
Chapter 8

Geometric Hardy Inequalities

on Stratified Groups

Given a domain in the space, the ‘geometric’ version of Hardy inequalities usually
refers to the Hardy type inequalities where the weight is given in terms of the
distance to the boundary of the domain. In this chapter we discuss L2 and Lp

versions of the geometric Hardy inequality on the stratified group G. For the
clarity of the exposition, we first deal with the half-space domains, and then with
more general convex domains.

The results presented in this chapter have been obtained in [RSS18b], and
our exposition here follows this paper. In particular, we discuss L2 and Lp versions
of the (subelliptic) geometric Hardy inequalities in half-spaces and convex domains
on general stratified groups. As usual, these imply the geometric versions of the
uncertainty principles. A certain current drawback of the methods in the case of
convex domains is that the convexity is understood in the Euclidean sense.

8.1 L2-Hardy inequality on the half-space

In this section, we discuss an L2-version of the geometric Hardy inequality on the
half-space of the stratified group G. We start by recalling a few known results and
by putting the further analysis in perspective.

Remark 8.1.1.

1. If Ω is a convex open set of the Euclidean space, then the geometric version
of the Hardy inequality is well understood and given by∫

Ω

|∇u|2dx ≥ 1

4

∫
Ω

|u|2
dist(x, ∂Ω)2

dx,

for u ∈ C∞
0 (Ω), with the sharp constant 1/4. Nowadays, there are many

studies related to this subject, here we can mention, for example, [Anc86],
[D’A04b], [AL10], [AW07], [Dav99] and [OK90].
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374 Chapter 8. Geometric Hardy Inequalities on Stratified Groups

2. In the setting of the Heisenberg group H, the geometric Hardy inequality on
the half-space

H
+ := {(x1, x2, x3) ∈ H | x3 > 0}

takes the form ∫
H+

|∇Hu|2dx ≥
∫
H+

|x1|2 + |x2|2
x2
3

|u|2dx,

for all u ∈ C∞
0 (H+). This inequality was obtained in [LY08], and we can also

recapture it as a consequence in Corollary 8.1.5. There are further extensions
to geometric Lp-Hardy inequalities as well as to the convex domains of the
Heisenberg group obtained in [Lar16].

The following construction can be traced back to Garofalo [Gar08].

Definition 8.1.2 (Half-space and angle function). Let G be a stratified group. In
this section the half-space of G will be defined by

G
+ := {x ∈ G : 〈x, ν〉 > d},

where d ∈ R, and ν := (ν1, . . . , νr) with νj ∈ RNj , j = 1, . . . , r, is the Riemannian
outer unit normal to ∂G+. The Euclidean distance to the boundary ∂G+ will be
denoted by dist(x, ∂G+) and given by the formula

dist(x, ∂G+) = 〈x, ν〉 − d.

The angle function on ∂G+ is defined by

W(x) :=

√√√√ N∑
i=1

〈Xi(x), ν〉2. (8.1)

In what follows we will be working in the setting of Definition 8.1.2.

Theorem 8.1.3 (Geometric L2-Hardy inequality on half-space). Let G+ be a half-
space of a stratified group G.

(1) Let β ∈ R and set C1(β) := −(β2 + β). Then we have∫
G+

|∇Hu|2dx ≥ C1(β)

∫
G+

W(x)2

dist(x, ∂G+)2
|u|2dx

+ β

∫
G+

N∑
i=1

Xi〈Xi(x), ν〉
dist(x, ∂G+)

|u|2dx,
(8.2)

for all u ∈ C∞
0 (G+).
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(2) We have ∫
G+

|∇Hu|2dx ≥ 1

4

∫
G+

|u|2
dist(x, ∂G+)2

dx, (8.3)

for all u ∈ C∞
0 (G+).

Remark 8.1.4 (Uncertainty principle and step 2 case). In the step 2 case we have
the following simplification of Part (1) of Theorem 8.1.3.

1. Note that for the stratified groups of step 2 it follows from Proposition 1.2.19
that one can use the following basis of the left invariant vector fields

Xi =
∂

∂x′
i

+

N2∑
s=1

N∑
m=1

asm,ix
′
m

∂

∂x′′
s

, (8.4)

where i = 1, . . . , N and asm,i are the constants depending on the group. In
addition, we can also write x = (x′, x′′) with

x′ = (x′
1, . . . , x

′
N ), x′′ = (x′′

1 , . . . , x
′′
N2

),

and also ν = (ν′, ν′′) with

ν′ = (ν′1, . . . , ν
′
N ), ν′′ = (ν′′1 , . . . , ν

′′
N2

).

Then the statement of Theorem 8.1.3, Part (1), can be simplified as follows:
for all u ∈ C∞

0 (G+) and β ∈ R we have∫
G+

|∇Hu|2dx ≥ C1(β)

∫
G+

W(x)2

dist(x, ∂G+)2
|u|2dx

+K(a, ν, β)

∫
G+

|u|2
dist(x, ∂G+)

dx,

(8.5)

where C1(β) := −(β2 + β) and K(a, ν, β) = β
∑N2

s=1

∑N
i=1 a

s
i,iν

′′
s .

2. In the standard way Theorem 8.1.3, Part (2), implies the geometric uncer-
tainty principle on the half-space G+ for general stratified groups G. Indeed,
(8.3) and the Cauchy–Schwarz inequality imply∫

G+

|∇Hu|2dx
∫
G+

dist(x, ∂G+)2|u|2dx

≥ 1

4

∫
G+

1

dist(x, ∂G+)2
|u|2dx

∫
G+

dist(x, ∂G+)2|u|2dx

≥ 1

4

(∫
G+

|u|2dx
)2

.

That is, we have(∫
G+

|∇Hu|2dx
) 1

2
(∫

G+

dist(x, ∂G+)2|u|2dx
) 1

2

≥ 1

2

∫
G+

|u|2dx

for all u ∈ C∞
0 (G+).
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Proof of Theorem 8.1.3. Proof of Part (1). For the proof we apply the method of
factorisation. So, for any real-valued W := (W1, . . . ,WN ), Wi ∈ C1(G+), which
will be chosen later, a direct calculation gives

0 ≤
∫
G+

|∇Hu+ βWu|2dx =

∫
G+

|(X1u, . . . , XNu) + β(W1, . . . ,WN )u|2dx

=

∫
G+

|(X1u+ βW1u, . . . , XNu+ βWNu)|2dx

=

∫
G+

N∑
i=1

|Xiu+ βWiu|2dx

=

∫
G+

N∑
i=1

[|Xiu|2 + 2ReβWiuXiu+ β2W 2
i |u|2

]
dx

=

∫
G+

N∑
i=1

[|Xiu|2 + βWiXi|u|2 + β2W 2
i |u|2

]
dx

=

∫
G+

N∑
i=1

[|Xiu|2 − β(XiWi)|u|2 + β2W 2
i |u|2

]
dx.

From the above expression we get the inequality∫
G+

|∇Hu|2dx ≥
∫
G+

N∑
i=1

[
(β(XiWi)− β2W 2

i )|u|2
]
dx. (8.6)

Let us now take Wi in the form

Wi(x) =
〈Xi(x), ν〉

dist(x, ∂G+)
=

〈Xi(x), ν〉
〈x, ν〉 − d

, (8.7)

where

Xi(x) = (

i︷ ︸︸ ︷
0, . . . , 1, . . . , 0, a

(2)
i,1 (x

′), . . . , a(r)i,Nr
(x′, x(2), . . . , x(r−1))),

and
ν = (ν1, ν2, . . . , νr), νj ∈ R

Nj .

Now Wi(x) can be written as

Wi(x) =
ν1,i +

∑r
l=2

∑Nl

m=1 a
(l)
i,m(x′, . . . , x(l−1))νl,m∑r

l=1 x
(l) · νl − d

.

By a direct computation we have

XiWi(x) =
Xi〈Xi(x), ν〉dist(x, ∂G+)− 〈Xi(x), ν〉Xi(dist(x, ∂G

+))

dist(x, ∂G+)2

=
Xi〈Xi(x), ν〉
dist(x, ∂G+)

− 〈Xi(x), ν〉2
dist(x, ∂G+)2

,

(8.8)
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where

Xi(dist(x, ∂G
+)) = Xi

(
N∑

k=1

x′
kν1,k +

r∑
l=2

Nl∑
m=1

x(l)
m νl,m − d

)

= ν1,i +
r∑

l=2

Nl∑
m=1

a
(l)
i,m(x′, . . . , x(l−1))νl,m

= 〈Xi(x), ν〉.
Now combining (8.8) with (8.6) we arrive at the inequality∫

G+

|∇Hu|2dx ≥ − (β2 + β)

∫
G+

N∑
i=1

〈Xi(x), ν〉2
dist(x, ∂G+)2

|u|2dx

+ β

∫
G+

N∑
i=1

Xi〈Xi(x), ν〉
dist(x, ∂G+)

|u|2dx,

which completes the proof of Part (1).

Proof of Part (2). Let x := (x′, x(2), . . . , x(r)) ∈ G with x′ = (x′
1, . . . , x

′
N ) and

x(j) ∈ RNj , j = 2, . . . , r. By taking ν := (ν′, 0, . . . , 0) with ν′ = (ν′1, . . . , ν
′
N), we

have that

Xi(x) = (

i︷ ︸︸ ︷
0, . . . , 1, . . . , 0, a

(2)
i,1 (x

′), . . . , a(r)i,Nr
(x′, x(2), . . . , x(r−1))),

so that

N∑
i=1

〈Xi(x), ν〉2 =
N∑
i=1

(ν′i)
2 = |ν′|2 = 1

and
Xi〈Xi(x), ν〉 = Xiν

′
i = 0.

Substituting this in (8.2) we get∫
G+

|∇Hu|2dx ≥ −(β2 + β)

∫
G+

|u|2
dist(x, ∂G+)2

dx.

To optimize we differentiate the right-hand side expression with respect to β, that
is, we put −2β − 1 = 0, or β = − 1

2 in this inequality, implying (8.3). �

8.1.1 Examples of Heisenberg and Engel groups

Let us give examples of the geometric L2-Hardy inequality on half-spaces from
Theorem 8.1.3 in the cases of groups of steps 2 and 3. The example of general
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stratified groups of step 2 was considered in Remark 8.1.4, Part 1, and now we
look at the special case of the Heisenberg group. In particular, it yields the estimate
that was given in Remark 8.1.1, Part 2.

Corollary 8.1.5 (Geometric L2-Hardy inequality on half-space of the Heisenberg
group). Let H+ = {(x1, x2, x3) ∈ H | x3 > 0} be a half-space of the Heisenberg
group H. Then for all u ∈ C∞

0 (H+) we have∫
H+

|∇Hu|2dx ≥
∫
H+

|x1|2 + |x2|2
x2
3

|u|2dx,

where ∇H = (X1, X2).

Proof of Corollary 8.1.5. Since the left invariant vector fields on the Heisenberg
group can be given by

X1 =
∂

∂x1
+ 2x2

∂

∂x3
, X2 =

∂

∂x2
− 2x1

∂

∂x3
,

with the commutator

[X1, X2] = −4
∂

∂x3
,

choosing ν = (0, 0, 1) as the unit vector in the direction of x3 and taking d = 0 in
inequality (8.2), we get

X1(x) = (1, 0, 2x2) and X2(x) = (0, 1,−2x1),

and

〈X1(x), ν〉 = 2x2, and 〈X2(x), ν〉 = −2x1,

X1〈X1(x), ν〉 = 0, and X2〈X2(x), ν〉 = 0,

where x = (x1, x2, x3). Thus, with W(x) as in (8.1), we get

W(x)2

dist(x, ∂G+)2
= 4

|x1|2 + |x2|2
x2
3

.

Inserting these to (8.2) with β = − 1
2 we obtain∫

H+

|∇Hu|2dx ≥
∫
H+

|x1|2 + |x2|2
x2
3

|u|2dx,

completing the proof. �

Next, let us give an example for a class of stratified groups of step r = 3,
namely, the case of the Engel group.
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Definition 8.1.6 (Engel group). The Engel group E is the space R4 with the group
law given by

x ◦ y = (x1 + y1, x2 + y2, x3 + y3 + P1, x4 + y4 + P2),

where

P1 =
1

2
(x1y2 − x2y1),

P2 =
1

2
(x1y3 − x3y1) +

1

12
(x2

1y2 − x1y1(x2 + y2) + x2y
2
1).

The left invariant vector fields of E are generated by (the basis)

X1 =
∂

∂x1
− x2

2

∂

∂x3
−
(x3

2
− x1x2

12

) ∂

∂x4
, X3 =

∂

∂x3
+

x1

2

∂

∂x4
,

X2 =
∂

∂x2
+

x1

2

∂

∂x3
+

x2
1

12

∂

∂x4
, X4 =

∂

∂x4
.

The group E is stratified of step 3, with the nonzero commutation relations given by

[X1, X2] = X3, [X1, X3] = X4.

So we have

Corollary 8.1.7 (Geometric L2-Hardy inequality on half-space of the Engel group).
Let E+ = {x := (x1, x2, x3, x4) ∈ E | 〈x, ν〉 > 0} be a half-space of the Engel group
E. Then for all β ∈ R and u ∈ C∞

0 (E+) we have∫
E+

|∇Eu|2dx ≥ C1(β)

∫
E+

〈X1(x), ν〉2 + 〈X2(x), ν〉2
dist(x, ∂E+)2

|u|2dx

+
β

3

∫
E+

x2ν4
dist(x, ∂E+)

|u|2dx,
(8.9)

where ∇E = (X1, X2), ν := (ν1, ν2, ν3, ν4), and C1(β) = −(β2 + β).

In particular, if we take ν4 = 0 in (8.9), then by taking β = − 1
2 , we get the

following inequality on such E+:∫
E+

|∇Eu|2dx ≥ 1

4

∫
E+

〈X1(x), ν〉2 + 〈X2(x), ν〉2
dist(x, ∂E+)2

|u|2dx.

Proof of Corollary 8.1.7. Using the above basis of the left invariant vector fields,
we have

X1(x) =
(
1, 0,−x2

2
,−

(x3

2
− x1x2

12

))
,

X2(x) =

(
0, 1,

x1

2
,
x2
1

12

)
.
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It is then straightforward to see that

〈X1(x), ν〉 = ν1 − x2

2
ν3 −

(x3

2
− x1x2

12

)
ν4,

〈X2(x), ν〉 = ν2 +
x1

2
ν3 +

x2
1

12
ν4,

X1〈X1(x), ν〉 = x2

12
ν4 +

x2

4
ν4 =

x2ν4
3

,

X2〈X2(x), ν〉 = 0.

Now plugging these in inequality (8.2) we get the desired inequality (8.9). �

8.2 Lp-Hardy inequality on the half-space

Now we discuss an Lp version of the geometric Hardy inequality on the half-space
of G as an extension of the previous L2 arguments. We recall that the p-version
of Garofalo’s angle function from Definition 8.1.2 can be defined by the formula

Wp(x) =

(
N∑
i=1

|〈Xi(x), ν〉|p
) 1/p

, (8.10)

with W(x) := W2(x), and where N denotes the dimension of the first stratum of
G. As before let G+ be a half-space of a stratified group G. The Lp version of the
geometric Hardy inequality from Theorem 8.1.3 can be written in the following
form.

Theorem 8.2.1 (Geometric Lp-Hardy inequality on half-space). Let G+ be a half-
space of a stratified group G and let 1 < p < ∞. Then for all u ∈ C∞

0 (G+) and
all β ∈ R we have

∫
G+

N∑
i=1

|Xiu|pdx ≥ C2(β, p)

∫
G+

Wp(x)
p

dist(x, ∂G+)p
|u|pdx (8.11)

+ β(p− 1)

∫
G+

N∑
i=1

( |〈Xi(x), ν〉|
dist(x, ∂G+)

)p−2
Xi〈Xi(x), ν〉
dist(x, ∂G+)

|u|pdx,

where C2(β, p) := −(p− 1)(|β| p
p−1 + β).

Remark 8.2.2. Note that for p ≥ 2, since

|∇Hu|p =

(
N∑
i=1

|Xiu|2
) p/2

≥
N∑
i=1

(|Xiu|2
)p/2

,
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the proof will also yield the inequality∫
G+

|∇Hu|pdx ≥ C2(β, p)

∫
G+

Wp(x)
p

dist(x, ∂G+)p
|u|pdx (8.12)

+ β(p− 1)

∫
G+

N∑
i=1

( |〈Xi(x), ν〉|
dist(x, ∂G+)

)p−2
Xi〈Xi(x), ν〉
dist(x, ∂G+)

|u|pdx.

Proof of Theorem 8.2.1. ForW ∈ C∞(G+) and f ∈ C1(G+), a direct computation
with Hölder’s inequality gives∫

G+

divH(fW )|u|pdx = −
∫
G+

fW · ∇H |u|pdx = −p

∫
G+

f〈W,∇Hu〉|u|p−1dx

≤ p

(∫
G+

|〈W,∇Hu〉|pdx
)1/p (∫

G+

|f | p
p−1 |u|pdx

) p−1
p

. (8.13)

For p > 1 and q > 1 with 1
p + 1

q = 1, we will use Young’s inequality

ab ≤ ap

p
+

bq

q
, for a ≥ 0, b ≥ 0,

with

a :=

(∫
G+

|〈W,∇Hu〉|pdx
) 1/p

and b :=

(∫
G+

|f | p
p−1 |u|pdx

) p−1
p

.

Using this Young inequality in (8.13) and rearranging the terms, we get∫
G+

|〈W,∇Hu〉|pdx ≥
∫
G+

(
divH(fW )− (p− 1)|f | p

p−1

)
|u|pdx. (8.14)

Now choosing W := Ii, which has the following form Ii = (

i︷ ︸︸ ︷
0, . . . , 1, . . . , 0) and

setting

f = β
|〈Xi(x), ν〉|p−1

dist(x, ∂G+)p−1
,

we calculate

divH(Wf) = (∇H · Ii)f = Xif = βXi

( |〈Xi(x), ν〉|
dist(x, ∂G+)

)p−1

= β(p− 1)

( |〈Xi(x), ν〉|
dist(x, ∂G+)

)p−2

Xi

( 〈Xi(x), ν〉
dist(x, ∂G+)

)
= β(p− 1)

( |〈Xi(x), ν〉|
dist(x, ∂G+)

)p−2 (
Xi〈Xi(x), ν〉
dist(x, ∂G+)

− |〈Xi(x), ν〉|2
dist(x, ∂G+)2

)
= β(p− 1)

[( |〈Xi(x), ν〉|
dist(x, ∂G+)

)p−2 (
Xi〈Xi(x), ν〉
dist(x, ∂G+)

)
− |〈Xi(x), ν〉|p

dist(x, ∂G+)p

]
,
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and

|f | p
p−1 = |β| p

p−1
|〈Xi(x), ν〉|p
dist(x, ∂G+)p

.

Moreover, we have

〈W,∇Hu〉 =
i︷ ︸︸ ︷

(0, . . . , 1, . . . , 0) · (X1u, . . . , Xiu, . . . , XNu)T = Xiu.

Substituting these in (8.14) and summing over i = 1, . . . , N , we obtain∫
G+

N∑
i=1

|Xiu|pdx ≥ − (p− 1)(|β| p
p−1 + β)

∫
G+

N∑
i=1

|〈Xi(x), ν〉|p
dist(x, ∂G+)p

|u|pdx (8.15)

+ β(p− 1)

∫
G+

N∑
i=1

( |〈Xi(x), ν〉|
dist(x, ∂G+)

)p−2
Xi〈Xi(x), ν〉
dist(x, ∂G+)

|u|pdx.

This completes the proof. �

8.3 L2-Hardy inequality on convex domains

In this and the following sections we extend the proceeding arguments from half-
spaces to convex domains in the stratified groups. Here, however, the convex do-
main is understood in the sense of the Euclidean space. Thus, let Ω be a convex
domain of a stratified group G and let ∂Ω be its boundary. Here for x ∈ Ω we
denote by ν(x) the unit normal for ∂Ω at a point x̂ ∈ ∂Ω, determined by the
condition

dist(x, ∂Ω) = dist(x, x̂).

For the half-space, we have the distance from the boundary dist(x, ∂Ω) = 〈x, ν〉−d.
As it was already defined in (8.10), we will use the p-version of the angle function

Wp(x) =

(
N∑
i=1

|〈Xi(x), ν〉|p
)1/p

,

with W(x) := W2(x). We have the following extension of Theorem 8.1.3.

Theorem 8.3.1 (Geometric L2-Hardy inequality on convex domains). Let Ω be a
convex domain of a stratified group G. Then for all u ∈ C∞

0 (Ω) and all β < 0 we
have∫

Ω

|∇Hu|2dx ≥ C1(β)

∫
Ω

W(x)2

dist(x, ∂Ω)2
|u|2dx+ β

∫
Ω

N∑
i=1

Xi〈Xi(x), ν〉
dist(x, ∂Ω)

|u|2dx,
(8.16)

where C1(β) := −(β2 + β).

Proof of Theorem 8.3.1. As elsewhere in this chapter, we follow the proof for gen-
eral stratified groups of [RSS18b], based on the convex polytope approach used by
Larson [Lar16] in the case of the Heisenberg group.
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We denote the facets of Ω by {Fj}j and unit normals of these facets by {νj}j ,
which are directed inward. So, Ω can be viewed as the union of the disjoint sets

Ωj := {x ∈ Ω : dist(x, ∂Ω) = dist(x,Fj)}.
Now we follow the method as in the case of the half-space G+ for each element
Ωj with one exception that not all the boundary values are zero when we use the
partial integration. As before we calculate

0 ≤
∫
Ωj

|∇Hu+ βWu|2dx =

∫
Ωj

N∑
i=1

|Xiu+ βWiu|2dx

=

∫
Ωj

N∑
i=1

[|Xiu|2 + 2ReβWiuXiu+ β2W 2
i |u|2

]
dx

=

∫
Ωj

N∑
i=1

[|Xiu|2 + βWiXi|u|2 + β2W 2
i |u|2

]
dx

=

∫
Ωj

N∑
i=1

[|Xiu|2 − β(XiWi)|u|2 + β2W 2
i |u|2

]
dx

+ β

∫
∂Ωj

N∑
i=1

Wi〈Xi(x), nj(x)〉|u|2dΓ∂Ωj (x),

where nj is the unit normal of ∂Ωj which is directed outward. Since Fj ⊂ ∂Ωj we
have nj = −νj . That is, we have∫

Ωj

|∇Hu|2dx ≥
∫
Ωj

N∑
i=1

[
(β(XiWi)− β2W 2

i )|u|2
]
dx

− β

∫
∂Ωj

N∑
i=1

Wi〈Xi(x), nj(x)〉|u|2dΓ∂Ωj (x).

(8.17)

The boundary terms on ∂Ω disappears since u is compactly supported in Ω. Thus,
we only need to deal with the parts of ∂Ωj in Ω. Note that for every facet of ∂Ωj

there exists some ∂Ωl which shares this facet. Denote by Γjl the common facet of
∂Ωj and ∂Ωl, with nk|Γjl

= −nl|Γjl
.

Now we choose Wi in the form

Wi(x) =
〈Xi(x), νj〉
dist(x, ∂Ωj)

=
〈Xi(x), νj〉
〈x, νj〉 − d

,

and a direct computation shows that

XiWi(x) =
Xi〈Xi(x), νj〉
dist(x, ∂Ωj)

− 〈Xi(x), νj〉2
dist(x, ∂Ωj)2

. (8.18)
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Substituting (8.18) into (8.17) we get∫
Ωj

|∇Hu|2dx ≥ −(β2 + β)

∫
Ωj

N∑
i=1

〈Xi(x), νj〉2
dist(x, ∂Ωj)2

|u|2dx (8.19)

+ β

∫
Ωj

N∑
i=1

Xi〈Xi(x), νj〉
dist(x, ∂Ωj)

|u|2dx− β

∫
Γjl

N∑
i=1

〈Xi(x), νj〉〈Xi(x), njl〉
dist(x,Fj)

|u|2dΓjl.

Now we sum over all partition elements Ωj and let njl = nk|Γjl
, i.e., the unit

normal of Γjl pointing from Ωj into Ωl. Then we have

∫
Ω

|∇Hu|2dx ≥ − (β2 + β)

∫
Ω

N∑
i=1

〈Xi(x), ν〉2
dist(x, ∂Ω)2

|u|2dx

+ β

∫
Ω

N∑
i=1

Xi〈Xi(x), ν〉
dist(x, ∂Ω)

|u|2dx

− β
∑
j 	=l

∫
Γjl

N∑
i=1

〈Xi(x), νj〉〈Xi(x), njl〉
dist(x,Fj)

|u|2dΓjl

= − (β2 + β)

∫
Ω

N∑
i=1

〈Xi(x), ν〉2
dist(x, ∂Ω)2

|u|2dx

+ β

∫
Ω

N∑
i=1

Xi〈Xi(x), ν〉
dist(x, ∂Ω)

|u|2dx

− β
∑
j<l

∫
Γjl

N∑
i=1

〈Xi(x), νj − νl〉〈Xi(x), njl〉
dist(x,Fj)

|u|2dΓjl.

Here we have used the fact that (by the definition) Γjl is a set with

dist(x,Fj) = dist(x,Fl).

From
Γjl = {x : x · νj − dj = x · νl − dl}

rearranging x · (νj − νl) − dj + dl = 0 we see that Γjl is a hyperplane with a
normal νj − νl. So, νj − νl is parallel to njl and one only needs to check that
(νj − νl) · njl > 0. Since njl points out and νj points into jth partition element,
νj · njl is non-negative. Similarly, we see that νl · njl is non-positive. That is,
(νj − νl) · njl > 0. On the other hand, it is easy to see that

|νj − νl|2 = (νj − νl) · (νj − νl) = 2− 2νj · νl
= 2− 2 cos(αjl),
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which implies that

(νj − νl) · njl =
√
2− 2 cos(αjl),

where αjl is the angle between νj and νl. So we obtain

∫
Ω

|∇Hu|2dx ≥ − (β2 + β)

∫
Ω

N∑
i=1

〈Xi(x), ν〉2
dist(x, ∂Ω)2

|u|2dx

+ β

∫
Ω

N∑
i=1

Xi〈Xi(x), ν〉
dist(x, ∂Ω)

|u|2dx

− β
∑
j<l

N∑
i=1

∫
Γjl

√
1− cos(αjl)

〈Xi(x), njl〉2
dist(x,Fj)

|u|2dΓjl.

Here with β < 0 and due to the boundary term signs we prove the desired inequal-
ity for the polytope convex domains.

Now we are ready to consider the general case, that is, when Ω is an arbitrary
convex domain. For each u ∈ C∞

0 (Ω) one can always choose an increasing sequence
of convex polytopes {Ωj}∞j=1 such that u ∈ C∞

0 (Ω1), Ωj ⊂ Ω and Ωj → Ω as
j → ∞. Assume that νj(x) is the above map ν (corresponding to Ωj), and then
we can calculate∫

Ω

|∇Hu|2dx =

∫
Ωj

|∇Hu|2dx

≥ −(β2 + β)

∫
Ωj

N∑
i=1

〈Xi(x), νj〉2
dist(x, ∂Ωj)2

|u|2dx+ β

∫
Ωj

N∑
i=1

Xi〈Xi(x), νj〉
dist(x, ∂Ωj)

|u|2dx

= −(β2 + β)

∫
Ω

N∑
i=1

〈Xi(x), νj〉2
dist(x, ∂Ωj)2

|u|2dx+ β

∫
Ω

N∑
i=1

Xi〈Xi(x), νj〉
dist(x, ∂Ωj)

|u|2dx

≥ −(β2 + β)

∫
Ω

N∑
i=1

〈Xi(x), νj〉2
dist(x, ∂Ω)2

|u|2dx+ β

∫
Ω

N∑
i=1

Xi〈Xi(x), νj〉
dist(x, ∂Ω)

|u|2dx .

Now we obtain the desired result by letting j → ∞. �

8.4 Lp-Hardy inequality on convex domains

The same arguments as in the previous section give the general Lp-version of
Theorem 8.3.1.

Theorem 8.4.1 (Geometric Lp-Hardy inequality on convex domains). Let Ω be a
convex domain of a stratified group G. Then for all u ∈ C∞

0 (Ω) and all β < 0
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we have∫
Ω

N∑
i=1

|Xiu|pdx ≥ C2(β, p)

∫
Ω

Wp(x)
p

dist(x, ∂Ω)p
|u|pdx (8.20)

+ β(p− 1)

∫
Ω

N∑
i=1

( |〈Xi(x), ν〉|
dist(x, ∂Ω)

)p−2 (
Xi〈Xi(x), ν〉
dist(x, ∂Ω)

)
|u|pdx,

where C2(β, p) := −(p− 1)(|β| p
p−1 + β).

Remark 8.4.2. Note that for p ≥ 2, since

|∇Hu|p =

(
N∑
i=1

|Xiu|2
) p/2

≥
N∑
i=1

(|Xiu|2
)p/2

, (8.21)

instead of (8.20) we have the inequality∫
Ω

|∇Hu|pdx ≥ C2(β, p)

∫
Ω

Wp(x)
p

dist(x, ∂Ω)p
|u|pdx (8.22)

+ β(p− 1)

∫
Ω

N∑
i=1

( |〈Xi(x), ν〉|
dist(x, ∂Ω)

)p−2 (
Xi〈Xi(x), ν〉
dist(x, ∂Ω)

)
|u|pdx.

Proof of Theorem 8.4.1. As in the proof of Theorem 8.3.1, let us first assume that
Ω is the convex polytope. Thus, for f ∈ C1(Ωj) and W ∈ C∞(Ωj), we calculate∫

Ωj

divG(fW )|u|pdx = −p

∫
Ωj

f〈W,∇Hu〉|u|p−1dx+

∫
∂Ωj

f〈W,nj(x)〉|u|pdΓ∂Ωj (x)

≤ p

(∫
Ω

|〈W,∇Hu〉|pdx
) 1

p

(∫
Ωj

|f | p
p−1 |u|pdx

) p−1
p

+

∫
∂Ωj

f〈W,nj(x)〉|u|pdΓ∂Ωj (x),

(8.23)

where Ωj is the partition as in the proof of Theorem 8.3.1. In the last line we have
used the Hölder inequality. By using Young’s inequality in (8.23) and rearranging
the terms, we get∫

Ωj

|〈W,∇Hu〉|pdx ≥
∫
Ω

(
divG(fW )− (p− 1)|f | p

p−1

)
|u|pdx

−
∫
∂Ωj

f〈W,nj(x)〉|u|pdΓ∂Ωj (x).
(8.24)

Choosing W := Ii as a unit vector of the ith component and letting

f = β
|〈Xi(x), νj〉|p−1

dist(x,Fj)p−1
,

we calculate

divG(Wf) = Xif = βXi

( |〈Xi(x), νj〉|
dist(x,Fj)

)p−1
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= β(p− 1)

( |〈Xi(x), νj〉|
dist(x,Fj)

)p−2

Xi

( 〈Xi(x), νj〉
dist(x,Fj)

)
= β(p− 1)

( |〈Xi(x), νj〉|
dist(x,Fj)

)p−2 (
Xi〈Xi(x), νj〉
dist(x,Fj)

− |〈Xi(x), νj〉|2
dist(x,Fj)2

)
= β(p− 1)

[( |〈Xi(x), νj〉|
dist(x,Fj)

)p−2 (
Xi〈Xi(x), νj〉
dist(x,Fj)

)
− |〈Xi(x), νj〉|p

dist(x,Fj)p

]
,

and

|f | p
p−1 = |β| p

p−1
|〈Xi(x), νj〉|p
dist(x,Fj)p

.

Moreover, we have

〈W,∇Hu〉 = (

i︷ ︸︸ ︷
0, . . . , 1, . . . , 0) · (X1u, . . . , Xiu, . . . , XNu)T = Xiu.

Substituting these into (8.24) and summing over all i = 1, . . . , N , we obtain∫
Ωj

N∑
i=1

|Xiu|pdx ≥ − (p− 1)(|β| p
p−1 + β)

∫
Ωj

N∑
i=1

|〈Xi(x), νj〉|p
dist(x,Fj)p

|u|pdx (8.25)

+ β(p− 1)

∫
Ωj

N∑
i=1

( |〈Xi(x), νj〉|
dist(x,Fj)

)p−2(
Xi〈Xi(x), νj〉
dist(x,Fj)

)
|u|pdx

− β

∫
∂Ωj

N∑
i=1

( |〈Xi(x), νj〉|
dist(x,Fj)

)p−1

〈Xi(x), nj(x)〉|u|pdΓ∂Ωj (x).

Now summing up over Ωj , and with the interior boundary terms we get∫
Ω

N∑
i=1

|Xiu|pdx ≥ − (p− 1)(|β| p
p−1 + β)

N∑
i=1

∫
Ω

|〈Xi(x), ν〉|p
dist(x, ∂Ω)p

|u|pdx

+ β(p− 1)
N∑
i=1

∫
Ω

( |〈Xi(x), ν〉|
dist(x, ∂Ω)

)p−2 (
Xi〈Xi(x), ν〉
dist(x, ∂Ω)

)
|u|pdx

− β
∑
j 	=l

N∑
i=1

∫
Γjl

( |〈Xi(x), νj〉|
dist(x,Fj)

)p−1

〈Xi(x), njl(x)〉|u|pdΓjl

= − (p− 1)(|β| p
p−1 + β)

N∑
i=1

∫
Ω

|〈Xi(x), ν〉|p
dist(x, ∂Ω)p

|u|pdx

+ β(p− 1)
N∑
i=1

∫
Ω

( |〈Xi(x), ν〉|
dist(x, ∂Ω)

)p−2 (
Xi〈Xi(x), ν〉
dist(x, ∂Ω)

)
|u|pdx

− β
∑
j<l

N∑
i=1

∫
Γjl

[( |〈Xi(x), νj〉|
dist(x,Fj)

)p−1

〈Xi(x), njl(x)〉
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−
( |〈Xi(x), νl〉|

dist(x,Fl)

)p−1

〈Xi(x), njl(x)〉
]
|u|pdΓjl.

As in the proof of Theorem 8.3.1, if the boundary term is positive we can discard
it, so we need to show that[( |〈Xi(x), νj〉|

dist(x,Fj)

)p−1

〈Xi(x), njl(x)〉 −
( |〈Xi(x), νl〉|

dist(x,Fl)

)p−1

〈Xi(x), njl(x)〉
]
≥ 0.

Since njl =
νj−νl√

2−2 cos(αjl)
and dist(x,Fj) = dist(x,Fl) on Γjl, we have

1

2− 2 cos(αjl)

[( |〈Xi(x), νj〉|
dist(x,Fj)

)p−1

〈Xi(x), νj − νl〉

−
( |〈Xi(x), νl〉|

dist(x,Fl)

)p−1

〈Xi(x), νj − νl〉
]

=
|〈Xi(x), νj〉|p − |〈Xi(x), νj〉|p−1〈Xi(x), νl〉

(2− 2 cos(αjl)) dist(x,Fj)p−1

+
−|〈Xi(x), νl〉|p−1〈Xi(x), νj〉+ |〈Xi(x), νl〉|p

(2− 2 cos(αjl)) dist(x,Fj)p−1

=
(|〈Xi(x), νj〉| − |〈Xi(x), νl〉|)

(|〈Xi(x), νj〉|p−1 − |〈Xi(x), νl〉|p−1
)

(2 − 2 cos(αjl)) dist(x,Fj)p−1
≥ 0.

Here we have used the equality

(a− b)(ap−1 − bp−1) = ap − ap−1b− bp−1a+ bp−1

with a = |〈Xi(x), νj〉| and b = |〈Xi(x), νl〉|. Thus, for β < 0 by discarding the
above boundary term (integral) we complete the proof. �
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