SNARG) of the NP
language {(m, g) : ∃m′ s.t. m = g(m′)} as long as g is efficiently computable.

4.1 Notation

Labeled programs are (implicitly) used in various homomorphic signature
schemes in which each message is signed under a label �. A labeled program
P consists of a function f and the input labels of the input to f . Formally, for
a message space M, a labeled program P = (f, �1, . . . , �k) consists of a function
f : Mk → M for some k ∈ N, and a set of input labels �1, . . . , �k, where �i is
a label for the i-th input of f . An identity program I� = (fid, �) is defined as a
labeled program with an identity function fid : M → M and an input label �.

Let Pi = (fi, �i,1, . . . , �i,ki
) be some programs for i ∈ [n] for some n ∈ N.

A composed program P∗ = g(P1, . . . ,Pn) = (g(f1, . . . , fn), �1, . . . , �k∗) can be
constructed by evaluating a function g : Mn → M on the outputs of a set of
labeled programs P1, . . . ,Pn. For such a composed program P∗, we consider its
labeled inputs (�1, . . . , �k∗) only consist of all distinct labeled inputs of P1, . . . ,Pn,
where inputs with the same label are converted to a single input. In particular,
a labeled program P = (f, �1, . . . , �k) can be expressed as the composition of k
identity programs P = f(I�1 , . . . , I�k).

Following [29], we assume every user has an identity id ∈ ID for some identity
space ID, and their keys are associated to id. To identify users in the multi-key
setting using labeled programs, we associate a message to a label � = (id, τ),
where τ ∈ T is a tag in some tag space T .

For a labeled program P = (f, �1, . . . , �n) with labels �i = (idi, τi), we use
id ∈ P as a compact notation for id ∈ {id1, . . . , idn}.

4.2 Definitions

Syntax. A multi-key homomorphic signature scheme (M-HS) with N -hop evalua-
tion consists of the PPT algorithms (Setup,KGen,Sig,Vf,Eval) defined as follows:

– pp ← Setup(1λ) inputs the security parameter λ. It outputs the public param-
eter pp which is an implicit input to all other M-HS algorithms. The public
parameter defines the maximum “hop” of evaluations N , meaning it is not
possible to apply Eval on signatures that have been evaluated for N times.

476 R. W. F. Lai et al.

It also defines the message space M, the class G of admissible functions, the
identity space ID, and the tag space T . The label space L := ID × T is
defined as the Cartesian product of ID and T .

– (pk, sk) ← KGen(pp) inputs the public parameter. It outputs the public key
pk and the secret key sk. When an algorithm takes sk as input, we assume its
corresponding pk is also taken as input implicitly.

– σ ← Sig(sk, �,m) inputs the secret key sk, a label � = (id, τ) ∈ L, and a
message m ∈ M. It outputs a signature σ. Without loss of generality, we
assume σ is of the form σ = (0, σ′), where 0 indicates it is a fresh signature.

– σ ← Eval(g, (Pk, {pkid}id∈Pk
,mk, σk)k∈[K]) inputs a function g ∈ G and,

from each contributor, a labeled program1 Pk, the corresponding public keys
{pkid}id∈Pk

, a message mk, and a signature σk, where k ∈ [K].
It outputs a signature σ, certifying that message m is the output of P =
g(P1, . . . ,PK) over some signed labeled messages. Without loss of generality,
we assume the signature takes the form σ = (n, σ′), where n indicates that
the signature has undergone n hops of evaluation.

– b ← Vf(P, {pkid}id∈P ,m, σ) inputs a labeled program P, the corresponding
public keys {pkid}id∈P , a message m ∈ M, and a signature σ.
It outputs a bit b ∈ {0, 1}, indicating if message m is the output of evaluating
P over some signed labeled messages.

Correctness. Roughly, we require that an honestly generated signature σ ←
Sig(sk, �,m) verifies for m as the output of the identity program I�.

In addition, we require that, if for all i ∈ [K], σi verifies for
mi as the output of a labeled program Pi, then the signature σ ←
Eval(g, (Pk, {pkid}id∈P ,mk, σk)k∈[K]) verifies for g(m1, . . . ,mk) as the output of
the composed program g(P1, · · · ,Pk).

Formally, the correctness of an M-HS scheme is defined as follows:

– Signing Correctness: For any pp ∈ Setup(1λ), (pk, sk) ∈ KGen(pp), � =
(id, τ) ∈ L, m ∈ M, and σ ∈ Sig(sk, �,m), it holds that Vf(I�, pkid,m, σ) = 1.

– Evaluation Correctness: Furthermore, for any K ∈ poly (λ), any Pk,
{pkid}id∈Pk

, mk, and σk = (nk, σ′
k) such that Vf(Pk, {pkid}id∈Pk

,mk, σk) = 1
where k ∈ [K], nk ≤ N − 1, σ ∈ Eval(g, (Pk, {pkid}id∈Pk

,mk, σk)k∈[K]), and
g ∈ G, it holds that Vf(P, {pkid}id∈P ,m, σ) = 1, where P = g(P1, . . . ,Pk).

1 Our definition differs from [29] in that Eval takes previous labeled programs as input.
The “recursive-proof”-style construction seems to make this unavoidable, as the
evaluator needs to produce a proof for “I know some other proofs which satisfy
some other statements”. These other statements (containing the previous programs)
are part of the new statement to be proven. We are not aware of any SNARK
in which the prover does not need to take the statement to be proven as input.
Another plausible approach to avoid proving the possession of other proofs is that
the evaluator “updates” the input proofs. However, “updatable” SNARK is not
known to exist. In practice, an evaluator would naturally verify the input signatures
before proceeding with evaluations. Since an evaluator is also a verifier, it would need
to know the “history” (the previous labeled programs) of the input messages anyway.

Multi-key Homomorphic Signatures Unforgeable Under Insider Corruption 477

Unforgeability. For unforgeability against insider corruption, we require that if
some signers are corrupted, they cannot produce a signature disrespecting the
inputs of honest signers. For example, for a product function g(m1, . . . ,mK) =
∏K

k=1 mk and mk ∈ R for some ring R, as long as mk = 0 for some honest
signer k, no adversary can forge a signature of (1, g)2. Even if all signers are
corrupted, they cannot produce a signature on (m, g) such that m is outside the
output range of the function g. For instance, if g(m) = 0 for all message m, then
no adversary can produce a signature of (1, g).

Formally, we consider the following security game cEUF-CMA (existential
unforgeability under corruption and chosen message attack) between an adver-
sary A and a challenger C.

– The challenger C runs pp ← Setup(1λ) and gives pp to A. C initializes a
signing dictionary DSig = ∅ and an honest user dictionary DHonest = ∅.

– The adversary A is given adaptive access to the signing oracle:
• A queries (�,m) where � = (id, τ) ∈ L is a label and m ∈ M is a message.

If it is the first query with identity id, C generates keys (pkid, skid) ←
KGen(pp), updates DHonest := DHonest ∪ {id}, and gives pkid to A.
If (�,m) /∈ DSig, C computes σ� ← Sig(skid, �,m), returns σ� to A and
updates DSig ← DSig ∪ (�,m), else C just ignores the query.

– The adversary A outputs a labeled program P∗ = (g∗, �∗
1, . . . , �

∗
K), a set of

public keys {pk∗
id}id∈P∗ , a message m∗, and a signature σ∗.

– To describe the winning conditions, we establish the following notations:
• Let S = {i : id∗

i ∈ P∗ ∩ DHonest} ⊆ [K] denote the set collecting the
indexes of inputs contributed from honest signers involved in P∗.

• Let Mi = {m : (�∗
i ,m) ∈ DSig} denote the set collecting the messages

which were queries to the signing oracle with label �∗
i . Note that {�∗

i }i∈S

are the labels of the inputs from the honest signers in the program P∗.
• Let g∗({Mi}i∈S) denote the set of all possible outputs of g∗ when all the

inputs of g∗ with index i ∈ S are restricted to the set Mi:
When S = ∅, meaning there is no honest signer involved in P∗, we define
g∗({Mi}i∈S) = g∗(·).
When Mi = ∅ for some i ∈ S, meaning that there exists i ∈ S such that
no query to the signing oracle was of the form (�∗

i , ·),
we define g∗({Mi}i∈S) = ∅.

– The experiment outputs 1 if all the following conditions are satisfied:
• Vf(P∗, {pk∗

id}id∈P∗ ,m∗, σ∗) = 1.
• pk∗

id∗
i

= pkid∗
i

for all i ∈ S: The public keys for honest signers are consistent
with those returned by the oracle.

• m∗ /∈ g∗({Mi}i∈S): When there are honest signers involved in P∗, it
requires that m∗ is not the correct output of P∗ when executed over
messages previously authenticated. When the signers involved in P∗ are
all corrupt, it requires that it is impossible to obtain m∗ from P∗.

2 Formally, a forgery would be certifying (1,P = (g, τ1, . . . , τK)) instead of (1, g).

478 R. W. F. Lai et al.

An M-HS scheme is unforgeable under corruption (cEUF-CMA-secure) if, for
all PPT adversaries A, we have Pr[cEUF-CMAHS,A = 1] ≤ negl(λ).

We say that the scheme is unforgeable (EUF-CMA-secure) if A is not allowed
to include maliciously generated public keys in the forgery, i.e., for all id ∈ P∗,
it holds that id ∈ DHonest. Note that this recovers the definition of previous
work [29] in the single dataset setting3.

Context Hiding. We require an M-HS scheme to be weakly context hiding, such
that the signature on an evaluated message does not reveal information about
the function inputs. The property is “weak” since the functionality is not hidden.
This is inherent to our notion as the symbolic labeled program is required for ver-
ification, as well as to existing homomorphic signatures supporting functionali-
ties beyond linear functions. In the context of verifiable multi-party computation,
function inputs should be hidden while the function itself should remain public.
Therefore, in this context, weak context hiding is a more suitable property when
compared to a variant which requires the fresh signature to be indistinguishable
from the evaluated one, although the latter provides stronger privacy.

Formally, an M-HS scheme HS is said to be weakly context hiding, if there
exists a simulator S = (SSetup,SSig) such that for any PPT adversaries A, we have
∣
∣Pr[ContextHiding0HS,S,A(1λ) = 1] − Pr[ContextHiding1HS,S,A(1λ) = 1]

∣
∣ ≤ negl(λ)

Fig. 1. Context hiding experiments of M-HS

3 To recover their definition in the multiple datasets setting, we need to add dataset
identifiers to our definition. Since one can always include the dataset identifier in
the label, and restrict a labeled program to be computed on inputs with the same
dataset identifier, we just omit the dataset identifier in this paper.

Multi-key Homomorphic Signatures Unforgeable Under Insider Corruption 479

where for b ∈ {0, 1} ContextHidingb
HS,S,A are experiments defined in Fig. 1.

Succinctness. We require the signature size to be independent of the sizes of the
inputs to, the descriptions of, and the output of the labeled program.

Formally, an M-HS scheme is succinct if there exists a polynomial s(·), s.t.
for any λ ∈ N, pp ∈ Setup(1λ), positive integer K ∈ poly(λ), {Pk, {pkid}id∈Pk

,
mk, σk}k∈[K], g ∈ G, and σ ∈ Eval(g, (Pk, {pkid}id∈P ,mk, σk)K

k=1), |σ| ≤ O(s(λ)).

5 Construction

We construct M-HS with unforgeability under corruption generically from ordi-
nary signatures and ZK-SNARKs, which can be seen as a multi-key generaliza-
tion of the folklore construction of HS. We formalize the following idea. Signa-
tures are produced freshly using an ordinary signature scheme. For evaluation,
the evaluator proves that it possesses a set of signatures on messages, and the
evaluation of a function on these messages produces the resulting message.

We use a family of argument systems recursively by using the proofs (the
evaluated signatures) as witnesses to compute other proofs for further homo-
morphic evaluation.4 The family of argument systems corresponds to a family
of languages, which in turn is parameterized by the number of hops n the sig-
nature has been evaluated. A statement (P, {pkid}id∈P ,m) is contained in the
n-th language denoted by Ln, if P is of hop n, and for some K such that, (1) for
each k ∈ [K], (Pk, {pkid}id∈Pk

,mk) in the language Lnk
for some nk < n, (2)

P = g(P1, . . . ,PK) for some function g, (3) m is the output of g with inputs
m1, . . . ,mK . If each proof is succinct, the recursively generated proofs, and hence
the signatures, are also succinct.

Concretely, we define the family of argument systems and languages as fol-
lows. Let DS be a signature scheme for some message space L × M, where
L = ID × T is a product of some identity space ID and tag space T . Let
G ⊆ {g : M∗ → M} be some set of admissible functions which are computable
in polynomial time. For each n ∈ [N], let Πn be an argument system5 for the
following NP language Ln with witness relation Rn:

Ln =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(P, {pkid}id∈P ,m) :
∃ (g, (Pk,mk, σk)k∈[K]) s.t.
P = g(P1, . . . ,PK) ∧ m = g(m1, . . . ,mK) ∧

∀k ∈ [K],
σk = (nk, σ′

k) ∧ nk ∈ {0, . . . , n − 1} ∧
Rnk

((Pk, {pkid}id∈Pk
,mk), σ′

k) = 1

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

4 Homomorphic encryption with targeted malleability [14] also used similar techniques.
5 Defined in this way, our scheme produces N crs’s. We see two plausible approaches

for just using one crs: (1) Define a single “über language” which captures all N lan-
guages, so we only have statements in one language to be proven. (2) If an “updat-
able” SNARK is available, the evaluator does not need to produce new proofs.

480 R. W. F. Lai et al.

except that Ln is defined by the following instead when n = 1:

L1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(P, {pkid}id∈P ,m) :
∃ (g, (I�k=(idk,τk),mk, σk)k∈[K]) s.t.
P = g(I�1 , . . . , I�K) ∧ m = g(m1, . . . ,mK) ∧
∀k ∈ [K], σk = (0, σ′

k) ∧ DS.Vf(pkidk , (�k,mk), σ′
k) = 1

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

Figure 2 formally shows our generic construction of multi-key homomorphic
signature scheme HS from DS and Π1, . . . , ΠN . Its correctness follows directly
from the correctness of DS and Π1, . . . , ΠN .

Fig. 2. Construction of M-HS from ZK-SNARK

Next, we prove that HS is unforgeable against insider corruption. If the
adversary outputs a signature (a proof) of a tuple (P∗,m∗) such that m∗ is
outside the range of the evaluation of P∗ restricted by the inputs of the honest
signer, either a proof can be extracted for a statement outside Ln for some n,
which breaks the soundness of Πn, or a forgery of DS verifiable under the public
key of the honest signer can be extracted, which breaks the unforgeability of DS.

Multi-key Homomorphic Signatures Unforgeable Under Insider Corruption 481

Theorem 1. If one-way functions exist, and Πn is a strong SNARK (Definition
3) for all n ∈ [N], HS is unforgeable under corruption.

Proof. EUF-CMA-secure signatures can be constructed from one-way func-
tions [43,49]. Thus, we suppose that DS is EUF-CMA-secure.

Suppose there exists an adversary AHS that produces a forgery in HS with
non-negligible probability. We show how to construct an adversary A that uses
AHS to break the soundness of Πn for some n or produce a forgery of DS.
Without loss of generality, assume that AHS queries the signing oracle on at
most Q = poly(λ) distinct identities.

A first guesses a number n′ ∈ {0, . . . , N} denoting whether the forgery can
be used to produce a forgery of DS (case n′ = 0) or break the soundness of Πn

for some n (case n′ ∈ [N]).

Case 1: Breaking the Unforgrability of DS. Suppose A guesses n′ = 0, i.e., it
attempts to use AHS to produce a forgery of DS, we write A as ADS . ADS acts
as a challenger in the cEUF-CMA game of HS. ADS obtains from its challenger
the public key pkDS . It generates, for each n ∈ [N], (crsn, tdn) ← Πn.E1(1λ),
a simulated crsn for Πn, together with a trapdoor tdn, and forwards pp =
(1λ, crs1, . . . , crsN) to AHS . Then ADS initializes an empty signing dictionary
DSig = ∅ and an empty honest user dictionary DHonest = ∅. ADS also randomly
picks a value q ∈ [Q].

Let îd be the q-th distinct identity on which AHS queries the signing oracle.
ADS answers signing oracle queries as follows:

– AHS queries on (�,m) where � = (id, τ) ∈ L and m ∈ M.
If this is the first query with identity id, ADS configures pkid as followings.
If îd = id, ADS sets pkîd := pkDS and gives it to AHS , else ADS generates
keys (pkid, skid) ← KGen(pp) and gives pkid to A.
When (�,m) /∈ DSig, if � = (îd, ·), ADS forwards (�,m) to its signing oracle to
get σ′

�, else ADS computes σ′
� ← Sig(skid, (�,m)). In either case, ADS returns

σ� = (0, σ′
�) to AHS and updates DSig ← DSig ∪ (�,m).

If (�,m) ∈ DSig, ADS just ignores the query.

AHS will output, as an alleged forgery of HS, a labeled program P∗ =
(g∗, �∗

1, . . . , �
∗
K), a set of public keys {pk∗

id}id∈P∗ , a message m∗, and a signature
σ∗ = (n∗, σ′) such that Vf(P∗, {pk∗

id}id∈P∗ ,m∗, σ∗) = 1, pk∗
id∗

i
= pkid∗

i
for all

i ∈ S, and m∗ /∈ g∗({Mi}i∈S), where S is the set of indexes of inputs contributed
by honest signers.

If S = ∅, meaning that all signers involved in P∗ are corrupt, then ADS
aborts (since the guess n′ = 0 is wrong). Otherwise, there exists i ∈ S and with
probability at least 1/Q we have id∗

i = îd.
ADS greedily runs Πn.E2, the extractor of ZK-SNARK for Ln, recursively

from n = n∗ to n = 1, attempting to recover a set of label-message-signature
tuples {((�∗

k,m∗
k), σ∗

k)} such that all of which pass the verification of DS. The
only case when ADS is unable to do so is when there exists n ∈ [N] such that

482 R. W. F. Lai et al.

a statement for which ADS possesses a valid proof is actually false. In this case,
the guess n′ = 0 is wrong, and ADS aborts.

Suppose ADS indeed successfully extracts such label-message-
signature tuples. Since all statements for which proofs are extracted are true,
i.e., all evaluations are done faithfully, and m∗ /∈ g∗({Mi}i∈S), there must exists
a tuple ((�′ = (îd, τ ′),m′), σ′) ∈ {((�∗

k,m∗
k), σ∗

k)}k such that (�′,m′) /∈ DSig. Since
pk∗

id∗
i

= pkid∗
i

for all i ∈ S, and in particular pk∗
îd

= pkDS , ((�′,m′), σ′) is a valid
forgery to DS.

Note that by Definition 3, each extractor Πn.E2 works for all provers and does
not take as input the random tape of the prover, which is Πn+1.E

2 in our case.
So, the extraction of each layer contributes an additive, instead of multiplicative,
overhead to the runtime of the overall extraction. We can, therefore, afford the
number of hops N to be polynomially large.
Case 2: Breaking the Soundness of Πn. Suppose A guesses n′ ∈ [N], meaning
that it attempts to use the forgery to break the soundness of Πn′ . We write A
as AΠn′ , who acts as a challenger in the cEUF-CMA game of HS.

AΠn′ obtains from its challenger the common reference string crs. It sets
crsn′ = crs. It generates for each n ∈ [N]\{n′}, (crsn, tdn) ← Πn.E1(1λ), i.e.,
a simulated crsn for Πn, together with a trapdoor tdn. It forwards the public
parameters pp = (1λ, crs1, . . . , crsN) to AHS . Then ADS initializes an empty
signing dictionary DSig = ∅ and an empty honest user dictionary DHonest = ∅.

AΠn′ answers signing oracle queries as follows:

– AHS queries (�,m) where � = (id, τ) ∈ L and m ∈ M.
If (�,m) is the first query with identity id, AΠi

generates keys (pkid, skid) ←
KGen(pp) and gives pkid to AHS .
If (�,m) /∈ DSig, AΠi

computes σ� ← Sig(skid, �,m), returns σ� to AHS and
updates DSig ← DSig ∪ (�,m), else the query is ignored.

AHS will output, as an alleged forgery of HS, a labeled program P∗ =
(g∗, �∗

1, . . . , �
∗
K), a set of public keys {pk∗

id}id∈P∗ , a message m∗, and a signature
σ∗ = (n∗, σ′) such that Vf(P∗, {pk∗

id}id∈P∗ ,m∗, σ∗) = 1, and m∗ /∈ g∗({Mi}i∈S).
AΠn′ greedily runs Πn.E2, the extractor of ZK-SNARK for Ln, recursively

from n = n∗ to n′, attempting to recover all tuples {(P∗
k , {pk∗

id}id∈P∗
k
,m∗

k, σ∗
k)}

such that all of which passes the verification of Πn′ . The only case when AΠn′ is
unable to do so is when there exists n ∈ {n∗, . . . , n′ + 1} such that a statement
in Ln induced by the forgery is false. In this case, the guess n′ is wrong, and
AΠn′ aborts.

Suppose the above greedy extraction is successful, AΠn′ checks if there exists
an extracted tuple which does not satisfy the relation for Ln′ . If so, then AΠn′
successfully obtains a Πn′ proof for a false statement and hence breaks the
soundness of Πn′ . If not, then the guess n′ is wrong and AΠn′ aborts.

Summary. Overall, since the abort conditions of A for different choices of n′ are
disjoint, and n′ is chosen randomly from {0, . . . , N}, the probability that A does
not abort is non-negligible. Therefore, we conclude that A can either break the
unforgeability of DS, or the soundness of Πn for some n ∈ [N].

Multi-key Homomorphic Signatures Unforgeable Under Insider Corruption 483

Theorem 2. Assume one-way function exists. If Πn is an O-SNARK with
respect to the signing oracle of DS (Definition 4) for all n ∈ [N] where N
is a constant, then HS is unforgeable under corruption. Note that in this case
HS only supports constant-hop (N) evaluation.

Proof. The proof is exactly the same as the proof of unforgeability from strong
SNARK (Theorem 1), except that extractors with dependence on the provers are
used. Specifically, A := An∗ acts as the prover for the extractor Πn∗ .E2

A, and an
extractor Πn.E2

An
:= An−1 in the upper layer acts as the prover for the extractor

Πn−1.E
2
An−1

in the lower layer. Note that for all n ∈ [N], the same signing oracle
for DS is required. Therefore, with the transcript of signing oracle queries, the set
of extractors Πn.E2

An
for the recursive language is able to extract the witnesses.

Note that the runtime of Πn.E2
An

may depend on the runtime of An. In general,
Πn.E2

An
may run An as a black box polynomially-many times. In the worst

case, suppose n∗ = N . In this case, even if N is as small as logarithmic, the
total runtime of recursively running the set of extractors Πn.E2

An
might become

exponential, as the extractors need to take the provers (the extractor in the layer
above) as input, each of which contributes a multiplicative polynomial overhead
to the extraction time. We thus restrict N to be a constant.

Candidate Constructions of Strong SNARKs and O-SNARKs. As shown by
Fiore et al. [30], there are a few candidates of O-SNARK. Computationally-sound
proofs of Micali [47] can be used as O-SNARK without putting any restrictions
on the underlying signature scheme in our construction. If we require the under-
lying signatures to be hash-and-sign signatures and model the hash as a random
oracle, then all SNARKs can be used as O-SNARKs. In the standard model, if
we require the message space of the signature scheme to be properly bounded
and require the adversary to query almost the entire message space, or we require
the adversary to issue oracle queries before seeing the common reference string,
then all SNARKs can be used as O-SNARKs.

Yet, as far as we know, no strong SNARK candidate is known, although the
notion has been used in the literature [16]. For example, in recent SNARK con-
structions [26,33,38,46] based on knowledge of exponents or certain extractabil-
ity assumptions, the extractor needs to run the prover as a black box. This does
not affect our overall results in the sense that, constant-hop M-HS constructed
from O-SNARKs is sufficient to imply functional signatures and ZK-SNARGs.

Theorem 3. If Πn is zero knowledge for n ∈ [N], HS is weakly context hiding.

Proof. Πn is zero-knowledge, so there exists a simulator SΠn
= (Scrs

Πn
,SProve

Πn
)

which simulates a proof πn for any instance in Ln. To construct a simulator SHS
for HS, we define SSetup

HS which simulates the common reference strings crsn using
Scrs

Πn
, and SSig

HS which simulates the signatures using SProve
Πn

. The proofs simulated
from SΠn

are indistinguishable from the real proofs, so the simulated signatures
from SHS are indistinguishable from the real signatures.

Theorem 4. Let N = poly(λ) be a positive integer. If Πn is succinct for all
n ∈ [N], then HS is succinct.

484 R. W. F. Lai et al.

Proof. The size of a signature produced by Eval(g, (Pk, {pkid}id∈Pk
,mk, σk)k∈[K])

is the proof length of Πn for some n plus the length of the binary representa-
tion of n. By the succinctness of Πn, the proof length of Πn is bounded by
O(p(λ)) for some fixed polynomial p. Since N ∈ poly(λ) and n ∈ [N], the binary
representation of n is of size O(log λ). Therefore, HS is succinct.

6 Relation with Existing Notions

6.1 Functional Signatures from cEUF-CMA-Secure M-HS

To understand the relation of M-HS with existing notions, we begin by construct-
ing functional signatures [16] (FS) using a 2-key HS. FS (Definition 7) allows an
authority with a master secret key to derive function-specific signing keys. Given
a signing key for function f , one can only sign messages in the range of f .

We construct FS using an M-HS supporting 1-hop evaluation of signatures
signed under two different keys. For the setup, we generate two sets of M-HS
keys, include both public keys and one secret key sk1 in the master public key,
and keep the other secret key sk0 as the master secret key. The FS signing key
consists of a signature σf of the function f signed under the master secret key.
To sign a function output f(m), the signer simply signs the input message m
using sk1, and evaluates the signatures σf and σm of the function and the message
respectively using the universal circuit U , which is defined as U(f,m) = f(m)
for any function f and message m. The unforgeability under corruption of the
M-HS scheme is crucial, for otherwise, the signer might be able to produce a
signature (under the combined key (pk0, pk1)) on any message (possibly outside
the range of f) using sk1.

Formally, let U be the universal circuit which takes as input a circuit f and
its input m, and computes U(f,m) = f(m). We assume that the description size
of f , the length of the input m, and the length of the output f(m) are all bounded
by some integer n = poly(λ). Let F = {f : {0, 1}� → {0, 1}k s.t. |f |, �, k ≤ n}
denote the function family. Let HS.(KGen,Sig,Vf,Eval) be a 1-hop 2-HS scheme,
with label space L = {0, 1} × {0, 1}∗ and message space M = {0, 1}n, for a
labeled program family G such that U ∈ G. We construct a functional signature
scheme FS.(Setup,KGen,Sig,Vf) for the function family F as shown in Fig. 3.
The correctness follows straightforwardly from that of HS.

Theorem 5. If HS is cEUF-CMA-secure, FS is unforgeable.

Proof. With an adversary AFS that produces a forgery of FS with non-negligible
probability, we construct an adversary AHS that uses AFS to produce a forgery
of HS. AHS acts as a challenger in the unforgeability game of FS.

AHS receives pp and pkHS from the EUF-CMA game of HS. It sets pk0 :=
pkHS and generates (pk1, sk1) ← HS.KGen(pp). It sets the master public key
mpk = (pk0, pk1, sk1) and forwards mpk to AFS . AHS simulates the two types of
queries made by AFS , namely, key generation oracle queries and signing oracle
queries, as follows:

Multi-key Homomorphic Signatures Unforgeable Under Insider Corruption 485

Fig. 3. Construction of FS from M-HS

– Okey(f, i)
• If there exists an entry for (f, i) in the dictionary, output the correspond-

ing value ski
f .

• Otherwise, query the signing oracle of HS to get

σi
f ← HS.Sig(skHS , (0, pk1), f).

Then add ski
f = σi

f to the dictionary entry (f, i) and output ski
f .

– Osign(f, i,m)
• If there exists an entry for (f, i) in the dictionary, retrieve ski

f = σi
f .

• Otherwise, query the signing oracle of HS to get σi
f as above. Then add

ski
f = σi

f to the dictionary entry (f, i).
• Finally, sample τ ← {0, 1}λ and compute σm ← HS.Sig(sk1, (1, τ),m).

Let P := (U, (0, pk1), (1, τ)), ηf := (I0,pk1 , pk0, f, σi
f) and ηm :=

(I1,τ , pk1,m, σm). Compute σ′ ← HS.Eval(P, (ηf , ηm)) and output
(U(f,m), (τ, σ′)).

After querying the oracles, AFS responds with forgery (m∗, σ∗), where σ∗ =
(τ∗, σ′∗). AHS returns (P = (U, (0, pk1), (1, τ∗)), {pk0, pk1},m∗, σ′∗). It is a valid
forgery of HS, since, by the definition of the unforgeability game of functional
signatures, m∗ is not in the range of any f queried to the Okey oracle, and
m∗ �= f(m) for any (f,m) queried to the Osign oracle.

486 R. W. F. Lai et al.

Theorem 6. If HS is weakly context hiding, FS is function-private.

Proof. Let AFS be an adversary of the function-privacy game. As HS is weakly
context hiding, there exists a simulator SHS which, on input (P = (U, (0, pk1),
(1, τ)), {pk0, pk1}, f(m)) for a random tag τ , outputs a signature of f(m) which is
indistinguishable from that produced by FS.Sig(f, skf ,m). We can thus replace
the challenger with the simulator SHS , which is indistinguishable in the view
of AFS except with negligible probability. The simulated signatures contain no
information about the function f and input message m except for f(m). The
probability that AFS guesses correctly in the simulated game is 1

2 .

Theorem 7. If HS is succinct, FS is succinct.

Proof. The size of a signature produced by FS.Sig(f, skf ,m) is the signature
length of HS. The succinctness of FS follows directly from that of HS.

Since the existence of secure functional signatures implies that of
SNARGs [16], for which security cannot be proven via a black-box reduction
from falsifiable assumptions [36], we have the following corollary.

Corollary 1. If cEUF-CMA-secure, weakly context hiding, and succinct 1-hop
2-HS for NP exists, then SNARG for NP exists. Moreover, the succinctness of M-
HS must rely on either non-falsifiable assumptions or non-black-box techniques.

6.2 ZK-SNARG from cEUF-CMA-Secure M-HS

We have shown that the existence of 2-HS implies that of FS, which in turn
implies the existence of SNARGs. This implication is somewhat unsatisfactory
since it relies on the existence of 2-HS, which might be more difficult to construct
than (1-)HS (with unforgeability under corruption). Thus, in this section, we
construct SNARGs directly from HS, making (M-)HS with unforgeability under
corruption a notion sitting tightly and nicely in between SNARKs and SNARGs.
This transformation also gives us zero-knowledge for free6.

The direct construction is as follows. Let the public parameters of M-HS be
the common reference string. The prover generates a fresh M-HS key and signs
both the statement x and the witness w. Let �x = (id, τx) and �w = (id, τw) be
labels for arbitrary identity id and tags τx and τw. It then evaluates the signatures
using a labeled program P = (g, �x, �w) which, on input (x,w), outputs x if and
only if w is a valid witness of x. It finally outputs the evaluated signature as the
proof. Note that behavior of the program P with respect to the labels �x and
�w is rather arbitrarily. We remark that Libert et al. [45] also use homomorphic
signatures to construct proof systems, while the construction is quite different.

Formally, let HS = (Setup,KGen,Sig,Vf,Eval) be a 1-depth (1-)HS scheme
for any label space L = ID×T where log |ID| = poly(λ) and log |T | = poly(λ).
6 Function privacy of FS is very similar to zero-knowledge, except that the former

is defined in “indistinguishability-style” while the latter is defined in “simulation-
style”.

Multi-key Homomorphic Signatures Unforgeable Under Insider Corruption 487

Let g be a function such that g(x,w) = x if R(x,w) = 1, ⊥ otherwise. Figure 4
shows our SNARG construction Π for NP language L with relation R. The
completeness follows straightforwardly from the correctness of HS.

Fig. 4. Construction of SNARG from M-HS

Theorem 8. If HS is cEUF-CMA-secure, then Π is sound.

Proof. If there exists an adversary AΠ that breaks the soundness of Π with
non-negligible probability, we can construct an adversary AHS that uses AΠ to
produce a forgery of HS. AHS acts as a challenger in the soundness game of Π.

AHS receives pp from the challenger of the cEUF-CMA game of HS, and
forwards the common reference string crs := pp to AΠ . Eventually, AΠ responds
with (x∗, π∗) such that Vf(crs, x∗, π∗) = 1 but x∗ �∈ L. AHS then parses π∗ =
(pk∗, id∗, τ∗

x , τ∗
w, σ∗), and answers (P∗ = (g, (id∗, τ∗

x), (id∗, τ∗
w)), pk∗, x∗, σ∗) to its

cEUF-CMA game. Since x∗ �∈ L, we have x∗ �= g(x,w) for all (x,w) ∈ M2.

Theorem 9. If HS is weakly context hiding, then Π is zero-knowledge.

Proof. Since HS is weakly context hiding, there exists a simulator SHS =
(SSetup

HS ,SSig
HS) such that, SSetup

HS simulates the public parameter, and SSig
HS sim-

ulates on input (P = (g, (id, τx), (id, τw)), {pkid}id∈P , x), for some arbitrary id,
τx, and τw, a signature on x which is statistically close to the real signatures.
We can thus construct Scrs

Π using SSetup
HS and SProve

Π using SSig
HS , and conclude that

Π is zero-knowledge.

Theorem 10. If HS is succinct then Π is succinct.

Proof. The proof produced by π ← Prove(crs, x, w) consists of an HS public key,
an identity, two tags, all of which has polynomial length, and a signature of HS.
By the succinctness of HS, the signature size is also bounded by a polynomial.

488 R. W. F. Lai et al.

If the underlying M-HS scheme is secure in the standard model (without a
common reference string), i.e., pp = λ, the above construction would yield a
ZK-SNARG in the standard model, which is impossible. Therefore, we can also
rule out the possibility of constructing M-HS schemes which are unforgeable
under corruption in the standard model. Interestingly, the only existing M-HS
scheme [29] is unforgeable but without corruption in the standard model.

7 Conclusion and Open Problem

We study multi-key homomorphic signatures (M-HS) which are unforgeable
under corruption and chosen message attacks (cEUF-CMA). We have con-
structed cEUF-CMA-secure M-HS from zero-knowledge succinct non-interactive
argument of knowledge (ZK-SNARK), and shown that the existence of the for-
mer implies the existence of zero-knowledge succinct non-interactive argument
(ZK-SNARG). Due to the known impossibility of SNARG from non-falsifiable
assumptions, we pose it as an open problem to identify a weaker (but still reason-
able) security model of M-HS, with constructions from standard assumptions.

Acknowledgments. Sherman S. M. Chow is supported by the General Research Fund
(CUHK 14210217) of the Research Grants Council, University Grant Committee of
Hong Kong.

We thank the anonymous reviewers for their detailed and helpful comments. We
also thank Yvo Desmedt and Daniel Wichs for inspiring discussions.

A Insecurity of Existing Work against Insider Attack

We briefly explain why the existing construction of M-HS by Fiore et al. [29]
suffers from insider attacks. Since their construction is a multi-key generalization
of the (single-key) HS by Gorbunov et al. [37], we first demonstrate how the
attack works in the single-key setting, then generalize it to the multi-key setting.

The HS construction by Gorbunov et al. [37] is based on the notion of homo-
morphic trapdoor functions. To recall, a homomorphic trapdoor function f maps
a public key pk, an index x, and a preimage u to an image v. The function is
homomorphic in the following sense: Given a function g and some preimages vi

for i ∈ [N], one can efficiently compute an image vg. If ui where vi = f(pk, xi, ui)
for i ∈ [N] are additionally given, then one can compute a preimage ug(x1,...,xN).
The tuple (vg, ug(x1,...,xN)) “encodes” the computation g(x1, . . . , xN) in the sense
that vg = f(pk, g(x1, . . . , xN), ug(x1,...,xN)). Note that these computations can be
performed without the knowledge of the secret key. Furthermore, given the secret
key sk corresponding to pk, any image v, and any index x, one can “invert” the
function by sampling u such that v = f(pk, x, u). Given such homomorphic trap-
door functions, the construction of HS is almost apparent. Roughly speaking,
the secret key corresponds to the signing key of the HS scheme, the public key
and a set of images corresponds to the verification key, the indexes correspond
to messages, and the preimages correspond to the signatures.

Multi-key Homomorphic Signatures Unforgeable Under Insider Corruption 489

Note that the inversion capability of the trapdoor function is more than suf-
ficient for signing. In particular, the signer who holds the secret trapdoor can
choose to invert the function on an image-index tuple (v, x) which is other-
wise impossible to obtain through homomorphic evaluations. While in a typ-
ical setting the signer is assumed to be honest and not to generate preim-
ages for “invalid” image-index pairs, a malicious signer can sample a preim-
age/signature u∗ such that vg = f(pk, x, u∗) yet x is not in the range of g.

Generalizing, a multi-key homomorphic trapdoor function f (constructed
implicitly in [29]) maps a set of public keys {pki}i∈[M], an index x, and a preim-
age u to an image v. The knowledge of a secret key sk corresponding to any pk in
{pki}i∈[M] suffices to invert f on the tuple (v, x) with respect to {pki}i∈[M]. As
a result, if any of the M signers is corrupt, an adversary can generate signatures
that disrespect the messages signed by the other honest signers.

References

1. Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, Waters, B.: Com-
puting on authenticated data. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194,
pp. 1–20. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-
9 1

2. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4 29

3. Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data: new
privacy definitions and constructions. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 367–385. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-34961-4 23

4. Attrapadung, N., Libert, B., Peters, T.: Efficient completely context-hiding
quotable and linearly homomorphic signatures. In: Kurosawa and Hanaoka [42],
pp. 386–404

5. Backes, M., Dagdelen, Ö., Fischlin, M., Gajek, S., Meiser, S., Schröder, D.: Oper-
ational signature schemes. Cryptology ePrint Archive, Report 2014/820 (2014)

6. Backes, M., Meiser, S., Schröder, D.: Delegatable functional signatures. In: Cheng
et al. [21], pp. 357–386

7. Bellare, M., Fuchsbauer, G.: Policy-based signatures. In: Krawczyk [41], pp. 520–
537

8. Bethencourt, J., Boneh, D., Waters, B.: Cryptographic methods for storing ballots
on a voting machine. In: ISOC Network and Distributed System Security Sympo-
sium - NDSS 2007. The Internet Society, February/March 2007

9. Boneh, D., Freeman, D., Katz, J., Waters, B.: Signing a linear subspace: signature
schemes for network coding. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS,
vol. 5443, pp. 68–87. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00468-1 5

10. Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 10

https://doi.org/10.1007/978-3-642-28914-9_1
https://doi.org/10.1007/978-3-642-28914-9_1
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-34961-4_23
https://doi.org/10.1007/978-3-642-34961-4_23
https://doi.org/10.1007/978-3-642-00468-1_5
https://doi.org/10.1007/978-3-642-00468-1_5
https://doi.org/10.1007/978-3-642-20465-4_10

490 R. W. F. Lai et al.

11. Boneh, D., Freeman, D.M.: Linearly homomorphic signatures over binary fields
and new tools for lattice-based signatures. In: Catalano et al. [18], pp. 1–16

12. Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and
compact garbled circuits. In: Nguyen and Oswald [48], pp. 533–556

13. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs
and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40041-4 23

14. Boneh, D., Segev, G., Waters, B.: Targeted malleability: homomorphic encryption
for restricted computations. In: Goldwasser, S. (ed.) ITCS 2012: 3rd Innovations in
Theoretical Computer Science, pp. 350–366. Association for Computing Machinery,
January 2012

15. Boyen, X., Fan, X., Shi, E.: Adaptively secure fully homomorphic signatures based
on lattices. Cryptology ePrint Archive, Report 2014/916 (2014)

16. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk [41], pp. 501–519

17. Brakerski, Z., Kalai, Y.T.: A framework for efficient signatures, ring signatures
and identity based encryption in the standard model. Cryptology ePrint Archive,
Report 2010/086 (2010)

18. Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.): PKC 2011. LNCS, vol.
6571. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8

19. Catalano, D., Fiore, D., Warinschi, B.: Efficient network coding signatures in the
standard model. In: Fischlin et al. [31], pp. 680–696

20. Catalano, D., Fiore, D., Warinschi, B.: Homomorphic signatures with efficient ver-
ification for polynomial functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014. LNCS, vol. 8616, pp. 371–389. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-44371-2 21

21. Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.): PKC 2016. LNCS,
vol. 9614. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49384-7

22. Cheon, J.H., Takagi, T. (eds.): ASIACRYPT 2016. LNCS, vol. 10032. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6

23. Chow, S.S.M.: Functional credentials for internet of things. In: Chow, R., Saldamli,
G. (eds.) Proceedings of the 2nd ACM International Workshop on IoT Privacy,
Trust, and Security, IoTPTS@AsiaCCS, Xi’an, China, 30 May 2016, p. 1. ACM
(2016)

24. Chow, S.S.M., Haralambiev, K.: Non-interactive confirmer signatures. In: Kiayias,
A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 49–64. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19074-2 4

25. Chow, S.S.M., Wei, V.K.W., Liu, J.K., Yuen, T.H.: Ring signatures without ran-
dom oracles. In: Lin, F.C., Lee, D.T., Lin, B.S., Shieh, S., Jajodia, S. (eds.) ASI-
ACCS 06: 1st ACM Symposium on Information, Computer and Communications
Security, pp. 297–302. ACM Press, March 2006

26. Danezis, G., Fournet, C., Groth, J., Kohlweiss, M.: Square span programs with
applications to succinct NIZK arguments. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014. LNCS, vol. 8873, pp. 532–550. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45611-8 28

27. Derler, D., Ramacher, S., Slamanig, D.: Homomorphic proxy re-authenticators and
applications to verifiable multi-user data aggregation. In: Kiayias, A. (ed.) FC 2017.
LNCS, vol. 10322, pp. 124–142. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-70972-7 7

https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-19379-8
https://doi.org/10.1007/978-3-662-44371-2_21
https://doi.org/10.1007/978-3-662-44371-2_21
https://doi.org/10.1007/978-3-662-49384-7
https://doi.org/10.1007/978-3-662-53890-6
https://doi.org/10.1007/978-3-642-19074-2_4
https://doi.org/10.1007/978-3-662-45611-8_28
https://doi.org/10.1007/978-3-319-70972-7_7
https://doi.org/10.1007/978-3-319-70972-7_7

Multi-key Homomorphic Signatures Unforgeable Under Insider Corruption 491

28. Derler, D., Slamanig, D.: Key-homomorphic signatures and applications to multi-
party signatures and non-interactive zero-knowledge. Cryptology ePrint Archive,
Report 2016/792 (2016)

29. Fiore, D., Mitrokotsa, A., Nizzardo, L., Pagnin, E.: Multi-key homomorphic
authenticators. In: Cheon and Takagi [22], pp. 499–530

30. Fiore, D., Nitulescu, A.: On the (in)security of SNARKs in the presence of oracles.
In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 108–138. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-4 5

31. Fischlin, M., Buchmann, J., Manulis, M. (eds.): PKC 2012. LNCS, vol. 7293.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8

32. Freeman, D.M.: Improved security for linearly homomorphic signatures: a generic
framework. In: Fischlin et al. [31], pp. 697–714

33. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

34. Gennaro, R., Katz, J., Krawczyk, H., Rabin, T.: Secure network coding over the inte-
gers. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 142–
160. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-7 9

35. Gennaro, R., Wichs, D.: Fully homomorphic message authenticators. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 301–320. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0 16

36. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd Annual ACM Sym-
posium on Theory of Computing, pp. 99–108. ACM Press, June 2011

37. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signa-
tures from standard lattices. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th Annual
ACM Symposium on Theory of Computing, pp. 469–477. ACM Press, June 2015

38. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 11

39. Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes.
In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Hei-
delberg (2002). https://doi.org/10.1007/3-540-45760-7 17

40. Kiltz, E., Mityagin, A., Panjwani, S., Raghavan, B.: Append-only signatures. In:
Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP
2005. LNCS, vol. 3580, pp. 434–445. Springer, Heidelberg (2005). https://doi.org/
10.1007/11523468 36

41. Krawczyk, H. (ed.): PKC 2014. LNCS, vol. 8383. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-54631-0

42. Kurosawa, K., Hanaoka, G. (eds.): PKC 2013. LNCS, vol. 7778. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7

43. Lamport, L.: Constructing digital signatures from a one-way function. Technical
report SRI-CSL-98, SRI International Computer Science Laboratory, October 1979

44. Libert, B., Peters, T., Joye, M., Yung, M.: Linearly homomorphic structure-
preserving signatures and their applications. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013. LNCS, vol. 8043, pp. 289–307. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40084-1 17

45. Libert, B., Peters, T., Joye, M., Yung, M.: Non-malleability from malleability:
simulation-sound quasi-adaptive NIZK proofs and CCA2-secure encryption from
homomorphic signatures. In: Nguyen and Oswald [48], pp. 514–532

https://doi.org/10.1007/978-3-662-53641-4_5
https://doi.org/10.1007/978-3-642-30057-8
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-13013-7_9
https://doi.org/10.1007/978-3-642-42045-0_16
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/3-540-45760-7_17
https://doi.org/10.1007/11523468_36
https://doi.org/10.1007/11523468_36
https://doi.org/10.1007/978-3-642-54631-0
https://doi.org/10.1007/978-3-642-36362-7
https://doi.org/10.1007/978-3-642-40084-1_17

492 R. W. F. Lai et al.

46. Lipmaa, H.: Succinct non-interactive zero knowledge arguments from span pro-
grams and linear error-correcting codes. In: Sako, K., Sarkar, P. (eds.) ASI-
ACRYPT 2013. LNCS, vol. 8269, pp. 41–60. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-42033-7 3

47. Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298
(2000)

48. Nguyen, P.Q., Oswald, E. (eds.): EUROCRYPT 2014. LNCS, vol. 8441. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5

49. Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: 22nd Annual ACM Symposium on Theory of Computing, pp. 387–394. ACM
Press, May 1990

50. Steinfeld, R., Bull, L., Wang, H., Pieprzyk, J.: Universal designated-verifier sig-
natures. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 523–542.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40061-5 33

https://doi.org/10.1007/978-3-642-42033-7_3
https://doi.org/10.1007/978-3-642-42033-7_3
https://doi.org/10.1007/978-3-642-55220-5
https://doi.org/10.1007/978-3-540-40061-5_33

	Multi-key Homomorphic Signatures Unforgeable Under Insider Corruption
	1 Introduction
	1.1 Multi-key Homomorphic Signatures
	1.2 Our Results
	1.3 Extensions

	2 Related Work
	2.1 Existing Homomorphic Signatures
	2.2 Existing Multi-key Homomorphic Signatures
	2.3 Key-Homomorphism

	3 Preliminaries
	3.1 Succinct Non-Interactive Arguments
	3.2 Signatures
	3.3 Functional Signatures

	4 Insider-Secure Multi-key Homomorphic Signatures
	4.1 Notation
	4.2 Definitions

	5 Construction
	6 Relation with Existing Notions
	6.1 Functional Signatures from cEUF-CMA-Secure M-HS
	6.2 ZK-SNARG from cEUF-CMA-Secure M-HS

	7 Conclusion and Open Problem
	A Insecurity of Existing Work against Insider Attack
	References

