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Abstract The proliferation and growing variety of climate-economy models and
what are known as integrated assessment models (IAMs) can make it difficult for
someone interested in following the debate to place any specific model, or the
discussion about the merits of one or another, into a broader context. The literature
related to climate-economy modelling is already vast: apart from a very large
number of models and an even larger number of applications, there already exist
many good surveys comparing—inter alia—modelling frameworks, model assump-
tions and model results. The objective of this chapter is to provide a simple overview
and organising scheme of this modelling world by delving into the characteristics of
more than 60 individual IAMs towards describing the main ways in which certain
classes or groups of climate-economy models differ from one another. In contrast to
other more detailed or narrowly focused “overviews” and literature reviews, this
analysis takes less for granted and aims at providing an initial understanding of
generic model structures. After briefly discussing some principles of classification
that can help organise this often daunting modelling world, the chapter offers
descriptions and comparisons of the main classes of models.

Keywords Climate policy - Integrated assessment models - Equilibrium -
Macroeconometric - Energy systems - Climate-economy modelling - Optimal
growth - Uncertainty

A. Nikas (<) - H. Doukas

Decision Support Systems Laboratory, School of Electrical and Computer Engineering,
National Technical University of Athens, Athens, Greece

e-mail: anikas@epu.ntua.gr; h_doukas@epu.ntua.gr

A. Papandreou
Department of Economics, University of Athens, Athens, Greece
e-mail: aap@econ.uoa.gr

© The Author(s) 2019 1
H. Doukas et al. (eds.), Understanding Risks and Uncertainties in Energy and
Climate Policy, https://doi.org/10.1007/978-3-030-03152-7_1


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03152-7_1&domain=pdf
mailto:anikas@epu.ntua.gr
mailto:h_doukas@epu.ntua.gr
mailto:aap@econ.uoa.gr
https://doi.org/10.1007/978-3-030-03152-7_1

2 A. Nikas et al.

1 Introduction

Many modelling frameworks have been developed to provide an understanding of
the drivers of climate change and to assist policy formation (Flamos 2016). When
climate change emerged as a serious issue in the 1970s, there were no theoretical
tools that could provide a more integrated understanding of the phenomenon or
provide richer insights into policy response. Models of physical dimensions of the
climate system (mostly ecosystem models) were extended to consider the processes
by which greenhouse gas emissions were generated and could be limited. General
circulation models that dealt with atmospheric parts of the climate system were being
linked to ocean models. Economists were modifying global energy-economy anal-
ysis to project greenhouse gas emissions, considering ways to reduce them and
incorporating aggregated physical dimensions of the climate system. Scientists from
different disciplines were linking models and analyses to provide a more integrated
understanding of different facets of a highly complex interrelated phenomenon
(Weyant 2009).

At a broad level, we can see the following interlinked chain of interactions.
Human-induced climate change results from an increase in GHG emissions and
their levels of concentration in the atmosphere. Climate science tells us how different
concentration levels of GHGs may affect the temperature, precipitation, cloud
formation, wind and sea level rise. These changes in turn result in various physical,
environmental and social impacts like change in crop yields, water supply, species
loss and migration. These impacts can then be translated into monetary terms, or
processed through a model of the economy, to give a single measure of the economic
cost of climate change. As these changes take place over time, models attempt to
project parts or the whole dynamic process of increasing emissions, temperature
changes, physical impacts and economic damages. The economy is not only affected
by climate change, but it is also the perpetrator of climate change as growth in
production and consumption gives rise to more GHG emissions. The most important
part of the economy that determines the rate of emissions is the energy system or the
forms and uses of energy. Each part of this climate-economy interaction is
characterised by uncertainty (Papadelis et al. 2013) and some degree of scientific
disagreement.

Various ways of climate-economy modelling can to a large extent be understood
by the different ways in which they model parts of this highly interconnected
process. Figure 1 below provides a depiction of climate-economy dynamics, iden-
tifying four key modules of climate-economy modelling. The climate module
describes the link between GHG emission, atmospheric concentrations and the
resulting variation in temperature and other climatic changes (precipitation, cloud
cover, extreme weather events, climate discontinuities, etc.). The impacts module
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Fig. 1 Climate-economy dynamics with four modules: Economy, climate, impacts, and energy

(or damage function) expresses physical or environmental outcomes as a function of
climate variables. For instance, a model might have an agricultural damage function
relating variability in temperature, precipitation and cloud cover to crop yields. An
economy module may describe the dynamics or growth of an economy, how
emissions vary with growth and climate policies and how climate-induced physical
and environmental changes might affect parts or all of an economy. The economy
model is often augmented with a more detailed energy module that describes the
factors determining the uses of different sources of energy and the cost of emission
reductions.

The great variety of climate-economy models reflect in part the range of under-
lying scientific disciplines influencing their development, alternative methodologies
and assumptions, as well as the different questions or issues they address. The large
and growing number of models and their relative complexity can make it bewilder-
ing to distinguish them or understand their unique attributes. There already exist
many good reviews of different categories of integrated assessment or climate-
economy models in the literature: Fiissel (2009) provides general reviews; a special
issue of The Energy Journal provides more detailed and technical comparisons of
IAMs (Weyant 1999); Tol and Fankhauser (1998) and Yohe (1999) review the
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modelling and representation of impacts in IAMs; Hitz and Smith (2004) review the
way different IAMs deal with the global impacts of climate change as a function of
the global mean temperature; and Lecocq and Shalizi (2007) review the literature
considering the relationship between growth and climate policy as well as climate
change. Other equally thorough reviews can be found in the literature
(e.g. Dowlatabadi 1995; Parson and Fisher-Vanden 1997; Kelly and Kolstad 1999;
Rana and Morita 2000; Schwanitz 2013; Wei et al. 2015). However, due to the large
differences among the models and model categories, these reviews tend to have
different perspectives and focus on very specific aspects of the modelling processes,
while at the same time using different categorisations.

The objective of this chapter is to look at key characteristics of the available
integrated assessment models, while also focusing on their structure and ways of
treating uncertainty and technology, in order to help develop a concrete
categorisation and form a simple and useful overview of the climate-economy
modelling universe. This analysis substantially differs from other often more
detailed or narrowly focused “overviews” in that it takes less for granted and aims
at providing an initial understanding of generic model structures. This objective is in
contrast, for instance, with Ortiz and Markandya (2009), who give short descriptions
of many models and their equations, or Stanton et al. (2009) that focus on key
assumptions affecting model outcomes or Fiissel (2010) that focuses on how adap-
tation to climate change is incorporated in models. In this respect, this simple and
brief overview is meant to complement these other less generic discussions and act
as an initial guide to this vast terrain. Section 2 provides an overview of the six
classes in which we categorise the existing integrated assessment modelling frame-
works. Sections 3—7 present the unique features of each one of the model categories,
as well as key characteristics of a large number of representative IAMs. Finally, Sect.
9 concludes the analysis and discusses some key remarks.

It should be noted that there exist in the literature different criteria for consid-
ering a modelling framework as an IAM. According to most reviews and from a
strict point of view, only models with a close loop between economy and
environment effects can be classified as IAMs; thus, most partial equilibrium
models cannot be considered alone as IAMs, but can certainly be used as part of
an IAM modelling suite. In this research, all models that include separate modules
for climate, economy and energy are considered to be IAMs. Exceptions include
certain energy system models (Sect. 6) that may not explicitly include a climate
module but may rather abstract from climate by including emissions (without
climate change or damages), which have also been included in other reviews
(e.g. Stanton et al. 2009).
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2 C(lassifying Climate-Economy Models

There exist a large number of various classifications in the literature, which do not
fully align with each other or with the one presented in this chapter (e.g. Fiissel 2010;
Stanton et al. 2009; Ortiz and Markandya 2009; Séderholm 2007). In particular,
Fiissel (2010) following an older tradition divides them according to the kind of
decision analytical frameworks to which they are applied, Stanton et al. (2009)
divide them according to model structures and Ortiz and Markandya (2009) classify
integrated assessment models by whether all four modules (climate, impacts, econ-
omy, energy) are used and how they are combined.

Drawing on these classifications and a detailed literature review of applications,
six general modelling structures or approaches are presented. These are distin-
guished primarily by how the economy is modelled and the way the other three
modules (climate, impacts, energy) are integrated. Of course, the nature of these
models slightly hinders their consistent classification, given that certain [AMs may
inevitably be sorted into more than one class. The six model classes that are
presented in the following sections are briefly introduced below:

1. Optimal growth (or welfare optimisation) IAMs represent the economy as a
single all-encompassing sector. They are designed to determine the climate policy
and investment levels that maximise welfare (future against present consumption)
over time, by identifying the emission abatement levels for each time step. They
tend to be fairly simple, highly aggregated and transparent models that capture the
trajectory of an economy and its interaction with climate in a fully integrated
fashion, meaning that all modules are represented and endogenously determined.

2. General equilibrium (or usually referred to as computable general
equilibrium—CGE) models have a more detailed representation of the economy
with multiple sectors and often include higher resolution of energy technologies
and regional detail. Rather than seeking optimal policies, they consider the
impacts of specific policies on economic, social and environmental parameters.
The richer representation of the economy comes at a cost in that the growth of the
economy is harder to model and its structure more complex.

3. Partial equilibrium models provide a detailed analysis of the interaction
between environmental impacts and a particular sector of the economy. These
are usually used to assess potential climate-induced damages to a specific sector
of the economy and are often linked to computable general equilibrium models.

(a) Energy system models can be considered as a subcategory of partial equi-
librium models that provide a detailed account of the energy sector,
i.e. energy technologies and their associated costs. These are used, inter
alia, to determine the least-cost ways of attaining GHG emission reductions
or the costs of alternative climate policies. They are often linked with
computable general equilibrium or macroeconometric models in order to
add the desired level of insight to top-down approaches.
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4. Macroeconometric models, like computable general equilibrium models, can be
quite detailed in terms of energy technologies and geographic scope and are also
used to evaluate alternative climate policies, but they differ in that they do not
assume that consumers and producers behave optimally or that markets clear and
reach equilibrium in the short term. Instead, they use historical data and econo-
metrically estimated parameters and relations to dynamically and more realisti-
cally simulate the behaviour of the economy.

5. Other integrated assessment models refer to models that may have little in
common except that they do not fit neatly into any of the previous well-known
groups. A key departure is that they model the economy in a highly “reduced
form” or simply use exogenous growth scenarios (no model at all). Although they
significantly differ from one another, they all tend to be more policy-oriented than
models of the other five classes.

Table 1 provides an overview of characteristics of the different approaches. The
first column labels the overall approach, while the remaining columns describe how
each approach varies in the way the four different modules are modelled. The table,
acting as a reference point and organising principle, also aligns with the descriptions
of the six approaches presented in the remainder of the paper so that the different
elements in the boxes can be further explained.

The classification scheme presented in Table 1 is not meant to be exhaustive or
comprehensive, and models will often not fit neatly into one of these approaches,
while many combine elements of different categories. For instance, Fiissel (2010)
introduces a separate category referred to as “policy guidance models” and
represented by ICLIPS (Toth 2005), which integrates the first four approaches into
one model. Furthermore, combining models of different categories towards adding
the desired level of detail is not uncommon in the climate policy literature; for
example, CGE and macroeconometric models are often combined with energy
system models. The connection between the different model categories is an impor-
tant aspect in the modelling literature, given that certain models focus on specific
sectors often neglecting the impacts on the other sectors. At the same time, [AMs that
cover the energy, economy and climate are criticised for sacrificing the necessary
model granularity for the sake of simplicity. From a modelling perspective, this
linkage is complex and understudied in the literature (e.g. Karkatsoulis et al. 2017).
Table 2 attempts to provide an overview of the six categories of integrated assess-
ment models with some of their most prominent modelling frameworks, along with a
short description and set of indicative applications. Sixty-one modelling frameworks
have been reviewed and assessed for the purpose of this study.
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3 Optimal Growth Models

Optimal growth or welfare optimisation [AMs tend to be more transparent because
they are relatively simple, compared to models of other categories with more
complex structures. They have solid microeconomic foundations and focus explic-
itly on the development of the economy over time. Social welfare is often defined as
the utility of a representative agent, and the overall objective is to maximise
aggregated welfare over time. In neoclassical economic growth models, economies
make investments in capital, education and technologies. These enhance future
consumption by sacrificing some present consumption, the objective being to find
the right balance between present consumption and investment in future consump-
tion so as to maximise overall welfare. [AMs of this class extend the neoclassical
growth models by including the “natural capital” of the climate system as an
additional kind of capital (Nordhaus 2014). Increased emissions of GHGs effectively
deplete natural capital, while abatement investments augment it. In addition to
standard investments, natural capital used today enhances present consumption
versus expending resources in order to protect the climate system, or to avoid
damage from climate change, for future welfare. In terms of climate policy, these
models compare alternative paths of emissions over time (abatement) in order to find
the policy that maximises overall social welfare.

Table 3 presents a set of key models falling under this class, along with infor-
mation regarding the perspective of the model, the number of regions and forecasting
period it can cover and the damage function by means of which the damages are
translated into monetary terms. The model perspective describes the overall
approach of the modelling framework: a top-down approach looks at the system
under examination as a whole and uses reduced form behavioural relationships with
econometrical validation, while bottom-up approaches are developed from an engi-
neering perspective and start from the sector of interest in detail before expanding the
focus onto the whole system. Other settings are more flexible and can be described as
being developed from a hybrid perspective, i.e. combine different levels of detail for
specific sectors or the system—a particular class of hybrid models are economic
engineering models, which combine microeconomic foundations of behaviour with
explicit engineering and technology details (see, e.g. Sect. 6).

Most of the modelling frameworks in this category are top-down approaches,
with the exception of AIM/Enduse, which can also be considered as a non-integrated
assessment model, since no economic module is included. CETA-M, WITCH and
MERGE feature a hybrid model perspective, while DEMETER-1(CCS) is a classic
top-down model incorporating insights from the bottom-up literature regarding
learning-by-doing effects (Ortiz and Markandya 2009).

The DICE (dynamic integrated climate economy) global model (Nordhaus and
Yang 1996) is selected in this study as a representative model of this category. In
DICE, countries are aggregated into a single level of output, capital stock, technol-
ogy and emissions (in a regional setting, RICE is a multi-region version of DICE).
The social welfare function represents the world’s well-defined set of preferences
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and accordingly ranks different consumption paths. Welfare is increasing in per
capita consumption for each generation but with diminishing marginal utility of
consumption. The more you consume (or the wealthier you are), the less valuable an
additional unit of consumption is. If we expect future generations to be wealthier,
then additional consumption for them is less valuable than it is for us. Two central
normative parameters determine the relative importance given to different genera-
tions. The pure rate of time preferences is a subjective weighting of consumption at
different times, and a positive value means that immediate consumption is valued
more than future consumption. Higher values increase the bias towards present
consumption. The elasticity of the marginal utility of consumption is a measure of
how many additional units of consumption fall in value in terms of utility. For a
given growth in consumption over time, higher elasticity means that an additional
unit of consumption is more valuable today than in the future.

The overall savings rate for physical capital and the rate of control of emissions of
greenhouse gases are the two key decision variables for the economy. A single
commodity can be either consumed or invested. Consumption viewed broadly
includes food and shelter as well as environmental amenities and services. The
production of output is represented by a Cobb-Douglas production function in
capital, labour and energy. Energy can come from carbon-based fuels or non-
carbon-based technologies. Technological change can come from economy-wide
technological change or carbon-saving technological change.

The key feature that turns the neoclassical growth model into a fully integrated
assessment model is the linking of certain geophysical relationships affecting cli-
mate change to the economy: the carbon cycle, a radiative forcing equation, climate
change equations and a climate-damage relationship. In the DICE-2007 model,
industrial CO, emissions constitute the only GHG that can be controlled and vary
with total output, a time-varying emissions-output ratio and a rate of control of
emissions. The cost of tougher climate policies will be reflected in reductions in
output. A radiative forcing equation calculates the impact of GHG accumulation on
the radiation balance of the globe. The climate equations that draw from general
circulation models calculate the mean surface temperature of the globe and the
average temperature of the deep oceans. The climate-damage relationship translates
climate change into economic damages by drawing on estimates of economic
impacts from other work.

Regarding technology, all optimal growth models among those reviewed assume
exogenous (induced) technological change (ITC), while most also incorporate
parameters that are endogenously approached (endogenous technological
change—ETC); the only exception appears to be the WITCH model, in which
technology is exclusively changed endogenously (Table 4). In contrast to DICE, in
the latest DICE-2007 model (Nordhaus 2008), both forms of technological change
are exogenous, which can be perceived as a serious limitation, especially as changes
in carbon prices would be expected to induce carbon-saving technological change.

As suggested in Table 4, uncertainty in optimal growth models is usually treated
deterministically, in their original design; only DICE applications have treated
uncertainty in a probabilistic manner, by means of Monte Carlo analysis
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(e.g. Nordhaus 2007; Ackerman et al. 2010). Furthermore, the MERGE and WITCH
integrated assessment models were upgraded in their 2008 versions so as to include
Monte Carlo analysis in treating uncertainty.

4 Computable General Equilibrium Models

This section draws heavily on Wing’s lucid presentation of the basic structure of all
computable general equilibrium models used for economy-environment interactions
(Wing 2011). CGE models are an algebraic representation of the intricate function-
ing of a market economy and are based on the core abstract theoretical foundation of
how a decentralised price system works. Demand and supply for goods arise from
consumers maximising utility and producers maximising profits, with prices bring-
ing about equilibrium in the markets. What makes them “computable” models is the
use of economic data to derive numerical parameters that will simulate the real world
when solved for equilibrium prices, demand and supply levels of goods. National
Accounts for a specific year provide the requisite information on expenditures for
goods and services by production sectors and households, as well as the division of
factors of production across producers. Data is also required to determine the price
elasticities of demands and supplies and factor substitution. This data is usually
derived from other empirical work analysing how the behaviour of agents responds
to price changes. With the use of National Accounts and elasticity data, the param-
eters of CGE equations are “calibrated” so that the equilibrium solution of the
numerical model precisely reproduces the data of a real economy for a given year.

The general way that CGE models are used for policy analysis is to change one or
more of the exogenous parameters of the economy and compute the new equilib-
rium. Comparing the new counterfactual equilibrium to the initial equilibrium
vectors of prices and activity levels as well as the level of utility of the representative
household provides insights about the effect of a “shock” on the economy.

By modelling the linkages between the different sectors of an economy, CGE
models are able to capture not only the direct impacts of a policy on one sector of the
economy but to trace its full (or general equilibrium) impact on the interdependent
sectors of an economy and ultimately the change in consumption (or utility) of the
representative agent, which is a measure of the welfare impact. A carbon tax will not
just increase the cost of certain forms of energy but will also affect the demand and
supply of other goods. This is one of the main advantages of these models relative to
partial equilibrium models that focus on a single sector or other models that do not
have a detailed multi-sector representation of the economy. For example, neoclas-
sical growth models that model the economy as a single sector cannot capture these
general equilibrium effects, despite focusing on a broader understanding of long-
term dynamics. An overview of the reviewed CGE models can be found in Table 5.

CGE models have traditionally focused on evaluating the costs of emission
reductions, alternative mitigation policies and the damages resulting from climate
change. Increasing attention is also given to considering the costs and benefits of
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Table 5 Overview of computable general equilibrium models

Model Model perspective Regions Forecasting period
AIM Top-down Regional (21) 1990-2100
AIM/Material Top-down Japan 1995-2010
Dynamic GTAP Top-down Global 1997-2025
G-CUBED Top-down Regional (8) 2000-2100
GEM-E3 Top-down Regional (Europe) 1996-2020
GREEN Top-down Global 1985-2050
GTAP-E Top-down Regional (5)

GTEM Top-down Global 1997-2100
ICES Top-down Regional (14) 2001-2050
IGEM Top-down Regional (USA) 2000-2060
IMACLIM-R Top-down Regional (5) 1997-2100
LINKAGE Top-down Global 2004-2080
MEMO Bottom-up National 2010-2030
MIRAGE Top-down Regional 2004-2020
MIT EPPA Top-down Regional (16) 2000-2100
MS-MRT Hybrid Regional (10) 2000-2030
SGM 2004 Hybrid Global (14) 2000-2050
WIAGEM Top-down Regional (25) 2000-2050
WORLDSCAN Top-down Regional (16) 2000-2050

adaptation. A standard exercise is to examine the effect that a carbon tax will have on
an economy’s output and emissions of greenhouse gases. A multi-region model with
international trade could examine how carbon tax policies would perform if different
countries apply different tax rates (Elliott et al. 2010). A typical way of capturing the
impacts of climate change on an economy in a CGE model is to model the shocks
through several possible channels. Rising temperatures can lead to changes in
consumer expenditure patterns such as an increase in demand for air conditioning
in the summer or a drop in demand for heating in the winter. By introducing a shock
parameter into the representative agent’s expenditure function, this influence can be
captured. To the extent that climate change reduces the productivity of space
conditioning, the shock parameter rises, leading to increases in expenditure required
for a given level of space conditioning and thus ultimately negatively impacting the
households’ welfare. In a similar fashion, shock parameters can be introduced to
account for changes in the productivity of primary factors in various industries. If
climate change reduces (or increases) the yield of certain crops, then a shock
parameter can be changed to capture the reduced productivity in the agricultural
sector. Comparing a benchmark equilibrium where the shock parameter has a unit
value with a new equilibrium resulting from changed parameter values on agricul-
tural productivity will give a measure of the welfare loss from this impact of climate
change. Shock parameters can also be introduced to capture reductions in the
aggregate endowments of capital and labour such as those arising from damage to
property or from increased morbidity or mortality. By appropriately incorporating a
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full set of possible climate change impacts through relevant shock parameters, the
computable general equilibrium model is able to tally the loss of welfare to the
representative agent resulting from the several productivity shocks. This method,
however, does not capture impacts that do not register in markets such as loss in
biodiversity or an increase in risk of morbidity and mortality.

Technological change and uncertainty treatment are presented in Table 6. In this
domain, CGEs appear similar to optimal growth models, in that they mostly feature
induced technological change, although GEM-E3, IGEM, IMACLIM-R and MIT
EPPA also have technological aspects endogenously determined, and in that they all
treat uncertainty by means of scenario or deterministic sensitivity analyses. The only
exception in CGE modelling applications in the literature appears to be the MIT
EPPA model, in which anthropogenic emissions of greenhouse gases and precursors
were sampled with Monte Carlo analysis (Webster et al. 2002, 2003).

Since the economy in CGE models is always at an optimum, any restrictions on
GHGs necessarily lead to costs or losses in output. No regrets or double dividends
are possible in these models; this contrasts with some macroeconometric models
discussed in Sect. 7. DeCanio (2003) carries out a detailed, fundamental critique on
the underlying theoretical basis of CGE models.

S Partial Equilibrium Models

Partial equilibrium analysis differs from general equilibrium modelling primarily by
focusing on a specific market or sector and assuming that prices (or conditions) in the
rest of the economy remain constant or unchanged. It is usually justified theoretically
when the changes being considered affect primarily one market and are expected to
have a relatively small impact on the rest of the economy. Partial equilibrium
analysis is used extensively to estimate the impacts of climate change in different
sectors of the economy. Although partial equilibrium analysis is unable to capture
the broader implications that climate impacts or mitigation will have as sector
changes reverberate through all economic sectors, it has the advantage of providing
a more detailed understanding compared to a general equilibrium appraisal, which
can be very useful in designing policy.

One of the early applications of partial equilibrium analysis to assess the impacts
of climate change was on the agricultural sector. Two distinct ways to measure the
impact of climate change on agriculture have emerged: a statistical approach and a
biophysical approach. Mendelsohn et al. (1999) used the biophysical approach to
estimate damages to the agricultural sector in the USA: simulation models were used
to predict changes in yield from crop (damage function), and then these provided the
inputs for a spatial partial equilibrium model of the US agricultural sector. Much like
their general equilibrium counterparts, this shift in the parameter of a production
function that would result from climate change brings about a new equilibrium, and
the difference in welfare is a measure of the economic damage caused.
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Producers’ costs are a function of the outputs of the goods they produce, factor
prices and exogenous environmental inputs like climate, soil quality, air quality and
water quality. In the statistical approach, land is separated from other production
inputs and considered to be heterogeneous with different environmental character-
istics. Perfect competition for land is assumed which implies that entry and exit will
drive pure profits to zero. In this case land value should be equal to the net revenue
from the land, which is linked to the value of land. This “Ricardian” model allows
one to measure the impact of a change in an environmental variable through the
impact on the value of land. A change in an environmental factor that damages
production will lead to a fall in the stream of future of land rents and in the value of
land. If prices for all markets (except that of land) are assumed constant, the value of
the environment change is captured by the change in aggregate land values. In order
to discern the impact of climate variation (as well as mean temperature) on property
values, Mendelsohn et al. (1999) used cross-sectional data on aggregate land values
in different counties along with 12 climatic variables (of temperature and precipita-
tion). They then regressed aggregate farm values on climate, soil and economic
variables in order to determine the marginal impact of each climate variable.
Essentially, differences in temperature and weather patterns at a point in time across
various regions were used to project climate change impacts in the future.

Both biophysical and statistical partial equilibrium approaches have been used to
estimate impacts of climate change across multiple sectors of an economy. With
consistent assumptions across sectoral analyses, these are often added up to provide
a value of total impact to an economy. This total value does not capture non-market
impacts such as health and biodiversity.

The idea of drawing on the literature of biophysical models to find the physical
climate impacts for different sectors and then translate these into monetary values by
various methods (first order calculations, partial equilibrium models, and guessti-
mates) and add them up to find a total monetary value of “damages” from climate
change is also known as the “enumerative approach”. This is probably one of the
easiest methods to grasp conceptually as the move from the physical to the monetary
valuation is more transparent. Estimates of “physical effects” of climate change on
specific sectors of the economy or environmental services are obtained from natural
science work (climate models, impact models and laboratory experiments). Eco-
nomic valuation methods are then used to place a monetary value on the physical
impact, and this can either provide an estimate of damage to a specific sector like
agriculture, or the values of damages to the different sectors (tourism, agriculture,
forestry, biodiversity, etc.) can be added up to give an estimate of the total damages
of climate change to a region. For instance, engineering estimates can be used to find
the physical effect that a rise in sea level has on coastal protection and loss of land.
Economic estimates of the cost of coastal protection and the value of lost land or land
protection follow. For goods that are not traded in markets, like climate impacts to
health and biodiversity, other economic techniques are needed to estimate monetary
values. Physical loss to health could be translated into monetary terms by consider-
ing medical expenses, productivity loss or citizens’ willingness to pay to avoid risk
of health damages (Tol 2010).
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Theory does not suggest that adding up the separate economic sectoral impacts
will lead to the same result as evaluating total climate change impacts with a
computable general equilibrium or macroeconomic model that incorporate all mar-
ket interactions. A particularly stark example of the importance of capturing market
interactions can be found in the literature on what is known as the “rebound effect”
(Sorrell 2009). Improvement in energy efficiency might be expected to directly lead
to reductions in energy consumption and GHG emissions, and many policies to
improve energy efficiency have that aim. An analysis that looks just at the immediate
impact of energy efficiency or savings policy might lead to that conclusion. How-
ever, empirical and theoretical literature show that there can often be a rebound effect
such that any gains in energy efficiency are countered by increases in energy
consumption. This could happen because the improved energy efficiency brings
about a fall in the price of energy leading to increased use of energy or the
development of new energy-using products.

The more detailed analysis and quantification of damage functions that are part of
the partial equilibrium studies or enumerative approaches have also been used as
inputs into general equilibrium models; for example, Jorgenson et al. (2004) use
sectoral damage functions as inputs into their Intertemporal General Equilibrium
Model IGEM). This distinguished their approach from many computable general
equilibrium models that did not rely on damage functions derived from more
detailed empirical sectoral studies. A damage function is used to describe how unit
costs or the supply of input factors changes as a result of climate variation. For
instance, for the sectors of crop agriculture, forestry, energy and water, a damage
function is used in order to relate the percentage change in unit production costs to
changes in temperature and precipitation. The difference between the unit price of
producing a given quantity before and after the impact of climate change is used in
the model to reflect the change in productivity or inputs required to produce the same
amount of a good. This productivity change is incorporated in the relevant sector of
the CGE to model the full economic implications of the climate impacts.

The three partial equilibrium models reviewed are presented in Table 7. It is
obvious that technological change differs across the three models, all of which are of
global coverage. Only the GCAM model (formerly known as MiniCAM) features
both endogenous and induced technological progress as well as characteristics of
both bottom-up and top-down approaches (Urban et al. 2007), and, contrary to GIM
and TTAM-ECN, there have been applications featuring uncertain parameters treated
stochastically by means of Monte Carlo analysis (Scott et al. 1999).

One of the advantages of a sectoral approach is that it allows a much more
detailed understanding of the various climate impacts and a more refined estimation
of specific impacts on parts of the economy. One recent study known as PESETA
(Ciscar et al. 2009) combined sectoral and computable general equilibrium models
to produce a Europe-wide analysis of climate impacts for five categories: agriculture,
tourism, river floods, coastal systems and health. The study pointed to the disadvan-
tages of other regional integrated assessment studies that rely on reduced-form
damage functions relating global temperature to GDP (as most wealth maximising
IAMs do). Specifically, these reduced-form damage functions are often based on



30

A. Nikas et al.

Table 7 Overview of partial equilibrium models, including uncertainty treatment and technolog-

ical change

Model GIM MiniCAM/GCAM TIAM-ECN
Model Top-down Hybrid Bottom-up
perspective
Regions Global (178) Global (14) Global (36)
Forecasting 1990-2100 1990-2100 2010-2100
period
Technological | Endogenous Endogenous; exogenous Exogenous
change
Uncertainty Deterministic (sce- Deterministic (scenario analysis); | Deterministic
treatment nario analysis) stochastic (Monte Carlo analysis) | (scenario
analysis)
Uncertainty Climate prediction Policy mix, emissions, atmo- Radiative forcing
factors models (Mendelsohn | spheric concentration, radiative levels (van der
and Williams 2004) | forcing, global mean temperature | Zwaan et al.

and climate sensitivity, damages 2013)

for the no intervention case, cost

of stabilising emissions, cost of

stabilising the atmosphere, cost of

stabilising the climate (Scott et al.

1999)

literature that draws on different and possibly inconsistent climate scenarios; only
average temperature and precipitation are used rather than a fuller set of climate
variables at an appropriate time-space resolution, resulting in estimates of impacts
not having a detailed enough geographical resolution. In contrast, PESETA followed
an enumerative (bottom-up) approach, which means that the impact assessment was
based on much more detailed sectoral models deriving from the regions under study.
In order to meaningfully add these impacts up, common climate scenarios were used
at a high time-space resolution. Finally, the impacts derived from each sector were
fed into a computable general equilibrium model (GEM-E3) allowing for the
assessment of impacts, after market interactions had been incorporated. Another
recent example of a national climate change assessment combining a sectoral
approach with a top-down CGE can be found in the Garnaut Climate Change
Review (Garnaut 2008).

6 Energy System Models

While much of the discussion on partial equilibrium models (Sect. 5) focused on
ways of estimating damages that climate change may cause, energy system models
focus on the key sector determining GHG emissions and costs arising from emission
reduction policies. Numerous models have been developed over the years to provide
energy policy guidance and that have evolved into integrated assessment models or
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components of IAMs. The analysis of energy and environmental policy often
demands a level of technological explicitness and detail that goes beyond macro-
economic models that do not differentiate technology stocks. A class of technology-
oriented models known as “bottom-up” models emerged in the 1970s (following the
first oil crisis) and are still being developed, for the purpose of addressing this need
for detail. While these were developed for energy resource planning purposes and
began with simple, single-sector accounting tools, they soon evolved into complex
and dynamic optimisation and simulation frameworks for energy and climate policy
appraisal at local, national or international levels (Greening and Bataille 2009). As
Mundaca et al. (2010) note, these models are disaggregated representations of the
energy-economy system, entailing detailed characterisations of existing and new
energy technologies, and can simulate alternative technological pathways. Besides
considering least-cost means of achieving emission targets, these models are
employed towards identifying a number of climate-energy issues, including best
technology opportunities, costs of alternative mitigation policies and the potential
for greater energy efficiency.

Energy system models can broadly be classified as optimisation models or
simulation models. Optimisation models use information on costs and constraints
of technology characteristics to identify the “best”, “least-cost” or “optimal” tech-
nology. The consumer is assumed to be rational, and energy supplies are allocated to
energy demands, based on minimum lifecycle technology costs. By incorporating a
constraint on emissions, an optimisation model can estimate the least costs of
achieving a target. Simulation models are designed to capture technological and
economic dynamics as realistically as possible. Rather than seeking to find a least-
cost solution, they model the most probable responses to policy shocks. Producers
and consumers may carry out production and consumption activities with different
objectives in contrast to optimisation models that usually operate from the perspec-
tive of a single optimising decision-maker. There are many simulation models of
various degrees of sophistication. A sequential iterative simulation process is used to
find an equilibrium set of prices and demands. A policy application affects prices,
and the iterations continue until a new equilibrium is found. Outcomes are very
sensitive to the dynamics and technologies assumed. A simulation, for instance, of a
GHG policy will lead to very different results if carbon capture and storage or other
backstop technologies are included. Table 8 presents an overview of the reviewed
energy system models, along with their system, geographical and time coverage,
mathematical structure and perspective.

The technological explicitness and detail of energy system models allow them to
consider such issues as how policies can promote technology commercialisation and
diffusion, but they have been criticised for lacking microeconomic (or behavioural)
realism and “macroeconomic completeness” (or feedbacks). In terms of behavioural
realism, they have been criticised for being too optimistic on the profitability of
attaining energy efficiency from the diffusion of low-emission or inexpensive
technologies. Part of the problem is that bottom-up models focus mostly on the
financial costs while not taking into account such key factors as greater risks,
intangible costs and longer payback periods associated with investments in energy



32 A. Nikas et al.

efficiency. For instance, two light bulbs that may appear to provide the same service
in terms of lumens may differ in risk of premature failure, payback period, shape,
hue of light or time it takes for a bulb to reach full intensity; similarly, public transit
and single-occupancy vehicles may provide the same personal transportation ser-
vice, but evidence suggests that some consumers perceive public transportation as
being of lower convenience, status and comfort level. By incorporating more
parameters to gauge for consumers preferences, like time preferences or perception
of risks, models will be better able to explain and predict the potential uptake and
diffusion of new technologies. Mundaca et al. (2010) review models that attempt to
capture more of this behavioural realism for the analysis of energy efficiency
policies.

Being essentially partial equilibrium models focusing on energy consumption,
energy system models tend to find relatively low mitigation costs because they only
consider the impact of emission reduction strategies on energy system costs usually
ignoring feedback loops and interactions with other sectors of the economy; excep-
tions of such models including feedback loops, however, can be found in the
literature (e.g. Karkatsoulis et al. 2017). For instance, these models assume that
investments within the energy sector can be funded at a constant rate of interest. An
ambitious climate policy, however, would lead to a depreciation of capital stocks in
certain sectors and accordingly change the return on investment in the energy sector
as well as a concomitant reallocation of investments across sectors. These invest-
ment dynamics are a critical determinant of macroeconomic costs missed by the
partial equilibrium analysis. For the same reason, most energy system models tend to
neglect the potentially significant rebound effects and crowding-out implications of
investments (Edenhofer et al. 2006).

As Table 8 suggests, all energy system models are bottom-up; exceptions include
hybrid models (Greening and Bataille 2009) that also feature characteristics of
top-down approaches, like MESSAGE and WEM (Urban et al. 2007), and economic
engineering models in particular, combining microeconomic foundations of behav-
iour with technology details (such as DNE21+, NEMS, POLES and PRIMES). In a
broader perspective, there are numerous ways that bottom-up models have added
macroeconomic components, whether these derive from optimal growth models,
macroeconomic models or computable general equilibrium models. Because of the
technological explicitness of bottom-up models, the top-down feedbacks have
focused on direct adjustment effects on the demand for energy-using goods and
services in response to changes in the cost of delivery, but do not capture the
secondary macroeconomic effects like change to wages, cost of capital, exchange
rates and government budgets resulting from energy price changes. When govern-
mental energy policies are moderate in scope, they are unlikely to have substantial
macroeconomic implications, but as policies become more ambitious—as would be
required for a rapid reduction in GHG emissions or a big shift towards renewable
energy sources—the macroeconomic consequences constitute an important factor in
assessing the policy outcomes (Greening and Bataille 2009).

Just as bottom-up models have been trying to overcome their weaknesses by
combining elements of top-down models, there have been many attempts by
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Table 8 Overview of energy system models

System Mathematical | Model Forecasting

Model coverage structure perspective Regions period

Calliope Partial Optimisation Bottom-up National
equilibrium

DNE21+ Limited macro | Optimisation Economic Regional 2000-2100
feedback engineering 7)

EFOM Partial Optimisation Bottom-up National 1974-2020
equilibrium

ERIS Partial Optimisation Bottom-up Regional 1990-2050
equilibrium (12)

GENIE Limited macro | Optimisation Bottom-up Regional 1995-2050
feedback “4)

GET-LFL Partial Optimisation Bottom-up Global 2000-2050
equilibrium

MARKAL/ | Partial Optimisation Bottom-up Regional 1990-2050

TIMES equilibrium [®)]

MEDEE 2 Partial Simulation Bottom-up National 1990-2040
equilibrium

MESSAGE | Partial Optimisation Hybrid Regional 2005-2100
equilibrium 11

NEMS Limited macro | Market Economic National 2000-2030
feedback equilibrium engineering (USA)

POLES Partial Market Economic Regional 1980-2100
equilibrium equilibrium engineering (18)

PRIMES Partial Market Economic Regional 2005-2050
equilibrium equilibrium engineering (Europe)

WEM Limited macro | Optimisation Hybrid Regional 2015-2040
feedback (25)

top-down modellers to enhance their technological explicitness by incorporating
elements of bottom-up models. Technological change has generally been captured in
top-down models with the use of two key parameters: elasticity of substitution
(ESUB) and the autonomous energy efficiency index (AEEI). ESUBs are used to
capture the degree to which a relative price change will affect the substitution
between any two pairs of aggregate inputs (capital, labour, energy, materials) and
between different forms of final energy. In general, the easier it is to substitute capital
for energy or one form of energy for another, the lower the cost of reducing energy
use or GHG emissions. AEEI gives the rate at which price-independent technolog-
ical evolution improves energy productivity, and itself depends on changes in
technology and capital stock turnover. A higher AEEI means that the economy
becomes energy-efficient faster. ESUB and AEEI are often estimated from aggre-
gate, historical data, but these may not be good indicators for future values under
different policy regimes. A policy focus on low to zero GHG emissions may have a
substantial impact on AEEI and ESUB that is not captured by looking into the past.
This inadequacy of top-down models partly explains the push towards greater
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technological detail and making technological change endogenous. Another reason
is that top-down models represent technological change as an abstract, aggregate
phenomenon which may be adequate to assess economy-wide instruments like taxes
and tradable permits but are unable to consider technology-focused policies. There
are several different ways of incorporating elements of bottom-up models into
top-down models, but there are limitations to how much technological detail can
be incorporated without running into computational and other difficulties.

Technological change along with uncertainty treatment in the reviewed energy
system models is presented in Table 9. It is evident that there exists a balance
between endogenous and exogenous technological change among energy system
models. Uncertainty treatment, however, is again treated mostly by means of
deterministic approaches, i.e. scenario and sensitivity analysis, with the most prom-
inent exception being that of the MARKAL/TIMES model, which also features
Monte Carlo analysis according to Seebregts et al. (2002).

There exist a large number of general reviews of existing energy system models
(e.g. Worrell et al. 2004; Jebaraj and Iniyan 2006), while Mundaca et al. (2010)
provide a review of models with a specific focus on energy efficiency, also identi-
fying a separate category of models called “accounting models”.

It should be noted that energy system models can be perceived as a cross-cutting
category of models based on this classification, ranging from partial equilibrium to
neoclassical/optimal growth models. In essence, they are partial equilibrium models,
assuming equilibrium in one particular sector, i.e. the power sector. However, this
category also includes models with features from other modelling approaches and
structures, as shown in Table 8. For example, GET-LFL is an energy system model
that can be classified as a cost minimisation [AM (Wei et al. 2015). The same applies
for DNE21+, MIND and MESSAGE (Stanton et al. 2009). Furthermore, it should be
mentioned that energy system models do note solely focus on the power sector but
all economic sectors that are consumers of energy. For example, they are also used in
studies oriented on the transport sector (e.g. Siskos et al. 2015). The latter is
responsible for around 25% of energy-related GHG emissions today and is widely
acknowledged to be the most inflexible sector of the energy system with regard to
deep emissions reduction in the future (e.g. Hickman et al. 2010).

7 Macroeconometric Models

Environmental policy issues around 1990 pushed the development of computable
general equilibrium models like the GREEN model of OECD, while in Europe, there
was a parallel development of the CGE model GEM-E3 and the input-output
econometric (or macroeconometric) model E3ME, which integrated energy and
emissions in the economic model. E3ME stands for energy-environment-economy
(E3) multisectoral model at the European level and, along with its variants, remains
one of the most prominent macroeconometric models for appraisal of climate policy
and climate-economy interactions. E3MG is a similar model that focuses on the
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global level, as does the Oxford Global Macroeconomic and Energy Model, while
the MDM-E3 model focuses on the UK economy (Table 10).

Macroeconometric models are “integrated” or hybrid in that they combine
top-down macro models with bottom-up energy system models. The goal of inte-
grating the two types of models is to provide a dynamic, non-linear picture of
economic change in a detailed interindustry framework (West 2002). While static
models can measure long-run comparative equilibrium solutions, the
macroeconometric models are able to track the time path of the economy through

Table 10 Overview of macroeconometric models, including uncertainty treatment and technolog-

ical change

Oxford global
macroeconomic
and energy
Model E3ME E3MG MDM-E3 model
Model Hybrid (Cam- Hybrid (Barker Hybrid (Barker Top-down
perspective bridge Economet- | and Scrieciu et al. 2007):
rics 2014): 2010): top-down | top-down; bot-
top-down (interactions, tom-up (less
(energy); bottom- | feedback and detailed electric-
up (electricity spillover effects ity sub-model,
supply) between the energy technol-
required invest- ogy model)
ments and out-
comes and the rest
of the economy);
bottom-up
(energy technol-
ogy model)
Regions Global (59) Global (20) National Global (22)
Forecasting 1990-2100 1971-2100 Until 2030 2005-2020
period
Technological | Endogenous Endogenous Exogenous Exogenous
change
Uncertainty Deterministic Deterministic Deterministic Deterministic
treatment (scenario analy- (scenario analy- (scenario (scenario
sis); stochastic sis); stochastic analysis) analysis)
(probabilistic (probabilistic
analysis) analysis)
Uncertainty All model param- | Policy mix, car- Policy mix Policy mix, per-
factors eters (Mercure bon prices, new (Barker et al. mit trading sys-
et al. 2017); level |investments, 2007; Ekins and | tem structure
of coordination in | emissions trading | Etheridge 2006) | (Cooper et al.
fiscal policies system structure 1999)
(Barker 1998, (Barker et al.
1999) 2012); technology
penetration levels
(Dagoumas and
Barker 2010)
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short-run disequilibrium adjustments. Macroeconometric models incorporate equa-
tions that trace the trajectory of national economic aggregates as well as related
components of economic activity like labour, savings and consumption. These
equations are estimated econometrically. Aggregate potential output is usually
simulated as a function of aggregate inputs of capital and labour, and sometimes
energy and materials. Transactions among economic sectors are described by input-
output models. More or less aggregated sectoral demand functions are estimated by
means of historical data, e.g. for energy services and food, allowing for projections
of future trends in response to a carbon tax or other climate policies. The accuracy of
these forecasts depends on the extent to which historical changes, e.g. technology
changes induced by past price changes, are likely to be a good indicator for future
changes.

Unlike CGE and optimal growth models, macroeconometric models do not
assume that markets clear in the short and medium run, and demand and supply
do not derive from optimising behaviour of consumers and producers. They are
disequilibrium models with demand and supply approaching equilibrium in the long
run. Because of the fact that they do not posit optimising behaviour on the part of
agents or a ‘“central planner”, they are characterised as simulation models,
representing as closely as possible the dynamics of the real world. The economy
and energy system are described by a set of rules that need not lead to full
equilibrium. Some macroeconometric models also allow for structural unemploy-
ment resulting from inadequate demand for labour in the long run (Hourcade et al.
1996). CGE models usually assume that there is no unemployment or that the labour
market clears. The Post-Keynesian E3ME macroeconometric model estimates
labour with various disaggregated equations, e.g. working hours are estimated for
men and women, different ages and sectors, thus allowing the model to forecast full-
time and part-time workers. Disequilibrium in the labour market or unemployment is
therefore a feature of this model. For this reason, it is sometimes argued that CGE
models are more suitable for describing long-run steady-state behaviour, while
macroeconometric models are more suitable for forecasting short-term outcomes.
The parallel development of these “very different models” has given rise to an
ongoing, often-heated discussion and conflicting positions between the input-output
econometric and the CGE community (e.g. Grassini 2009). Robinson (2006) pro-
vides a nice account of the historical tension between CGE and macroeconometric
models and the remaining theoretical difficulties of reconciling the approaches.
Kratena and Streicher (2009) on the other hand attempt to better identify the key
features differentiating the two approaches and suggest that the distance between
them is much smaller than usually assumed.

One of the model outcomes that has often set the E3ME model apart from other
top-down models is that it can give rise to negative costs, i.e. the imposition of
climate policies can actually lead to increases in employment and output. Since
structural unemployment is possible in this model, a transition to a low carbon
economy can potentially enhance effective demand for labour reducing the lost
output. In the E3MG model where the labour market and other markets may not
clear, part of the impact of induced technological change arising from climate
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policies is to raise growth through increased transfer of labour from traditional to
modern sectors (Edenhofer et al. 2006).

As many CGE models assume the economy is always at an optimum, including
full employment, any “constraints” resulting from climate policies can only result in
additional costs to the economy. In general, first best models assume perfect markets
and optimal policy implementation so that no-regret options are impossible. Second
best models essentially allow for the possibility that climate policies can reduce
market imperfections as a side benefit. This way, the costs of climate protection can
be diminished or even become negative. Although imperfections or second best
modelling is a fundamental feature of most macroeconometric models, since many
of these draw heavily on the Keynesian tradition, different kinds of imperfections are
often incorporated in GCE models and are usually implicitly assumed in most
bottom-up (engineering) energy sector models (Sect. 6). Double dividends arise
because climate policy redresses one imperfection (missing market or other institu-
tions for climate protection) while also potentially reducing other market imperfec-
tions, e.g. barriers that prevent uptake of new technologies. When incorporating side
benefits, for example, from reducing “distortionary” taxes with revenue from a
carbon tax, in second best models, it would help to consider whether climate policies
are the best way of dealing with many market imperfections and the extent to which
these benefits should be attributed to climate policy per se.

8 Other Integrated Assessment Models

Optimal growth and CGE models are both based on a specific long-standing
theoretical foundation so that most of these models can be understood as variations
(though sometimes substantial) on a theme and comparability seems to be more
straightforward. This section presents models that are hard to classify into any of the
previously discussed models and delves into one well-known non-CGE model, the
PAGE2002 model, as indicative of the kind of possible departures from standard
neoclassical growth, CGE and macroeconometric models. These models are
presented in Table 11. It should be noted that FUND should not be considered as
a hybrid model, but it can run different optimisation modes, including top-down or
bottom-up, cooperative or non-cooperative and with or without interregional capital
transfer.

The PAGE2002 model attracted much attention recently due to it being the
top-down model that the Stern team relied on for many of the much publicised
aggregate climate change damages. One of the features that made it attractive to the
Stern team was the model’s central focus on taking account of uncertainty in many of
the climate-economy parameters. PAGE was developed as a computer simulation
model in 1992 for use in decision-making within the European Commission. It was
explicitly designed to be comprehensive but “accessible to policy makers” with the
“simplest credible functional forms” (Hope et al. 1993), so that it remains transparent
and able to run fast and repeatedly using a random sample of uncertain input
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parameters (Plambeck et al. 1997). A common criticism of IAMs is that they are so
complex and opaque (“black box”) that it is hard to see how the various underlying
assumptions affect their outcomes. The use of simple equations to capture complex
climatic and economic phenomena is, according to Hope (2006), justified because
the results approximate those of the most complex climate simulations and all
aspects of climate change are subject to profound uncertainty. Uncertainty is a
central focus of the model that builds up probability distributions of the results by
representing the key inputs to the marginal impacts with probability distributions
(stochastic treatment). An approximate probability distribution is generated for the
model outputs of temperature rise, climate change damages and costs of adaptation
and prevention. This is meant to help decision-makers perform a risk analysis so that
they can select a policy that balances the cost of intervention against the benefits of
mitigating potential climate change impacts (Plambeck et al. 1997).

A full description of the PAGE2002 model and all of its equations can be found in
Hope (2006). A number of equations are focused on determining the temperature rise
from excess concentrations of each of the greenhouse gases caused by human
activities. There is no module of an economy. The economic side of the model is
limited to a few equations that link market and non-market damages to temperature
increases and calculate costs of avoiding or diminishing these damages through
adaptation and/or emission reductions. In estimating damages arising from climate
change, an “enumerative approach” is taken, which means that total damages are a
simple aggregation of damages in individual sectors. There is thus no general
equilibrium type of accounting for the many possible interactions between sectors.
Although it has been assumed that this will lead to a lower estimate of total damages
than that from a model that captures interactions, it is difficult to understand the
magnitude of the difference. Climate change impacts are assumed to occur if
temperature rises at a rate above some tolerable rate of change or level of temper-
ature. These rates and levels vary with regions, and a regional multiplier captures
these differences. Adaptation policies in any given year can increase both the
tolerable rate of change and the level of temperature rise. The regional impact of
climate change is therefore a function of the regional temperature rise and how much
this is in excess of the regional tolerable rate of change or level of temperature that
also depends on adaptation policies. A weighted index translates the regional
temperature rise into monetary damage by multiplying the excess regional temper-
ature rise by a regionally weighted percentage loss of GDP (based on estimates)
times the regions’ estimated GDP. This is done for all eight regions in the model, for
the market and non-market sectors and for every time period. By adding together
market and non-market sector damages, the model finds aggregate damages per
region per period, and this can then be discounted with regional and time variable
discount rates. To get the net present value of global climate change impacts, the
model aggregates the net present values of all regional damages.

Adaptation costs depend on the change in the rate and level of tolerable temper-
ature rise that can be brought about by adaptation policy within each region. With
appropriate weighting and use of uncertainty parameters, the net present value of
costs can be estimated for different regional adaptation strategies. The costs of
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preventing climate change are based on estimates of mitigating emissions below
business as usual levels and are also weighted by region and discounted per time
period. Only the direct costs of preventing greenhouse gas emissions are included in
the model, although secondary benefits (like the concomitant reduction in atmo-
spheric pollution) can be incorporated by reducing the preventative cost parameters.
In many of the model’s equations, parameters are used to capture uncertainty like
that relating to the equilibrium warming from a doubling of CO, concentration, or
the uncertainty about future growth or policy. In PAGE2002, there are about
80 uncertainty parameters depending on the regions and impact sectors used for a
given run.

Although little can be obtained from a comparative analysis of models that fall
into this “other models” class, Table 12 presents how uncertainty is treated and how
technological change is introduced in these seven models.

A key difference between these models and models of other categories lies in the
treatment of uncertain parameters. With the exception of the Community Integrated
Assessment System (CIAS) model, all other models feature the capacity to approach
uncertainty stochastically, by means of Monte Carlo analysis in FUND (Ackerman
and Munitz 2012), IGSM2 (Webster et al. 2003, 2012) and IMAGE (Van Vuuren
2007) and probability distributions in ICAM-3 (e.g. Dowlatabadi 1998). PAGE, as
already discussed, incorporates probability distributions for treating a large number
of uncertain parameters, as well as Latin hypercube sampling, which was preferred
over Monte Carlo analysis.

9 Concluding Remarks

This book chapter has tried to convey the broad outlines and main distinguishing
features of alternative climate-economy model frameworks. The main objective has
been to provide a simple overview and organising scheme into what can be a
daunting wealth of different climate-economy or integrated assessment models.
Rather than attempting to provide brief descriptions of a large sample of climate-
economy models, the paper has tried to portray the main features of a small number
of different classes of models, while delving into some key aspects of the models’
perspective, structure, coverage and ways of treating uncertainty and technological
advancement. Furthermore, no attempt was made to consider or compare results
from alternative models; there are many surveys that compare model outcomes and
consider how these differences can be explained either by the features of the model
or by the specific assumptions embedded in these. Some suggest that the model
framework can have substantial implications on the outcomes. Lanz and Rausch
(2011) show systematic differences in outcomes from general equilibrium and
energy system models. In contrast, one survey by Edenhofer et al. (2006) suggests
that the underlying differences in outcomes lie not necessarily in the model type per
se but the assumptions commonly made by the researchers working with different
model types. The distinction between “model type” and “assumptions” may be
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somewhat vague, but certainly a deeper understanding of climate-economy model-
ling really requires a detailed understanding of the role of the many assumptions
explicitly or implicitly incorporated in these. Several climate-economy surveys do
focus, inter alia, on just such a comparison of the role of assumptions (e.g. Stanton
et al. 2009; Séderholm 2007).

It should be noted that many climate-economy models would not fall easily into
any of the broad classifications presented here. Moreover, with the modellers’
tendency to continuously develop and improve their models, there is much “cross-
fertilisation” further blurring distinctions. The diversity of models has many sources.
Model selection or design may be driven by different underlying research questions,
like whether the focus is on calculating the cost of emission reductions or the long-
term damages of climate change or whether one is comparing specific policies or
trying to determine an overall optimal global climate policy target. If the focus is on
understanding the impacts of climate change to a national economy, a more detailed
multisectoral model may be more appropriate than a wealth maximising model that
treats the economy as a single sector but captures the long-term global trajectory of
the global economy. The differences may reflect deeper philosophical controversies,
like whether it is meaningful to assume perfectly functioning markets when the
object is to model climate change, which is the grandest instance of market failure
extending to so many parts of the economy and with an unprecedented scale in time
and space. This is why recent advancements or perspectives call for the use of
modelling ensembles that highlight and make use of these differences in structure,
design and theoretical foundations, in order to gain better insights (Doukas et al.
2018) and meaningfully inform policy processes; and, even such approaches may
miss fundamental aspects that can only be explored with the help of stakeholders
(Nikas et al. 2017). These differences may also result from the need to capture one
particularly salient feature of climate change like uncertainty. The latter is associated
with so many aspects of climate change and respective policy and is therefore, at
least to some extent, being treated by means of deterministic or stochastic
approaches embedded in the different modelling frameworks.

No doubt these and many other sources of model diversity will continue to drive
the development of new and refinement of old models. Although this paper has
barely scratched the surface of climate-economy modelling, the following quote
seems like an apt closing for the great analytical challenges raised by our need to
better understand the required policy response to climate change: “it is difficult to
conceive an integrated model that will be able to provide the best answers to all
questions. Instead, [...] the relative strengths and weaknesses of the different
frameworks ensure that the combined contributions rather than individual models
provide really valuable policy insights, to which new approaches and new frame-
works for coupling economic and climate models can contribute” (Toth 2005).
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