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15.1 Introduction

Since the 1980s, with the rise and proliferation of genetic engineering techniques and
technologies, national and international security concerns have grown regarding the
misuse of biology by state and non-state actors [1–7]. Over this timeframe, and
particularly within the past 20 years, the rise of new digital and mobile technologies
in terms of sensors, geospatial technologies, advanced analytics, social media, and
cell phones, have made the collection and analysis of a wide variety of information,
to include different types of biological data, more readily accessible. These
developments provide opportunities to think about biodefense preparedness in new
and unique ways. Harnessing digital technologies more effectively to better identify
and assess emerging biosecurity threats could lead to improved detection, response,
and preparedness measures to eliminate or at least mitigate a bioweapons attack.
This chapter will discuss the application of “big data” and “big data” analytics to
biodefense problems in the specific domains of: (1) threat awareness; and (2) surveil-
lance and detection. The chapter will begin by defining “big data” and biodefense,
and then will examine the potential promises and pitfalls in biodefense applications
and provide recommendations for the future of “big data” in addressing biodefense
problems.
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15.2 What Is “Big Data”?

Although conceptions of “big data” have been circulating since the 1990s, the term
gained cache in technology and public circles in 2008 [8]. “Big data” is a term used
to describe extremely large datasets1 which can only be analyzed computationally,
either individually or integrated with other datasets, to reveal previously unknown
patterns, trends, and associations. What makes “big data” approaches unique is that
they offer, “the capacity to collect and analyze data with an unprecedented breadth
and depth and scale” ([10], p. 722). “Big data” can be collected through either active
means (e.g., a user’s posts on social media) or passive means (e.g., FitBit data).

George et al. [11] discuss that “big data” includes different categories of data:
public data, private data, data exhaust, community data, and data generated through
self-quantification. Public data are data typically held by governments, governmen-
tal organizations, and local communities and are publically released or available.
Private data are data held by private firms, non-profit organizations, governments,
and individuals that reflect private information that cannot be easily derived from
public sources. Data exhaust refers to data that are passively collected for a different
purpose, but can be recombined with other data sources to create new information
(e.g., cell phone data or internet searching data). Community data is a distillation of
unstructured data—especially text—that capture a variety of social trends, thoughts,
and behaviors (e.g., consumer reviews on products). Self-quantification data are
types of data that are revealed by the individual through quantifying personal actions
and behaviors (e.g., FitBit data). As one can see there are a variety of “big data”
types. “Big data” analytics involve the process of examining “big data” gathered
over multiple time points (e.g., seconds, minutes, hours, days, months, years), using
a variety of analytic techniques, developed by unique algorithms. Some examples
include text analytics (mining data from different kinds of text based documents and
materials), machine learning (the development of computer programs that can access
data and use it to learn for themselves to generate new data), predictive analytics (the
use of different statistical, modeling, and other quantitative approaches to analyze
current data to make predictions about future), and natural language processing
(using computer programs to understand human speech as it is written or spo-
ken)—to name only a few.

1The MacKensey Global Institute expands this definition to note that: ““Big Data” refers to datasets
whose size is beyond the ability of typical database software tools to capture, store, manage, and
analyze. This definition is intentionally subjective and incorporates a moving definition of how big a
dataset needs to be in order to be considered Big Data—i.e., we don’t define Big Data in terms of
being larger than a certain number of terabytes (thousands of gigabytes). We assume that, as
technology advances over time, the size of datasets that qualify as Big Data will also increase.
Also note that the definition can vary by sector, depending on what kinds of software tools are
commonly available and what sizes of datasets are common in a particular industry. With those
caveats, Big Data in many sectors today will range from a few dozen terabytes to multiple petabytes
(thousands of terabytes).” ([9], p. 1).
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Typically there are four characteristics associated with “big data” often described
as the four Vs: Volume, Variety, Velocity, and Veracity. Volume refers to working
with increasingly larger volumes of data (e.g., terabytes, petabytes, or larger).
Variety refers to the ability to make sense of different sources and types of data,
including structured forms (e.g., numbers, dates, and groups of words and numbers)
and unstructured forms (e.g., text, video, audio, tweets) that can come from a wide
variety sources, to include public and privately held sources. This data can consist of
information that is solely digital in origin, as well as data that has been subsequently
digitized. Velocity refers to the increasing frequency and speed of incoming data that
needs to be analyzed, and the speed at which it can be analyzed. Veracity signifies
the trustworthiness of the data. It is important to note at the outset that “big data” is
often incomplete, imperfect, and error-prone, and how it is collected and stored in
databases and repositories is not necessarily standardized. These shortcomings can
make data access and sharing issues difficult—therefore, the use of “big data” has
analytic challenges that are analogous, if not necessarily identical, to other types
of data.

The benefits of using “big data”/“big data” analytics include the ability to gather,
analyze, and compare large datasets, consisting of disparate sources, to identify new
patterns and generate new knowledge about a problem. There is potentially a wealth
of new information and knowledge that could be learned to improve biodefense
using big datasets and technologies. There are, however, also some challenges to
consider. Questions are often raised about the veracity of the data (including ways to
thwart the collection of accurate data) and problems with the algorithms used by the
analytics programs to create and process the data—which are issues that can be
difficult for analysts to understand and assess. There are also potential information
gaps in existing “big data” that cannot be filled simply by analytics programs. The
problems and prospects of “big data” will be discussed further in more detail in
subsequent sections of this chapter.

15.3 What Is Biodefense?

For the purposes of this chapter, I will define biodefense as the defensive measures
taken in the United States to protect against an attack using biological weapons or
biological agents. The overarching strategy that has set U.S. biodefense policy and
programs since 2004 is Homeland Security Presidential Directive 10 (HSPD 10),
Biodefense for the 21st Century [12].2 This Presidential Directive described the
“essential pillars” of the U.S. national biodefense program as: Threat Awareness,
Prevention and Protection, Surveillance and Detection, and Response and Recovery.
Threat Awareness involves gathering and analyzing information about potential
adversaries and emerging developments in the life sciences and biotechnology that

2There have been some follow-on White House biodefense policy documents: The National
Strategy for Countering Biological Threats [13]; The National Strategy for Biosurveillance [14].
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can pose threats. Prevention and Protection involves developing a range of political
tools (e.g., arms control, export control, international assistance) to impede
adversaries from developing a bioweapons capability and launching an attack, as
well as developing technologies and response measures to protect critical infrastruc-
ture from a potential attack. Surveillance and Detection is focused on creating early
warning and detection technologies and systems to identify and provide attribution
of a bioweapons attack. Response and Recovery deals with the various technologies,
medical and non-medical countermeasures, policies and plans to enable quick and
effective response and recovery in the event of a bioweapons attack. Each of these
pillars is designed to work individually and collectively to support different kinds of
defensive activities such as identification of emerging state and non-state actor
threats, controlling access to dangerous pathogens, identification of suspicious
disease outbreaks, protection of critical infrastructure used in biodefense work, and
development of medical countermeasures in the event of an attack (See Fig. 15.1).

15.4 Intersections of “Big Data” and Biodefense

There have not been many articles or reports published specifically on the intersec-
tion of “big data” and biodefense. One publication, however, that first raised this
connection was a 2014 report, National and Transnational Security Implications of
Big Data in the Life Sciences, co-authored by the American Association for the
Advancement of Science, the Biological Countermeasures Unit of the WMD Direc-
torate of the Federal Bureau of Investigation, and the United Nationals Interregional
Crime and Justice Research Institute [16]. The report assessed a range of national
security risks and benefits of using “big data” in the life sciences, and examined
possible solutions to address the risks. The report focused largely on possible risks
associated with the use of “big data” analytics, such as the vulnerabilities of life
science datasets and cyber infrastructures/cloud-based systems to cyber intrusion/
cyber hacking, and the potential design and development of pathogens, toxins, or
biologically active molecules as biological weapons from the integration and analy-
sis of “big data” in the life sciences. The report also tended to focus its discussion on
a broad brush stroke of “big data” and security issues in the life sciences, rather than
a discussion of specific cases of beneficial applications or harms in biodefense.
Therefore, this chapter will fill a gap in knowledge and focus on how one might
develop and use “big data”/“big data” analytics for two pillars of U.S. biodefense:
(1) Threat Awareness; and (2) Surveillance and Detection.

15.4.1 Threat Awareness and “Big Data”

According to HSPD 10, Threat Awareness involves obtaining timely, accurate, and
relevant biological warfare related intelligence, as well as conducting assessments of
current and future trends and patterns in the evolving bioweapons threat. These
activities involve collecting and analyzing a wide range of information on potential
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adversaries and their potential interest in, and capability with, biology and
biotechnologies, to “help position intelligence collectors ahead of the problem,” as
well as inform medical and non-medical countermeasure development [12]. “Big
data” and “big data” analytics are well poised to assist with this effort. “Big data”
approaches now offer even more ways to amass, count, organize, and store details
relevant to biodefense, such as many types of biologically-relevant materials and
related tangible resources used to develop biological weapons, as well as different
sets of information (e.g., identities, composition, location, resources, capabilities) on
potential adversaries. Different types of “big data” analytics technologies would be
useful for sorting through a variety of classified and unclassified information on
potential adversaries and emerging biotechnology threats.

For example, data fusion analytics, such as GIS technologies, can integrate
heterogeneous datasets such as different types of sensor data, with video/image/
text data. Laura Tateosian at North Carolina State University is developing a new
GIS analytics prototype called GazeGIS that combines natural language processing,
eye tracking, and geoparsing to provide users with additional contextual information
as they read/process any text displayed on a computer screen [17]. When used in
conjunction with eye-tracking hardware, the prototype displays real-time, gaze-
contingent geographic data about particular city or country names. Alternatively, a
user can hover over these words with a computer mouse to create the same effect if
eye-tracking hardware is unavailable. The current prototype is able to provide
overview maps, coordinates, and weather information, as well as information
derived from Google search results; additional features are being developed. This
system could help assist an intelligence analyst in processing a variety of intelligence
reports on adversaries developing bioweapons capabilities—as the analyst reads the
report, GazeGIS automatically identifies and creates a real-time map of the locations
and geographical features identified. These mapped features can provide important
contextual information for the text. In doing so, the GazeGIS prototype provides
users the ability to have an enhanced real-time immersive experience about different
geographical and contextual data while reading text and reports (Fig. 15.2).

There are other types of visual analytics platforms that can help identify and
connect social relations between potential adversaries. One example is SAS Visual
Analytics, which can provide a variety of data about and between social actors in a
network based on social media data. The program can identify various features about
the structure of a network, and who are key influencers or actors in the network to
develop an understanding of micro and macro-level aspects of a social network (See
Fig. 15.3). These types of analytics would be useful to intelligence analysts to better
process intelligence information and understand the actors involved in a state or
non-state level bioweapons program (e.g., who are critical players, who are involved
in leadership/management roles, the broader community/network that supports the
actors). A May 2017 NATOmeeting discussed how various text and visual analytics
programs could be used to identify threats stemming from weapons of mass
destruction [18].

Nowviskie and Saathoff [19] showed how “big data” analytics can be used to aid
in the investigation of insider threats involving bioterrorism. They examine the 2001
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Amerithrax case, in which letters filled with Bacillus anthracis spores were mailed in
the U.S. postal system, ultimately causing 5 deaths, 17 additional infections, and
risking health of 10,000 others due to possible exposure and prophylactic antibiotic
therapy [20].3 Nowviskie and Saathoff used this case to discuss how tools of
computational text analysis and data mining could have been used to aid the criminal
investigation on Dr. Bruce Ivins, a U.S. biodefense researcher who was implicated in
the crime (and who ultimately committed suicide before being charged by the FBI).
The FBI’s investigation included large sets of heterogeneous structured and unstruc-
tured data including: 26,000 emails, 4 million megabytes of computer data from
10,000 witness interviews and 5750 grand jury subpoenas, 6000 items seized from
Ivins’ home and other locations, the collection of 5730 environmental samples from
60 site locations, medical and psychological reports about Ivins, and microbial
forensic data generated from biological samples in Ivan’s laboratory.4 Combining
and interpreting these heterogeneous datasets was challenging and took the
U.S. government nearly 10 years to complete, and is considered to be one of the
most complex investigations undertaken by the FBI.

Fig. 15.3 Example of SAS Visual Analytics: Nodes and connectors show relationships between
actors and the strength of the relationships in the social network(s). (Obtained from: http://blogs.sas.
com/content/sascom/2014/02/19/exploring-social-networks-with-sas-visual-analytics/. Copyright
approval obtained from Falko Schulz.)

3See: https://www.fbi.gov/history/famous-cases/amerithrax-or-anthrax-investigation
4Ibid.
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Nowviskie and Saathoff argue that had “big data” analytics been available at that
time, it could have streamlined the Amerithrax investigative process and made
important connections and correlations between the disparate datasets in a more
efficient manner. For example, Nowviskie and Saathoff describe how now there are
suites of new “big data” analytic tools to assist the investigation that would involve
sentiment analysis, authorship attribution, and pattern analysis at scale [21, 22]. Sen-
timent analysis is the study of opinions, sentiments, and emotions in text that can
reveal affect or a psychological state. Although Ivins deleted many of his emails, it
was later learned that copies of these messages were saved on his computer system.
These messages could have been processed with new sentiment analysis tools to
generate new understandings of Ivins mental state and behavior. New authorship
attribution algorithms could have been applied to the Bacillus anthracis letter
mailings and compared to Ivins’ writing to see if stronger corroboration existed.
Also, using data analytics to combine information on Ivins movements, financial
transactions, and other data on his life could have revealed particular patterns in his
life and work that went unnoticed by investigators at the time, or that only were
connected much later in the investigation.

The applicability of these types of analytics to help intelligence assessments
becomes clear when the flawed 2003 intelligence assessments on Iraq’s bioweapons
programs are examined. One could imagine a different outcome had “big data”
analytic approaches been used to help with analysis of the Iraqi data. Although there
are several reasons for the intelligence failure (see [23]) and collection on Iraqi data
was difficult, there were critical datasets and data integration efforts that were not
pursued by intelligence analysts. Richard Kerr, former Deputy Director of the CIA
who was tasked to form a team to study the intelligence failures on Iraq’s weapons of
mass destruction (WMD) programs, found that there was little intelligence collection
on open source social, cultural, political, and economic impacts on Iraq from the
nearly 20 years of war and 10 years of sanctions, UN inspections, and international
isolation, and no analyses of how the datasets from these impacts might affect the
progress of a WMD program ([24], p. 48–49, 51). Kerr et al. note that although
“softer” intelligence data on Iraqi societal issues, personalities, and elites was
available in different databases, they were difficult for U.S. intelligence to access,
process, and integrate with classified information. As a result, there was “no attempt
to synthesize a broader understanding of Iraq out of the many detailed pieces. . ..the
absence of such a contextual effort contributed to assessments that failed to recog-
nize the significance of gaps in collection that may have been more evident when
viewed from a larger perspective” ([24], p. 52). What resulted, then, was a narrow,
and ultimately flawed, technical analysis of Iraq’s WMD programs, based on thin
classified data that was not corroborated and integrated with other information
sources. At the time, if there might have been data mining and data fusion “big
data” analytic tools available for intelligence, the results of that data processing
might have produced analyses showing a more measured perspective on Iraq’s
WMD capabilities.
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15.4.2 Cautions in Using “Big Data” for Threat Awareness

Despite the outlines potential benefits, one must also exert caution with relying
exclusively on “big data” approaches. The social dimensions of science and technology
that relate to measuring know-how/skills or technological diffusion are not readily
captured by existing “big data” platforms and techniques. Acquisition of such data
typically involves qualitative methodologies, such expert interviews, focus groups,
laboratory observation (or other forms of ethnography). How “big data” approaches
can be enabled to encourage these alternative, non-quantitative means of analysis for
the life sciences and incorporate them with other pieces of information is an important
point for discussion in considering the impact of “big data” on assessments. Lack of
careful attention to both the tangible and intangible dimensions of the life sciences and
biotechnology may result in erroneous intelligence and policy assessments.

To illustrate these challenges, I will discuss here a case study that I have
investigated on advances in the life sciences: the 2002 artificial synthesis of a
poliovirus by Professor Eckard Wimmer and his research group at the State Univer-
sity of New York [25]. This is a paradigmatic case to consider for security concerns
about ongoing research and the availability of “big data” in the life sciences,
particularly in the fields of synthetic genomics and synthetic biology. After the
open scientific publication of this poliovirus experiment in the journal Science, the
U.S. policy community raised concerns about whether terrorists might pick up the
experimental methods used in this paper to re-create poliovirus, or other more deadly
viruses. Using standard data gathering and analytic methods, it would appear that
this synthesis experiment would be replicated by anyone with access to relevant
materials and equipment, which are commercially available. However, closer ethno-
graphic study of this case revealed important laboratory know-how that constituted
the success of this synthesis experiment. Without this know-how, one would be
unable to synthesize poliovirus using the experimental protocol regardless of how
many pieces of DNA one might buy, what equipment one has, who one might buy
these materials from, or the step-by-step procedure. What I have learned about this
experiment is that in spite of a wealth of explicit information and readily available
materials out in the public domain, critical portions of making this experiment work
remain craft-like techniques that involve quite a bit of specialized, localized know-
how that is difficult to transfer to other laboratories or contexts.

This is not to suggest that all synthetic genomics experiments will be this difficult
to be used for harm. But, this analysis did reveal that there is a spectrum of skill
difficulty involved in different kinds of biological work that needs to be considered
in conducting threat assessments. The poliovirus case study illustrates the need to
examine, at a detailed micro-level, the social context and relationships that comprise
scientific and technological work and the complex practices and timescales that
contextualize the replication and transfer of these techniques, even in cases when the
science or technology in question seems at first approximation to be readily
standardized, accessible, and transferable. As sociologists of science Nigel Gilbert
and Michael Mulkay have long noted, the public and private accounts of science are
very different; only the private discourse reflects the varied, contingent, and messy
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character that constitutes the social character of scientific work [26]. As a result,
scientific publications, presentations, and other formal means of codified scientific
knowledge that are readily accessible through many “big data” approaches do not
tell the whole story. Therefore, caution should be used in applying “big data”
analytics to published scientific experiments as these analytics may not capture
important details crucial to accurate threat assessment.

Existing “big data” approaches may be able to collect a lot of explicit information
about the life sciences and biotechnology, but are they able to collect “Whole Data”
[27]? For example, not only is there a need to consider individual tacit knowledge
involved in technical work, but also knowledge networks, organizational/leadership
components and dynamics, as well as the larger socio-political-economic contexts at
the micro and macro levels that can also shape technical work. Importance aspects of
this data is also not available solely through quantitative means. Thus, a reliance only
on “big data” approaches may obscure or make invisible important information that
is difficult to measure in tangible forms. In addition, Nowviskie and Saathoff [19,
p. 56] caution that “big data” analysis still, “depends on the subjective standing
points of those who assemble datasets, design the processes by which they are
analyzed, and interpret the results.” They argue that “big data” analytics do not
remove the need for experts to work with and analyze the data, but rather serve as an
aid to investigations to provide additional information, details, and patterns that can
help narrow the focus and attention of the work. Therefore, understanding the
private, micro-level practices and macro-level context that underpin scientific and
technological work, as well as relying on expertise to interrogate “big data” results,
is critical to evaluating the nontrivial social aspects that can shape biosecurity
threats.

15.4.3 Surveillance and Detection

According to HSPD 10, Surveillance and Detection is focused on creating early
warning and detection technologies and systems to aid in determining the timing,
location, magnitude, and attribution of a bioweapons attack. The ability to predict
and track when and where a disease outbreak may occur and how a pathogen
transmits can significantly improve response strategies at the local, national, and
international levels. Understanding of pathogen transmission has generally required
epidemiologic data, involving clinical and laboratory reports and on-the-ground
investigations, to generate accurate forecasts and an understanding of transmission
patterns that take into account the various biological, environmental, behavioral, and
socio-cultural issues that that can dynamically change disease patterns.

Traditional public health surveillance systems remain primarily based on manu-
ally collected and coded data, which is slow to gather and expensive, and difficult to
disseminate for analysis; also, data is often aggregated at the national or regional
level [28]. Van Panhuis et al. [29] note that the acquisition and sharing of detailed
epidemiological data from traditional public health systems can be particularly
difficult and scarce in crisis/emergency situations or resource-limited environments;
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also, information is often not readily released due to trust concerns or other socio-
political-economic factors. In this context, alternative data sources, such as from
social media and the Internet, serving as nontraditional surveillance systems can be
useful to help understand disease dynamics in an outbreak.

Bansal et al. [28] discuss how there are different types of electronic data streams
for disease surveillance that can be gathered through “big data” approaches: medical
encounter data, participatory syndromic data, and non-health digital data. Medical
encounter data include electronic records from healthcare facilities, medical insur-
ance claims, hospital discharge records, and death certificates. Such data streams
provide information on the disease in patients (including the specific diagnosis) and
can be gathered and monitored at the individual level or aggregated geographically.
Participatory syndromic data are crowd-sourced data in which volunteers self-report
their symptoms. This data does not provide confirmation of disease attributed to
specific pathogens but does provide individual-level health data in near real time.
Finally, non-health digital data are data gathered from the use of Internet search
engines, social media, or mobile phones. They involve data on health-related
behavior, including location and travel patterns, which can provide additional details
about potential disease transmission. A 2016 National Academies of Science work-
shop noted that other kinds of structured and unstructured non-health electronic data
sources, such as data from school attendance records, veterinary clinics,
pharmaceutics sales, global transportation patterns, and climate could also be com-
bined with other types of individual and community-level medical information to
yield a more holistic picture of health in a specific area that would enable early
warning or alert systems of a disease outbreak ideally weeks or months in advance
([30], p. 5).

Chowell et al. [31] have illustrated the potential of using “big data” from various
Internet sources to understand the 2013–2016 Ebola virus disease epidemic in
Western Africa and the 2015 Middle East respiratory syndrome (MERS) outbreak
in South Korea. They used Internet news reports, health bulletins, and online reports
from various health authorities and respected news sources, coupled to epidemio-
logical information from traditional public health systems, to gather and analyze near
real-time “big data” on disease clusters of patients to identify MERS coronavirus
transmission chains. “Big data” analysis indicated that all 150 MERS cases in the
outbreak involved a single cluster in which all cases were linked to exposure in the
healthcare setting—either via occupational or social/family exposure. In case of the
Ebola virus disease outbreak, epidemiological data was scarce; that which was
initially available was largely aggregated at the country level, with more localized
data available later. With these data shortages and the need to quickly understand
Ebola virus transmission characteristics, the researchers collected information on
Ebola virus disease case clusters from Internet news reports published during the
outbreak. They gathered data on suspected, probable, and confirmed cases of Ebola
virus disease in the three most affected countries (Guinea, Liberia, and Sierra
Leone). They focused on reports and news items available from the World Health
Organization web site, and other available Ebola virus disease situational reports, as
well as online authoritative media outlets.
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The data revealed a lot of variation in transmission patterns across Western
Africa—revealing over 100 distinct patient clusters contributing to disease transmis-
sion. Later on, these clusters were confirmed via traditional surveillance systems.
From using a variety of on-line information Chowell et al. [31] found that the main
exposure to Ebola virus occurred via family contacts, as well as funeral and hospital
settings. Once proper infection control measures were in place, the number of new
cases in these settings substantially decreased. This study illustrated how publically
available real-time online reports and news items can contain useful and actionable
information regarding exposure and transmission patterns during disease outbreaks.
This approach of “digital epidemiology” [32] could prove particularly useful for
forecasting and response in resource limited areas, in which detailed transmissions
studies are limited, and in crisis situations of major disease outbreaks when tradi-
tional surveillance reports are delayed.

15.4.4 Cautions in Using “Big Data” for Surveillance and Detection

Along with the beneficial use of “big data” in disease surveillance, one must also
consider some of the problems that can emerge with the use of “big data” platforms.
Google Flu Trends (GFT) was a web-based service developed in 2008 that moni-
tored and mined millions of Google users’ health-related on-line searching combined
with computer modeling, and that coupled this data to laboratory-confirmed influ-
enza cases and influenza tracking information from the Centers from Disease
Control and Prevention (CDC) to analyze whether influenza A virus was present
in a given population. GFT was similar to weather-forecasting methods that use real-
time observational and environmental data to continually update and correct weather
predictions. By aggregating Google search queries, GFT attempted to make accurate
predictions about influenza activity in 29 countries to help localities and countries
reduce the impact of seasonal and pandemic influenza (e.g., increasing vaccinations
and supplies of antiviral drugs, issuing information about infection control measures,
advocating school or other public closings) [33]. The original Google paper about
GFT stated that its predictions were 97% accurate compared with CDC data, and that
GFT was able to predict regional influenza outbreaks up to 10 days before they were
reported by the CDC [34].

Subsequent independent reports, however, asserted that GFT predictions have
sometimes been very inaccurate—e.g., in 2009 when GFT completely missed a
non-seasonal influenza outbreak of H1N1 influenza, over the interval of 2011–2013
when GFT consistently overestimated influenza A virus prevalence, over one inter-
val in the 2012–2013 influenza season when GFT predicted twice as many doctors’
visits as the CDC recorded, and when GFT missed the peak and severity of the 2013
influenza season [33, 35–37]. Lazer et al. [36] investigated these failures and found
there was a persistent pattern of GFT performing well for 2–3 years, and then failing
significantly; overall, GFT appeared to perform worse over time. These failures were
attributed to several reasons. First, there were inherent problems with Google’s GFT
algorithm, which was quite vulnerable to overfitting. For example, the algorithm was
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fitting unrelated terms like “high school basketball” to influenza or to different health
conditions. With millions of search terms being fit to the CDC’s data, many of which
were unlikely to be related to actual influenza cases, one can imagine how this led to
problems in the accuracy of influenza predictions. Similar to the GFT errors, in one
other well-known example of “big data” gone wrong, Leinweber [38] demonstrated
that data mining techniques could show a strong but spurious correlation between the
changes in the S&P 500 stock index and butter production in Bangladesh. Therefore,
analysts who do not possess expert domain knowledge, may be misled by
correlations from “big data” analysis.

Google also did not take into account changes in users’ search behaviors over
time [35]. Also, Lazer et al. [36] pointed out how the GFT algorithm was part of a
larger business operation at Google, in which engineers made continual changes to
Google’s algorithm to improve its commercial service and advertising revenue and
to increase its customers. As a result, the company was constantly testing and
creating tweaks in the algorithm to improve searching. These modifications, how-
ever, could then skew the functioning of GFT, unintentionally making some search
terms more prevalent and thereby hindering the overall accuracy of GFT. Such
background adjustments are not a problem only for GFT but can also plague other
social media datasets such as Twitter or Facebook, which are also constantly being
changed and updated.

Lazer et al. [36] wrote that one of the key problems of GFT was related to “big
data hubris,” which is the, “implicit assumption that “big data” are a substitute for,
rather than a supplement to, traditional data collection and analysis ([36], p. 1203).
Allain-Jacques Valleron, an epidemiologist at the Pierre and Marie Curie University
in Paris and founder of France’s Sentinelles monitoring network, concurs with Lazer
et al.: “It is hard to think today that one can provide disease surveillance without
existing systems. . .The new systems depend too much on old existing ones to be
able to live without them” [33]. This is not to say that the GFT algorithm could not
be improved to rectify all or many of its original problems, but the GFT failure also
raises cautions about relying too heavily on “big data” approaches alone. Scott
Dowell, deputy director for surveillance and epidemiology at the Bill and Melinda
Gates Foundation, advocates that “big data” approaches are, “most useful when
combined with old-fashioned ‘shoe leather’ epidemiology—researchers walking
door-to-door collecting primary data to understand the spread of an outbreak”
([30], p. 8).

15.4.5 Additional Concerns to Consider Regarding the Use of “Big
Data”/“Big Data” Analytics for Biodefense

Beyond the Google Flu Trends mishap, there are additional challenges that
researchers and policymakers need to understand regarding the use of “big data”
and “big data” analytics for biodefense. Crawford and Finn [39] provide a useful
overview of the limitations of what they call “crisis data”—the use of social and
mobile data to understand disasters and other crisis events—of which a bioterrorism/
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biological weapons attack would be relevant. Crawford and Finne discussed how
social media data can provide important tactical information about a crisis and
suggest potential response measures for that moment. They caution, however, that
social media datasets represent a specific time point in an event, usually represented
by a spike in Twitter messages or the use of particular hashtags. This focus can lead
to a narrow conceptualization of the disaster, which leaves out an important under-
standing of the origin of the crisis or an understanding of the aftermath in which
more of the impact and longer-term implications of the disaster is realized.

Also Crawford and Finne pointed out that “big data” researchers often work in a
very different context and location than those involved in the response and recovery in
the midst of the disaster; therefore, the researchers can only mine a small fraction of the
entire experience and effect of the disaster, leading to a partial and incomplete record
of the event. Also Crawford and Finne noted that social media data is not always
representative of a local population. For example, Twitter tends to be used by younger,
wealthy, and more urban adult populations, meaning that infants, older, rural, and
more marginalized populations may not be represented by Twitter posts ([28],
p. S377). Also, most social media data lacks demographic information, such as age
and sex, which is usually important in epidemiological studies. All of these factors
could be a significant shortcoming for response planning in a bioweapons attack given
that infants/children, older, rural, and more marginalized/developing country
populations might be excluded from social media datasets and those populations are
typically more vulnerable and could be significantly harmed by a bioweapons attack.

Social media platforms can also be blind to important animal or zoonotic disease
outbreaks ([28], p. S378). This blindness could lead to missing important patterns of
disease outbreaks or recognizing patterns when none actually exist. Therefore, it is
important to be aware of the properties and limitations of social media data or other
kinds of “big data,” what other kinds of datasets are needed, and taking all of these
factors into account for designing appropriate response measures (see [40]).

Crawford and Finne also pointed out the problem of bots in Internet and social
media platforms that can hamper accurate interpretation of events. Bots are software
applications that perform an automated task; they are often used to perform repetitive
tasks such as accessing websites to gather their content for search engine indexing
(e.g., web crawlers), or other types of information gathering, organizing, and
displaying. There are also malicious bots that come with viruses. Bots are designed
to simulate human responses and activity and are a significant presence in many online
spaces. Crawford and Finne demonstrated that a large number of tweets in datasets are
derived from bots. De Micheli and Stroppa [41] conducted a research study of Twitter
and found 20 million “fake” accounts—approximately 9% of Twitter’s active users.
As Crawford and Finne wrote, “Those bots are friending and retweeting other bots,
producing a complex bot culture which is an emerging phenomenon unto itself.” ([39],
p. 496). Bots create significant problems for interpretation and filtering of social media
data—is the tweet coming from a human or from a bot?

A similar problem is the emergence of “fake news,” i.e. manipulated media
posted by individual and group internet users to spread disinformation and/or
propaganda to achieve a particular social, cultural, political, or economic goal
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[42]. Also, users can also shape/disguise their online identities and create false
information [16, 43, p. 40–41]. This misinformation could be used to hide covert
bioweapons activities or redirect public health attention in other directions. One can
imagine that in the event of a possible bioweapons attack, a key question will be
whether social media information represents real data, manipulated data, or artificial
bot-generated data. The problem of fake information is not a new development—
there have long been efforts to create fake stories about bioweapons. In their book on
the Soviet biological weapons program, Leitenberg et al. [44] reveal a disturbing US
covert deception and disinformation campaign that operated from the late 1960s
through the early 1970s. This program was directed at misleading the Soviet Union
regarding the objectives of the US offensive bioweapons program and to suggest that
a covert US bioweapons program existed even after the United States had unilater-
ally renounced its biological weapons program in 1969, leading the Soviets to invest
time and money on a response. This deception program was led by the Federal
Bureau of Investigation with assistance of the US Army, and used a double agent to
convey false information to the Soviets. The authors found that the Central Intelli-
gence Agency, years later, debated whether this campaign might have contributed to
the Soviet decision to violate the Biological and Toxin Weapons Convention and
move its weapons activities underground, or at least provided political cover to
justify the decision to increase its biological weapons program. Such disinformation
campaigns arguable are easier to conduct in the internet age. Therefore, it is
important to remember that “big data” approaches do not remove the problem of
disinformation, but, in many cases, may make it more problematic.

15.5 Conclusion

This chapter has illustrated how the use of “big data” can enhance biodefense in the
areas of threat awareness and surveillance and detection. This chapter has also
highlighted some of the pitfalls of relying on “big data” approaches without consid-
ering the limitations of such data, and how “big data” approaches can obscure or
ignore other important information for analysis. Although there are many public
pronouncements that “big data” analytics will soon replace human assessments, a
more realistic and useful understanding would be to see “big data” approaches as one
of several tools that be brought to bear on biodefense efforts. Rather than replace
traditional efforts, Lazer et al. [36] have argued that we will likely see more “hybrid”
systems that integrate “big data” with traditional data analysis. In doing so, the real
analytic innovation will be using data from all sources, to include traditional public
health data, coupled to social science, environmental, contextual, and ethnographic
data, and otherwise, “small data”, with “big data” [27, 36, 45–50]. In this way, the
biases and short-comings of each method can be used to balance each other to arrive
at a more accurate picture of a disease outbreak or bioweapons attack. Lazar et al.
argued that the real data revolution, then, will be, “using data from all traditional and
new sources, and providing a deeper, clearer understanding of our world” [47]. This
kind of data analysis will also require new kinds of multi-disciplinary analytic teams,
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who possess relevant subject matter expertise and understand long term trends and
patterns [51], to be created and work together on these problems. To date, multi-
method, multi-platform research studies are rare [52, 53], particularly in biodefense,
but the payoff would be significant.

Uncertainties related to “big data,” as with so many aspects of science, call for an
approach of humility [54], in which we (e.g., scientists, academics intelligence
practitioners, policymakers) recognize the limitations of science and when it is
necessary to look beyond science for answers to complex, “wicked” problems. As
Jasanoff noted, “[t]hese technologies compel us to reflect on the sources of ambigu-
ity, indeterminacy and complexity” [54]. This does not mean that we need to be
reject using “big data” or “big data” approaches to solve biodefense problems, but
that we need to be very wary of over-relying on these techniques and technologies
and losing sight of other complementary ways to generate knowledge.
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