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Abstract The evaluation of environmental practices of each country is a very
interesting area which has recently gained significant attention. An analysis, which
can provide results for comparisons among countries with different economies, is
data envelopment analysis. In this chapter, countries’ environmental efficiency is
estimated using data envelopment analysis. Applying a slack-based model under the
consideration of constant returns to scale and variable returns to scale technologies, a
composite index is calculated from the efficiency scores of each model. These
models consider both desirable and undesirable outputs. However, especially for
undesirable outputs, the data collected are not accurate and could potentially be
subject to uncertainty. To handle the uncertainty in the undesirable data, a chance-
constraint DEA model is applied. Results of the deterministic model show that
Australia gathers high values of environmental efficiency. However, in the presence
of noise in the undesirable data, the rankings of the countries change.

Keywords Environmental efficiency - Environmental evaluation - Environmental
economics - Data envelopment analysis - Slack-based models - Composite index

1 Introduction

The term environment refers to anything that surrounds an object. In natural sci-
ences, as well as in engineering, a system is the part of the world being studied, and
the environment is anything outside its boundaries. There can be interactions and
exchanges of matter, energy, or information between the system and the
environment.
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Human interventions have affected the environment, disturbing the environmen-
tal balance, altering its natural processes, and degrading the quality of human life.
One of the most dangerous human interventions’ side effects is that they jeopardize
the sustainability of the planet while creating many problems and serious environ-
mental accidents. The major modern environmental problems known as “global
environmental problems” mainly consist of ozone depletion, greenhouse effect,
pollution of the environment in general, degradation, and pollution of key environ-
mental resources such as air, water (lakes, seas, and oceans), soil, desertification, and
biodiversity loss.

A great time period has passed for the aforementioned risks to be fully under-
stood, and this is evidenced by recent facts of degradation and destruction of the
environment. Unreasonable human intervention in the environment and abusive use
and exploitation of natural wealth lead to disastrous consequences. Primary goods,
which were considered inexhaustible or unaltered, are slowly degraded.

As noted by Grigoroudis et al. (2012), the environment provides the economy
with resources (e.g., water, air, fuels, food, metals, minerals, and drugs), services
(e.g., the cycles of H,O, C, CO,, N, O,; photosynthesis; and soil formation), and
mechanisms to absorb waste. Economic growth is based on these three services, and
since the global ecosystem does not grow, economic growth cannot continue
indefinitely. The concepts of sustainability and sustainable development have
received much attention among policy-makers and scientists as a result of the
existence of limits to growth and the dramatic environmental changes of the last
decades.

The term of environmental efficiency was devised by the World Business Council
for Sustainable Development (WBCSD) in 1992 in its “Changing Course” publica-
tion. It is based on the idea of creating more goods and services using less resources
and creating less waste and pollution. It is a philosophy that aims to minimize
ecological impacts while maximizing the efficiency of the processes of a production
unit. The term has become synonymous with a concept oriented toward sustainable
development.

Uncertainty, as a term, is inherited in data measurement in the presence of noise,
while it is also present when dealing with the environment. The difficulty of
uncertainty is its stochastic nature which is approximated with stochastic procedures
and models. Nevertheless, the measurement of stochasticity or uncertainty is never
accurate. It can, however, be estimated under various assumptions.

The economic activities that are conducted around the world have a direct effect
on the environment, which is affected irrespective of the geographical location. A
source of pollution, due to excess of emissions from industry or any related produc-
tion process, affects the total environment. Nevertheless, modern way of living and
globalization have led to form the economies without considering the environment,
since environmental protection does not add value to economic activities. To reduce
this phenomenon, several environmental protocols and directives have been agreed
in an effort to regulate terms and undesirable outputs from the production process of
national economies. Therefore, a methodological framework is needed to measure
the effect at which the environment is affected from the economic activity of each
country and try to find an “equilibrium” point at which each country can increase its
productivity without putting an extra burden on the environment.
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Estimating environmental efficiency gives emphasis on producing the maximum
possible economic output, using minimum resources, and at the same time minimiz-
ing environmental impacts. Therefore, it is a process different from environmental
performance estimation. The estimation of environmental efficiency is a rather
difficult problem mainly because the concept does not have a universal definition
and usually the applied measurement framework serves also as a definition context.
In practice, this makes more difficult the selection of appropriate indicators, while
data availability is always a significant shortcoming when estimating environmental
efficiency in a national level.

The aim of this chapter is to present a methodological framework for the
measurement of environmental efficiency and to highlight the indicators of evalua-
tion of the studied units. The data used in this study refer to a 12-year period
(1992-2003) and concern 108 countries from all over the world, belonging to various
social, political, and economic categories. A nonparametric method, data envelop-
ment analysis (DEA), is used to estimate national environmental efficiencies. More-
over, a chance-constraint DEA model with desirable and undesirable outputs is
applied in the proposed approach, assuming that the undesirable outputs (harmful
gas emissions) are subject to noise. This incorporation of uncertainty in the applied
DEA models may be considered as the main contribution of this research, while the
examination of alternative measurement variables gives the ability to compare how
different indicators may affect the environmental efficiency scores.

The chapter is organized in four more sections. Section 2 presents briefly a
literature review of environmental efficiency evaluation focusing mainly on DEA
models. The methodological background of the proposed approach is given in Sect.
3, where, in addition to the main principles of DEA models, the proposed slack-
based model is presented. Moreover, Sect. 3 presents a chance-constraint DEA
model in order to handle the uncertainty of environmental data. The results of the
proposed approach in a set of 108 countries covering a period from 1992 to 2003 are
given in Sect. 4. Section 5, finally, summarizes some concluding remarks and
discusses potential extensions of the research.

2 Literature Review

Based on Farrell’s original ideas (Farrell 1957), DEA was firstly used in Germany by
Brockhoff in 1970 to measure R&D and production efficiency (Brockhoff 1970).
Within an environmental context, DEA was first used in 1986 by Fire, in a sample of
steam power stations in the United States, to measure the impact of environmental
constraints and measures (Fire et al. 1986).

A mathematical programming approach to environmental management and
industrial efficiency is outlined in 1994 by Haynes as an alternative to decision
support processes related to the monitoring of pollutant reductions. Fére et al. (1996)
applied DEA using US data on fossil fuels that are burning power companies,
resulting in pollution and efficiency indicators. DEA models have been also used
to compare the efficiency of several units of a company or various production units
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in a sector with specific characteristics and environmental constraints (Tyteca 1996).
As a comparison technique, DEA has been used for OECD countries to assess
environmental performance based on CO, emissions (Zofio and Prieto 2001).
Assessment of business participation in sustainable development has been also
examined with the use of DEA (Callens and Tyteca 1999). The study of performance
indicators with ecological and environmental extensions has been proposed by
Dyckhoff and Allen (2001).

The estimations of environmental efficiency measures have also been examined
in several studies. For example, Reinhard et al. (2000) compare different efficiency
estimation approaches (DEA and stochastic frontier analysis) for the case of Dutch
dairy farms. They define environmental efficiency as the ratio of minimum feasible
to observed use of multiple environmentally detrimental inputs, conditional on
observed levels of output and conventional inputs.

Environmental efficiency through energy consumption and carbon dioxide emis-
sions has been measured using DEA with data from 17 Middle East and North
African countries (Ramanathan 2005). The environmental performance of the states
of America has been also evaluated under the assumption that air pollution is mainly
a by-product of the production process for the years 1972-1983 and 1985-1986
(Zaim 2004). Korhonen and Luptacik (2004) applied a two-stage DEA approach to
24 European power plants. In the first stage, the problem is decomposed in two parts:

(a) The problem of measuring the technical efficiency (such as the ratio of the
desired costs to the entrances)

(b) The problem of measuring the so-called ecological efficiency (such as the ratio
of the desired costs to the unwanted ones)

The performance indicators of each stage are then combined into one. In the
second stage, pollutants and system inputs are treated the same as the aim is to
increase the desired costs and reduce pollutants and inputs.

Triantis and Otis (2004) developed a performance measurement model, which
examines environmental measures and the harmful ecological consequences of the
production process over time. More specifically, they present a pair-based approach
that examines production and environmental efficiency and evaluate desirable envi-
ronmental interactions of the production system through various combinations of
inputs and outputs. Zhou et al. (2006, 2008) proposed a non-radial DEA approach
for assessing environmental performance. The time period of this analysis spans
from 1995 to 1997, while the 26 countries of the OECD are treated as decision-
making units.

Prieto and Zofio (2007) presented a network efficiency analysis model that allows
possible increases in technical efficiency by comparing technologies that correspond
to different economies. Input-output tables represent a network where various nodal
factors use primary inputs to produce intermediate inputs and outflows to meet the
final demand. The proposed model optimizes the underlying multistage technolo-
gies, defining the best financial practice. The model is applied to a total of five
OECD countries in the period from 1970 to 1990. Zhou et al. (2007) in the context of
environmental efficiency show an extension of the DEA and more specifically the
nonincreasing returns to scale (NIRS) model and the variable returns to scale (VRS).
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A comprehensive literature review of DEA models applied to energy and envi-
ronment may be found in Sueyoshi et al. (2017). Their review covers almost
700 articles from the 1980s to 2010s. The authors report an increased number of
DEA articles, particularly after the 2000s, and discuss three major future research
directions:

(a) Technology heterogeneities and time lag: The authors note that different orga-
nizations and different regions may have different engineering capabilities, so
that they have many different types of technology heterogeneities among them.
This, as well as the time lag that is always associated with technology develop-
ment, should be considered in DEA modeling.

(b) Statistical inference: The authors argue that one of the major shortcomings of
DEA environmental assessment is that it does not have a statistical inference at
the level of statistics and econometrics; therefore, the exploration on the statis-
tical inference on DEA may provide an important future research direction.

(c) Applications to China: The authors emphasize that China is the world’s largest
energy consumer and carbon emission contributor. Thus, it is important, through
the application of DEA models, to identify better ways to reduce Chinese energy
uses and carbon emissions.

In the same context, Mardani et al. (2017) provide a review, focusing however in
energy efficiency. Their review covers 144 published scholarly papers appearing in
45 high-ranking journals between 2006 and 2015 and shows that DEA may be a
good evaluation tool on energy efficiency issues, when the production function
between the inputs and outputs is virtually absent or extremely difficult to acquire.

Stochasticity is part of the everyday operations; therefore, efficiency measure-
ment calls for probability calculations. In the context of DEA, several stochastic
models have been proposed in the literature over the years. The first DEA stochastic
model was applied by Charnes and Cooper (1963). Following their paper, the
stochastic DEA modeled with chance constraints has grown significantly.

Stochasticity has been incorporated in DEA for measuring technical efficiency
and inefficiency indices (Cooper et al. 2002). In the majority of the relevant papers,
modeling involved the stochastic nature of CO, emissions and the impact on
efficiency or energy production. Gutiérrez et al. (2008) presented a methodology
to analyze the gradual secular trends present in the time evolution of certain
endogenous variables, which are of particular interest in environmental research.
Also, several stochastic environmental performance indices have been constructed
(Balezentis et al. 2016; Zha et al. 2016).

DEA’s applications in environmental efficiency and the assessment of ecological
constraints are significantly increasing. DEA gains ground in the preferences of
researchers who have been using it extensively especially in recent years.
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3 Methodology
3.1 General

In recent years, great emphasis has been placed on efficiency measurement methods.
Efficiency is defined as the ability of a unit to efficiently transform, with a generally
unknown production mechanism, inputs into outputs. Traditional econometric methods
have been used to evaluate efficiency. These techniques were designed to calculate
theoretically analytical production functions. One of the shortcomings of these methods
is that they cannot handle multiple inputs but only a single output. Data envelopment
analysis (DEA) has been introduced to handle multiple inputs and multiple outputs in
order to evaluate homogenous units, the decision-making units (DMUs).

DEA technique is widely applied in a series of studies to estimate relative unit
efficiency, with respect to a set of similar units that have multiple inputs and outputs.
In DEA, DMUs consume inputs to transform them into outputs. Therefore, a DMU
includes the activities of many different organizations as mentioned above. Outputs
are defined as products or services produced by each unit, while inputs are generally
defined as resources used to produce outputs (land, labor, fuel, etc.).

Figure 1 shows a graphical representation of a DEA model in the context of this
study, where a DMU corresponds to the production process of a national economy,
while the inputs refer to the main resources used in this production process and may
include national labor force, available capital, or energy produced. On the other
hand, the outputs of the production process include both desirable (e.g., national
income) and undesirable results (e.g., emissions, waste).

3.2 Envelopment Models

The envelopment models considered in this study include both input- and output-
oriented models. In particular, the input-oriented DEA model has the following
form:

Decision-Making Unit

(DMU)
Outputs (y,7)
—> > . :
- (e.g., national income)
Inputs (x;) —> Production Process >
(e.g., labor, energy, .
. E— (national economy)  f-————- '
capital) : Undesirable outputs (gj)
e [ o
# v (e.g., emissions)

Fig. 1 Graphical illustration of a production process in a national economy
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The objective function in this model is to minimize free variable 6, which
measures the efficiency of each DMU. The evaluation of each DMU’s efficiency
is conducted upon a predetermined set of i inputs (x;) and r inputs (y,;) for each
DMU;. As a consequence, the aim of the previous model is to determine the least
possible level of available inputs (x;,), for a DMU under examination (DMU,),
which are capable to produce the desired level of outputs (y;,). Variables /; are the
peers of each DMUj; peers are used in order to provide information regarding the
proximity of the DMU under investigation with other DMUs. The mathematical
formulation (1) represents a linear programming (LP) model which is solved for
each DMU under examination (i.e., DMU,). If, for example, DMUj5 has in its
reference set DMU, and DMUg, then 4,,4¢ # 0. Nonnegative variables s; and s:r
are slack variables corresponding to the inputs and outputs, respectively, while ¢ is a
small number. A fully efficient DMU is the one with % = 1 and 5; = s =0,
whereas 6™ is the optimal value of LP model (1) for each DMU under examination.
The range of values for input efficiency is 0 < 6 < 1.

Similarly, the output-oriented DEA model is defined as follows:

max ¢ + ¢ <is[ + isf)
p =1

S.t.
n

S xy At s =xiei=1...m
7 (2)

n
Zyrj'/ljfs:r:ym'(p’rzl,...,S
j=1

Aj, 87,8t > 0,50, r
@ free

The objective function in this case is to minimize free variable ¢ which measures
the efficiency of each DMU, where the variables x;;, y.;, s; , s,-+, and 4; are defined
similar to LP (1). Model (2) represents also a LP model which is solved for each
DMU under examination (i.e., DMU,). A fully efficient DMU in this case is the one
with 9™ =1 ands; =s; = 0, whereas ¢™ is the optimal values of LP model (2) for
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each DMU under examination. For output-oriented efficiency, we have ¢ > 1, and in
order to capture the degree of inefficiency of a DMU, the reciprocal is calculated,
such that 0 < 1/p™ < 1.

Following the discussion about the orientation of input and output DEA models,
the optimal values of efficiency variables are of great interest as the projections of
inputs and outputs to the efficient frontier are calculated. To do that, the following
equations are considered:

Xii = Xii - 9* — s * . . .

{AU Y7 .« " (input orientation) (3)
yIJ = yrj -5

= —%

T = X — 5 . ‘

Y Y "t 4 output orientation 4)
yrj yr] @ — Sr

3.3 Slack-Based Models

Several environmental performance indicators have been constructed, combining
DEA with various types of performance measurement. As mentioned above, in order
for a DMU to be fully efficient, 6* =1and s, = si+ = 0. However, two DMUs may
have the same efficiency (maximum efficiency), despite the fact that their input and
output data may indicate a difference in this measure. In terms of DEA, only one of
these DMUs is fully efficient. This is an inherent inefficiency of the indicator which
is fixed by considering slack-based measure (SBM) models.
The SBM model considering desirable outputs has the following form:

R et
. M= Yio
6, = min = s;"
1—=-N "2
Sr:lyro
S.t.
(5)

n
E X,’j'ﬂj—ﬁ—slf =X, i=1,...,m

J=1
n
+ _ _
E y,j-/lj—sr =Y, r=1,...,s
J=1

Aj,si,80 > 0,50, r
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Similarly, the SBM model with undesirable outputs can be defined as follows:

m
A el
p . =1 Xio
> = min
iy
Srzlyro
S.t.
n
inj'j.j“v‘si_:xioai:l»""m (6)
Jj=1
n
+
Zyrj'/lj—S,. =Vt =1 .08
j=1

Zgb)g:glo,l: 1, ,d
j=1

Aj,si .85 >0V, 0, r

The previous model examines both desirable (y,;) and undesirable (g;) outputs.

Models (5) and (6) are SBM models under constant returns to scale (CRS)
technology. The environmental indicator is based on the efficiency scores derived
from these models. With the addition of the constraint } ;4; = 1, the aforementioned
models are solved under the assumption of variable returns to scale (VRS).

Having obtained 0] and 65, the following slack-based efficiency measure for
modeling environmental performance may be defined (Zhou et al. 2006):

9*
SBEI = 9—; (7)
2

This index is able to measure the impact of environmental constraints and
standards on efficiency. If the index value is equal to the unit, then the two partial
indices 0} and 65 are equal. This means that there are no undesirable exits or that the
environmental constraints do not affect the entire production process at all. Finally,
the degree of impact of these undesirable costs can be estimated by type 1 — SBEL

One of the advantages of the proposed approach is that with the use of DEA,
efficiency is calculated based on composite environmental indices (slack-based
environmental index, SBEI) which integrate both desirable and undesirable outputs.
In addition to SBEI, the opportunity cost can be calculated due to environmental
regulations and constraints. On the other hand, the main weaknesses of the proposed
approach are based on the limitations of all DEA models. More specifically, DEA
models are able to provide relative efficiency scores for the examined DMUs, but
they cannot estimate absolute efficiency results. In addition, measurement errors in
the assumed inputs/outputs may affect the stability of the provided results, given that
DEA is an extreme point method.
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3.4 Incorporating Uncertainty

One of the major problems in real-life applications is the uncertainty that lies in the
collected data and the examined operations. Since the values that are provided do not
represent the “real” image of the data, due to the presence of noise, the data are by
nature stochastic. In this study, it is assumed that the undesirable outputs (CO,, NOx,
and SOx emissions) are stochastic. The stochastic variable that models the undesir-
able emissions is denoted with §1j, while g; is the corresponding expected value. In
order to measure the stochastic efficiency, the following model is applied (Zha et al.
2016):

min 6
S.t.
n

g Xj-dj+s; =0 -xp,i=1,...,m
Jj=1
n

+ _ _
E y,j~/1j—sr =V =1,...,5
J=1

Zgzj'/ljﬂfzﬂg,o,l:l, d
Jj=1

28+ by @ ()] =0-8,.1=1,....d
j=1

Ajysiost,sh > 0,90, r,1

The aim of the previous model is to minimize the efficiency taking into account
both desirable and undesirable outputs. An additional constraint is integrated in the
DEA model to capture the stochasticity of the data. More specifically, b;; denotes the
standard deviation of the undesirable output / for each DMU;, whereas @~ ! (B is the
inverse cumulative distribution of level fj. The results of the efficiency 6 can
potentially receive values larger than 1. If & > 1, then the corresponding DMU is
stochastic super-efficient; if # = 1 and all the slacks equal to 0, then the
corresponding DMU is stochastic efficient, while if § < 1, the corresponding
DMU is stochastic inefficient.

3.5 Data and Modeling

In this section, the selected data and the alternative modeling formulations in the
examined problem are presented. The selection of appropriate data is based on
previous studies, as well as on the rationale of environmental efficiency. Also, the
set of countries (DMUs) examined in this study is quite large in order to capture
different social, political, and economic conditions.
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As already mentioned, the examined DMUs in the presented DEA models
correspond to countries, in order to study their national production process in
terms of environmental efficiency. The analysis considers a total of 108 countries
covering different geographic areas and economies. However, the number of exam-
ined countries may differ in the alternative DEA models, due to data availability.

Regarding the inputs, four types of data were used, including the following
indicators:

1. Labor force (10° people): It comprises people ages 15 and older who supply labor
for the production of goods and services during a specified period. It includes
people who are currently employed and people who are unemployed but seeking
work as well as first-time job-seekers'.

2. Population (10° people): It is based on the de facto definition of population
(midyear estimates), which counts all residents regardless of legal status or
citizenship?. It may be used as a proxy of labor force, since the previous indicator
does not include everyone working in a national economy.

3. Gross capital formation (current US dollars): It consists of outlays on additions to
the fixed assets of the economy plus net changes in the level of inventories®. It is
considered as a major resource of a national economy in the context of DEA
modeling.

4. Primary energy supply production (10° toe): It is defined as energy production
plus energy imports, minus energy exports, minus international bunkers, and then
plus or minus stock changes®. It is also considered as a major resource of any
national economy’s production process.

All of these resources are used in a general production process by countries and
produce desirable and undesirable results.

The outputs of the study are divided into desirable and undesirable outputs. More
specifically, the desirable output is the gross domestic product (GDP), while the
undesirable outputs are carbon dioxide (CO,) emissions, sulfur dioxide (SO,)
emissions, and nitrogen dioxide (NO,) emissions. The definition of outputs is as
follows:

1. Gross domestic product (current US dollars): GDP at purchaser’s prices is the
sum of gross value added by all resident producers in the economy plus any
product taxes and minus any subsidies not included in the value of the products”.

2. CO, emissions (kt): Carbon dioxide emissions are those stemming from the
burning of fossil fuels and the manufacture of cement. They include carbon

"World Bank Indicators (https:/data.worldbank.org/indicator/SL.TLF.TOTL.IN?view=chart)
>World Bank Indicators (https://data.worldbank.org/indicator/SP.POP.TOTL?view=chart)
3World Bank Indicators (https://data.worldbank.org/indicator/NE.GDIL.TOTL.CD?view=chart)
“OECD Data (https://data.oecd.org/energy/primary-energy-supply.htm)

SWorld Bank Indicators (https:/data.worldbank.org/indicator/N'Y.GDP.MKTP.CD?view=chart)


https://data.worldbank.org/indicator/SL.TLF.TOTL.IN?view=chart
https://data.worldbank.org/indicator/SL.TLF.TOTL.IN?view=chart
https://data.worldbank.org/indicator/SP.POP.TOTL?view=chart
https://data.worldbank.org/indicator/SP.POP.TOTL?view=chart
https://data.worldbank.org/indicator/NE.GDI.TOTL.CD?view=chart
https://data.worldbank.org/indicator/NE.GDI.TOTL.CD?view=chart
https://data.oecd.org/energy/primary-energy-supply.htm
https://data.worldbank.org/indicator/NY.GDP.MKTP.CD?view=chart
https://data.worldbank.org/indicator/NY.GDP.MKTP.CD?view=chart
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dioxide produced during consumption of solid, liquid, and gas fuels and gas
flaring®.

3. SO, emissions (kt): It arises from the oxidation, during combustion, of the sulfur
contained within fossil fuels. Fossil fuels, including coal, oil, and to a lesser
extent gas, contain sulfur in both organic and inorganic forms’.

4. NO, emissions (kt): It primarily gets in the air from the burning of fuel, and it
forms from emissions from cars, trucks, and buses, power plants, and off-road
equipment®.

The examined alternative models include both slack-based and stochastic DEA
approaches, which consider different inputs that are consumed to produce different
outputs (desirable and undesirable).

Specifically, the first slack-based model (model A) includes inputs that relate to
population of the country and energy supply. These inputs are consumed to produce
a desirable output (GDP) and three undesirable outputs (CO,, SO,, NO,). The
number of the countries used in this model is 108 from all over the world based
on an amalgamation of different socioeconomic factors. The time period of the data
spans from 1992 to 2003.

The second slack-based model (model B) is based on the underlying assumptions
of the previous model. Three inputs and four outputs are considered here as well. The
total number of DMUs (countries) is 104 and consists of countries of the world from
various socioeconomic stratifications. In this model, a desirable output (GDP) and
three undesirable outputs (CO,, SO,, NO,) are considered which are produced from
the consumption of three inputs, namely, labor force, gross capital formation, and
primary energy supply. The data for the considered countries cover the period from
1992 to 2003.

Finally, the stochastic DEA model examined in this study is similar to model A,
where the inputs include population and energy supply, while the outputs refer to
GDP (desirable output) and CO,, SO,, and NO, emissions (undesirable outputs). A
total of 101 countries examined in this model and the time period of the data spans
from 1992 to 2003.

4 Results

The results of the three alternative DEA models are presented in this section. Each
model is applied separately with the data from time period 1992 to 2003. Since the
analysis considers spatiotemporal data regarding inputs and outputs, a geometrical
average is presented for each model.

SWorld Bank Indicators (https:/data.worldbank.org/indicator/EN.ATM.CO2E.KT?view=chart)
"European Environmental Agency (https://www.eea.europa.eu/data-and-maps/indicators/eea-32-
sulphur-dioxide-so2-emissions- 1/assessment-3)

8US Environmental Protection Agency (https://www.epa.gov/no2-pollution)


https://data.worldbank.org/indicator/EN.ATM.CO2E.KT?view=chart
https://data.worldbank.org/indicator/EN.ATM.CO2E.KT?view=chart
https://www.eea.europa.eu/data-and-maps/indicators/eea-32-sulphur-dioxide-so2-emissions-1/assessment-3
https://www.eea.europa.eu/data-and-maps/indicators/eea-32-sulphur-dioxide-so2-emissions-1/assessment-3
https://www.epa.gov/no2-pollution
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4.1 SBEI Results for Model A

The geometric mean of SBEI for model A is presented in Fig. 2, where the different
shades of color represent different values of SBEI (darker shades represent higher
SBEI values than lighter shades). The countries that were not considered in the
analysis are painted with gray. Based on these results, we may observe that there is a
wide selection of countries with average SBEI values in the range [0, 0.2]. Some of
these countries are developed with strong economies and big influence (Canada,
Germany, France, or Italy), and some are developing countries (Ethiopia, Pakistan,
or Tanzania).

The most and the least environmental efficient countries are shown in Table 1.
The countries that are fully efficient, in terms of SBEI (i.e., SBEI = 1), are Australia,
Cyprus, Hong Kong, and Luxembourg. Especially for Luxembourg, it should be
noted that it is a model country for environmental and economic measurements,
which is partly ought to its legislation framework. The very small annual energy
output (which is an input to our DEA model), coupled with its relatively large GDP
(desirable output) and low emissions allow it to dominate the top efficiency. It
should be also emphasized that the country’s economy is based on the provision
of services and not on industry or on the production of products. This is decisive for
the country’s environmental efficiency. The most important feature of Hong Kong’s
case is the annual energy supply.

On the contrary, countries such as China, India, or even Russia are in the last
places, mainly because of their large population, their annual energy supply (input
data), and their pollutants (output). More specifically, China, which is a country with
a large population, would be expected to have the room for more emissions. But its
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Fig. 2 SBEI results for model A
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Table 1 Most and least Efficiency Countries SBEI
iglvlgg ?er;leé?éildzlfix;ent Most efficient countries Australia 1.000
Cyprus 1.000

Hong Kong 1.000

Luxembourg 1.000

United Arab Emirates 0.915

Least efficient countries Indonesia 0.012

Brazil 0.007

Iceland 0.005

China 0.004

India 0.004

annual energy supply does not follow the same figures. In addition, countries such as
Russia or the United States show higher amounts of energy supply. Also, as
mentioned before, pollutant emission values in these countries are among the
highest, which is justified by a large percentage of the large population and energy
supply. Nevertheless, a driving factor for this increase in the pollutant emissions is
associated with high GDP values (which is considered as a desirable output).

4.2 SBEI Results for Model B

The results of model B are significantly different from those of the model A
presented in the previous section. This is attributed to the fact that different inputs
are considered in this model. Since the consideration of the examined models was
based on the minimization of inputs, the additional input effectively enabled the
comparisons of the DMUs to be made easier to achieve. Excluding the population,
which is a non-variable entry (except in extremely rare cases such as China where
there is a legal limitation on birth rates), DMUs can now change their workforce or
gross capital formation to improve the efficiency. By introducing additional vari-
ables, the degrees of freedom are increased, and the environmental efficiency of a
country increases.

Figure 3 presents the results for the geometric mean of SBEI. The different shades
of color represent different values of SBEI (darker shades represent higher SBEI
values than lighter shades). The countries that were not considered in the analysis are
painted with gray.

The most and the least efficient countries based on model B are presented in
Table 2, where we may observe that Australia, Hong Kong, and Luxembourg remain
as fully efficient countries, with the addition of smaller or less developed economies
(e.g., Estonia, Israel, Jordan, Kazakhstan, Moldova). On the other hand, the least
efficient countries include Gabon, Japan, Congo, while Indonesia and China remain
as low efficient counties compared to model A.

However, it can be noted that this model has less discrimination power since the
majority of the countries have higher SBEI values than model A.
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Fig. 3 SBEI results for model B
Tal?le 2 Moslt a%?id ‘least Efficiency Countries SBEI
env1ropmenta ctlicient Most efficient countries Australia 1.000

countries (model B)

Estonia 1.000
Hong Kong 1.000
Israel 1.000
Jordan 1.000
Kazakhstan 1.000
Luxembourg 1.000
Moldova 1.000
Morocco 1.000
Saudi Arabia 1.000
Least efficient countries Indonesia 0.737
Gabon 0.680
Japan 0.613
China 0.514
Congo 0.398

In order to overcome this problem, several ways have been proposed to increase
the discriminatory power of DEA, as, for example, applying principal component
analysis to reduce the dimensionality of inputs and/or outputs; however, this type of
formulation exceeds the scope of the proposed modeling.
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Stochastic Efficiency

' 10.20

0.05

Fig. 4 Efficiency results for stochastic DEA model

4.3 Stochastic Efficiency

The stochastic efficiency results of the DEA model presented in Sect. 3.4 are shown
in Fig. 4. Similarly to the previous sections, the results refer to the geometric mean of
stochastic efficiency, while the different shades of color represent different values of
stochastic efficiency (darker shades correspond to higher stochastic efficiency). The
countries that were not considered in the analysis are painted with gray.

These results are quite different compared to the previous model due to the large
variation of undesirable outputs (i.e., emissions) in some cases. It should be noted
that due to its nature, the range of the stochastic efficiency score is larger, as shown
in Fig. 4.

The results of the stochastic DEA model give the ability to sort countries based on
the estimated efficiency scores. As shown in Table 3, countries may be categorized
in three main groups:

(a) Counties with 6 > 1: This group refers to countries that are stochastic efficient
and includes counties that, based on the previous results, are expected to be
environmental efficient, like Australia, Luxembourg, Israel, Switzerland, Saudi
Arabia, or the United Arab Emirates. However, additional developed (e.g.,
Denmark, New Zealand, Russian Federation, Portugal, Italy) and developing
countries (e.g., Mozambique, Zimbabwe, Lebanon, Yemen, Pakistan) are
included in this group. This phenomenon is ought to the fact that these countries
utilize low resources to produce medium values of GDP but higher values of
harmful emissions.
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Table 3 Categorization of countries based on stochastic efficiency scores

Stochastic efficiency Countries

6>1 Mozambique Portugal Tajikistan
Ecuador Italy Peru
Denmark Australia Iceland
Romania United Arab Emirates Russian Federation
Nepal Sri Lanka Israel
Thailand Switzerland Luxembourg
Zimbabwe Saudi Arabia Lebanon
New Zealand Haiti Greece
Namibia Nigeria Yemen
Azerbaijan Algeria Pakistan

0~1 Costa Rica Czech Republic Sudan
Hungary Venezuela Jordan
Netherlands Syria Ireland
Chile Japan Kazakhstan
Sweden Moldova Cyprus
Oman Morocco Turkey
Nicaragua Spain Georgia
Lithuania Uzbekistan

0<1 Bangladesh FYROM Republic of Korea
Belgium Latvia South Africa
Angola El Salvador India
Congo Ethiopia Norway
Botswana Guatemala Bulgaria
Malaysia Dominican Republic Germany
Honduras Philippines Jamaica
France Mexico Iran
Canada Ghana Slovakia
Ukraine Cameroon Tunisia
Zambia Albania Brazil
Estonia Finland Croatia
Poland Armenia Paraguay
Gabon Kenya Bolivia
Bahrain Panama Egypt
Togo Uruguay Tanzania

(b) Countries with 8 ~ 1: Several countries are ranked lower based on stochastic
DEA method. Some of them refer to Cyprus or Kazakhstan that appear to have
higher efficiency in the previous DEA models. In general, some of the strong
national economies are included in this group, like Netherlands, Sweden, and
Spain.
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Table 4 Comparison of selective counties’ ranking based on efficiency scores

Stochastic efficiency Model A Model B Stochastic DEA
Australia 1 1 13
France 100 56 61
Germany 84 92 91
Greece 56 42 28
India 108 97 88
Italy 75 40 12
Japan 76 102 46
Luxembourg 1 1 26
Russian Federation 94 75 24
Spain 91 80 45
Sweden 80 22 35

(c) Countries with 6 < 1: This group refers to inefficient countries and includes both
developed and developing countries. Countries with strong economies like
France, Canada, Germany, or Finland are ranked quite low, as it can be seen
in Table 3, since the standard deviation presents large fluctuations, while the
probability levels for the undesirable outputs are also high.

The results of the stochastic DEA model, although appear to have some similar-
ities with the slack-based DEA model, in several cases, they provide very different
efficiency scores. Table 4, for example, shows the comparison of rankings obtained
by the three alternative DEA models for selective countries. As it can be observed, in
some cases the stochastic DEA model estimates larger efficiencies compared to
slack-based models (e.g., Greece, Italy, Japan), while in other cases, the estimated
efficiencies are lower (e.g., Luxembourg, Russia, Spain).

Finally, it should be noted that environmental efficiency should not be confused
with environmental performance, since different combinations and levels of inputs
may result to an environmental efficient production system.

5 Concluding Remarks

The aim of the present study is to present a methodological framework for the
measurement of environmental efficiency and to highlight the evaluation indicators
of the production units studied. To this end, a nonparametric method, data envelop-
ment analysis, is applied. The study of environmental efficiency, in the context of
DEA approaches, is mainly focused on analyzing how, with a given set of resources
(inputs), the outcomes may be maximized (desirable outputs), while at the same
time, emissions are minimized (undesirable outputs).
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Alternative SBM models are applied in this chapter under CRS and VRS tech-
nologies. The considered inputs and outputs have resulted in significant differenti-
ations of the composite index. More specifically, model A assumed to have two
inputs and four outputs, providing a meaningful ranking of countries with justified
possible sudden fluctuations in the behavior of decision units. Model B, with three
inputs and four outputs, provided less reliable results. Several decision units showed
maximum efficiency since the model had less discrimination power. The results of
this work can be compared to those of similar studies, possibly using a different
methodological framework, to give a more general and complete picture of the
subject. Finally, a stochastic DEA model is presented to measure stochastic effi-
ciency of countries assuming that the undesirable outputs are stochastic.

According to the results of SBEI of model A, Australia, Hong Kong, and
Luxembourg are fully efficient. Due to legislation regarding the emissions (e.g.,
CO,) and low input to the process producing large values of GDP, Luxembourg
appears as a fully efficient country. This finding can drive other countries to adopt
Luxembourg’s paradigm and adjust their legislation. This finding indicates that
countries should produce high values of GDP with less labor force, capital, and
energy production while minimizing undesirable outputs. Based on the results of
model B, Australia is fully efficient. In this model, the results of SBEI are closer to
1 compared to the corresponding results of SBEI of model A. This is attributed to the
fact that given the inputs and outputs of model B, less countries are inefficient or
gather lower values of efficiency leading to less discriminatory power.

Uncertainty is measured with a stochastic DEA model which categorizes coun-
tries based on the stochastic efficiency according to three categories: stochastic
efficiency greater than 1, equal to 1, and less than 1.

The main limitations of this study refer to the availability of data and the selection
of appropriate inputs and outputs. For example, similar to previous studies, the
selected indicators are actually proxies of the actual variables that should be included
(e.g., GDP is a proxy of the true financial outcome of a national economy, although it
is affected by several other factors). Thus, future research efforts may study different
combinations of resources and outcomes in the context of the presented DEA
approaches.

Moreover, the analysis can be further enhanced in the future with the addition of
multiple layers or production processes. In such an approach, efficiency and the
corresponding environmental indices can be calculated with the use of network
DEA modeling. Also, comparing environmental efficiency and performance
(effectiveness) may provide useful results for developing appropriate environmen-
tal policies. In this context, SBEI may be compared with alternative environmental
or sustainability performance indices (see Grigoroudis et al. 2012 for a review).
Finally, combining the presented analysis with the Malmquist index may give
additional results regarding the evolution of environmental efficiency in the exam-
ined period.
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credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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