
Chapter 5

Integral Hardy Inequalities

on Homogeneous Groups

In this chapter we discuss the integral form of Hardy inequalities where instead
of estimating a function by its gradient, we estimate the integral by the function
itself. This stems from the original version of Hardy’s inequality [Har20]:

∫ ∞

b

(∫ x

b f(t)dt

x

)p

dx ≤
(

p

p− 1

)p ∫ ∞

b

f(x)pdx, (5.1)

where p > 1, b > 0, and f ≥ 0 is a non-negative function. We analyse the weighted
versions of such inequalities in the setting of general homogeneous groups. Most
of the results of this chapter have been obtained in [RY18a] and here we follow
the presentation of this paper.

5.1 Two-weight integral Hardy inequalities

Here we discuss the weighted Hardy inequalities in the integral form extending
that in (5.1). It turns out that one can actually derive the necessary and sufficient
conditions on weights for these inequalities to hold.

Theorem 5.1.1 (Integral Hardy inequalities for p ≤ q). Let G be a homogeneous
group of homogeneous dimension Q and let 1 < p ≤ q <∞. Let φ1 > 0, φ2 > 0 be
positive functions on G. Then we have the following properties:

(1) The inequality

(∫
G

(∫
B(0,|x|)

f(z)dz

)q

φ1(x)dx

) 1/q

≤ C1

(∫
G

(f(x))pψ1(x)dx

) 1/p

(5.2)
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holds for all f ≥ 0 a.e. on G if and only if

A1 := sup
R>0

(∫
{|x|≥R}

φ1(x)dx

) 1/q (∫
{|x|≤R}

(ψ1(x))
−(p′−1)dx

) 1/p′

<∞.

(5.3)

(2) The inequality(∫
G

(∫
G\B(0,|x|)

f(z)dz

)q

φ2(x)dx

) 1/q

≤ C2

(∫
G

(f(x))pψ2(x)dx

) 1/p

(5.4)
holds for all f ≥ 0 a.e. on G if and only if

A2 := sup
R>0

(∫
{|x|≤R}

φ2(x)dx

) 1/q (∫
{|x|≥R}

(ψ2(x))
−(p′−1)dx

) 1/p′

<∞.

(5.5)

(3) If {Ci}2i=1 are the smallest constants for which (5.2) and (5.4) hold, then

Ai ≤ Ci ≤ (p′)
1
p′ p

1
q Ai, i = 1, 2. (5.6)

Before we prove this theorem let us give a few comments.

Remark 5.1.2.

1. In the Abelian case G = (Rn,+) and Q = n, if we take p = q > 1, and

φ1(x) = |B(0, |x|)|−p and ψ1(x) = 1

in (5.2), then we have A1 = (p− 1)−1/p and(∫
Rn

∣∣∣∣∣ 1

|B(0, |x|)|
∫
B(0,|x|)

f(z)dz

∣∣∣∣∣
p

dx

) 1/p

≤ p

p− 1

(∫
Rn

|f(x)|pdx
) 1/p

,

(5.7)
where |B(0, |x|)| is the volume of the ball B(0, |x|). The inequality (5.7) was
obtained in [CG95].

2. Theorem 5.1.1 was obtained in [RY18a] and here we follow the proof from
that paper. However, due to the fact that the formulations do not make use of
the differential structure, the statement can be actually extended to general
metric measure spaces with polar decomposition. More specifically, consider
a metric space X with a Borel measure dx allowing for the following polar
decomposition at a ∈ X: we assume that there is a locally integrable function
λ ∈ L1

loc such that for all f ∈ L1(X) we have∫
X

f(x)dx =

∫ ∞

0

∫
Σ

f(r, ω)λ(r, ω)dωdr, (5.8)
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for some set Σ ⊂ X with a measure on it denoted by dω, and (r, ω) → a
as r → 0. In the case of homogeneous groups such a polar decomposition is
given in Proposition 1.2.10.

Let us denote by B(a, r) the ball in X with centre a and radius r, i.e.,

B(a, r) := {x ∈ X : d(x, a) < r},

where d is the metric on X. Once and for all we will fix some point a ∈ X,
and we will write

|x|a := d(a, x).

Then the following result was obtained in [RV18] which we record here with-
out proof.

Theorem 5.1.3 (Integral Hardy inequality in metric measure spaces). Let
1 < p ≤ q < ∞ and let s > 0. Let X be a metric measure space with a polar
decomposition (5.8) at a. Let u, v > 0 be measurable functions positive a.e.
in X such that u ∈ L1(X\{a}) and v1−p′ ∈ L1

loc(X). Denote

U(x) :=

∫
X\B(a,|x|a)

u(y)dy and V (x) :=

∫
B(a,|x|a)

v1−p′
(y)dy

Then the inequality(∫
X

(∫
B(a,|x|a)

|f(y)|dy
)q

u(x)dx

) 1/q

≤ C

{∫
X

|f(x)|pv(x)dx
} 1/p

(5.9)

holds for all measurable functions f : X→ C if and only if any of the following
equivalent conditions hold:

1. D1 := supx 	=a

{
U

1
q (x)V

1
p′ (x)

}
<∞.

2. D2 := supx 	=a

{∫
X\B(a,|x|a) u(y)V

q( 1
p′ −s)

(y)dy

}1/q

V s(x) <∞.

3. D3 := supx 	=a

{∫
B(a,|x|a) u(y)V

q( 1
p′ +s)

(y)dy

}1/q

V −s(x) <∞,

provided that u, v1−p′ ∈ L1(X).

4. D4 := supx 	=a

{∫
B(a,|x|a) v

1−p′
(y)Up′( 1

q−s)(y)dy

} 1/p′

Us(x) <∞.

5. D5 := supx 	=a

{∫
X\B(a,|x|a) v

1−p′
(y)Up′( 1

q+s)(y)dy

} 1/p′

U−s(x) <∞,

provided that u, v1−p′ ∈ L1(X).
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Moreover, the constant C for which (5.9) holds and quantities D1–D5

are related by

D1 ≤ C ≤ D1(p
′)

1
p′ p

1
q , (5.10)

and

D1 ≤ (max(1, p′s))
1
q D2, D2 ≤

(
max(1,

1

p′s
)

)1/q

D1,

(
sp′

1 + p′s

)1/q

D3 ≤ D1 ≤ (1 + sp′)
1
qD3,

D1 ≤ (max(1, qs))
1
p′D4, D4 ≤

(
max(1,

1

qs
)

)1/p′

D1,

(
sq

1 + qs

)1/p′

D5 ≤ D1 ≤ (1 + sq)
1
p′D5.

3. As such, Theorem 5.1.3 is an extension of (5.1) to the setting of metric
measures spaces X with the polar decomposition (5.8): in particular, for p = q
and real-valued non-negative measurable f ≥ 0, inequality (5.9) becomes∫

X

(∫
B(a,|x|a)

f(y)dy

)p

u(x)dx ≤ C

∫
X

f(x)
p
v(x)dx,

as an extension of (5.1). Indeed, in this case we can take u(x) = 1
xp , v(x) = 1,

X = [b,∞), a = b, so that Theorem 5.1.3 implies (5.1).

4. Let us give an application of Theorem 5.1.3 in the setting of homogeneous
groups, recovering a two-weighted result obtained in [RV18]:

Corollary 5.1.4 (Characterization for homogeneous weights). Let G be a ho-
mogeneous group of homogeneous dimension Q, equipped with a homogeneous
quasi-norm | · |. Let 1 < p ≤ q <∞ and let α, β ∈ R. Then the inequality(∫

G

(∫
B(0,|x|)

|f(y)|dy
)q

|x|αdx
) 1

q

≤ C

(∫
G

|f(x)|p|x|βdx
) 1

p

(5.11)

holds for all measurable functions f : G → C if and only if α + Q < 0,

β(1 − p′) +Q > 0 and α+Q
q + β(1−p′)+Q

p′ = 0. Moreover, the best constant C

for (5.11) satisfies

σ
1
q+

1
p′

|α+Q| 1q (β(1 − p′) +Q)
1
p′
≤ C ≤ (p′)

1
p′ p

1
q

σ
1
q+

1
p′

|α+Q| 1q (β(1 − p′) +Q)
1
p′
,

where σ is the area of the unit sphere in G with respect to the quasi-norm | · |.
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Let us show how Theorem 5.1.3 implies Corollary 5.1.4. If we take a = 0,
and the power weights

u(x) = |x|α and v(x) = |x|β ,
then the inequality (5.9) holds for 1 < p ≤ q <∞ if and only if

D1 = sup
r>0

(
σ

∫ ∞

r

ραρQ−1dρ

)1/q(
σ

∫ r

0

ρβ(1−p′)ρQ−1dρ

) 1/p′

<∞,

where σ is the area of the unit sphere in G with respect to the quasi-norm
| · |. For this supremum to be well defined we need to have α + Q < 0 and
β(1 − p′) +Q > 0. Consequently, we can calculate

D1 = σ
( 1
q+

1
p′ ) sup

r>0

(∫ ∞

r

ρα+Q−1dρ

)1/q(∫ r

0

ρβ(1−p′)+Q−1dρ

)1/p′

= σ
( 1
q+

1
p′ ) sup

r>0

r
α+Q

q

|α+Q| 1q
r

β(1−p′)+Q

p′

(β(1− p′) +Q)
1
p′
,

which is finite if and only if the power of r is zero. Consequently, Corollary
5.1.4 follows from Theorem 5.1.3.

Proof of Theorem 5.1.1. We will prove Part (1) of the theorem since the proof of
Part (2) is similar. The obtained estimates will also show the corresponding part
of the statement in Part (3).

Thus, let us first show that (5.3) implies (5.2). Using the polar decomposition
in Proposition 1.2.10 and denoting r = |x|, we write∫

G

φ1(x)

[∫
B(0,r)

f(z)dz

]q

dx

=

∫ ∞

0

∫
℘

rQ−1φ1(ry)

[∫ r

0

∫
℘

sQ−1f(sy)dσ(y)ds

]q
dσ(y)dr.

(5.12)

Denoting

g(r) :=

{∫
℘

∫ r

0

sQ−1(ψ1(sy))
1−p′

dsdσ(y)

}1/(pp′)

, (5.13)

and using Hölder’s inequality, we can estimate∫ r

0

∫
℘

sQ−1f(sy)dσ(y)ds

=

∫
℘

∫ r

0

s(Q−1)/pf(sy)(ψ1(sy))
1/pg(s)s(Q−1)/p′

×
(
(ψ1(sy))

1/pg(s)
)−1

dsdσ(y)
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≤
(∫

℘

∫ r

0

sQ−1
[
f(sy)(ψ1(sy))

1/pg(s)
]p

dsdσ(y)

) 1/p

×
(∫

℘

∫ r

0

sQ−1
[
(ψ1(sy))

1/pg(s)
]−p′

dsdσ(y)

)1/p′

. (5.14)

Let us introduce the following notations:

U(s) :=

∫
℘

sQ−1
(
f(sy)(ψ1(sy))

1/pg(s)
)p

dσ(y), (5.15)

V (r) :=

∫ r

0

∫
℘

sQ−1
(
(ψ1(sy))

1/pg(s)
)−p′

dσ(y)ds, (5.16)

W1(r) :=

∫
℘

rQ−1φ1(ry)dσ(y), (5.17)

for s, r > 0. Plugging (5.14) into (5.12) we obtain

∫
G

φ1(x)

(∫
B(0,r)

f(z)dz

)q

dx

≤
∫ ∞

0

W1(r)

(∫ r

0

U(s)ds

) q/p

(V (r))q/p
′
dr.

(5.18)

We now recall the following continuous version of the Minkowski inequality (see,
e.g., [DHK97, Formula 2.1]):

Let θ ≥ 1. Then for all f1(x), f2(x) ≥ 0 on (0,∞), we have

∫ ∞

0

f1(x)

(∫ x

0

f2(z)dz

)θ

dx ≤
(∫ ∞

0

f2(z)

(∫ ∞

z

f1(x)dx

)1/θ

dz

)θ

. (5.19)

Using this inequality with θ = q/p ≥ 1 in the right-hand side of (5.18), we can
estimate

∫
G

φ1(x)

(∫
B(0,r)

f(z)dz

)q

dx ≤
(∫ ∞

0

U(s)

(∫ ∞

s

W1(r)(V (r))q/p
′
dr

) p/q

ds

) q/p

.

(5.20)
Let us introduce one more temporary notation

T (s) :=

∫
℘

sQ−1(ψ1(sy))
1−p′

dσ(y).
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Using (5.13), (5.16), the integration by parts, (5.3) and (5.17), we compute

V (r) =

∫
℘

∫ r

0

sQ−1(ψ1(sy))
1−p′

(∫ s

0

∫
℘

tQ−1(ψ1(tw))
1−p′

dσ(w)dt

)−1/p

dsdσ(y)

=

∫ r

0

T (s)

(∫ s

0

T (t)dt

)−1/p

ds = p′
∫ r

0

d

ds

(∫ s

0

T (t)dt

)1/p′

ds

= p′
(∫ r

0

T (s)ds

)1/p′

= p′
(∫ r

0

∫
℘

sQ−1(ψ1(sy))
1−p′

dσ(y)ds

)1/p′

≤ p′A1

(∫ ∞

r

sQ−1

∫
℘

φ1(sw)dσ(w)ds

)−1/q

= p′A1

(∫ ∞

r

W1(s)ds

)−1/q

.

Similarly, applying the integration by parts and (5.3), this implies

∫ ∞

s

W1(r)(V (r))q/p
′
dr = (p′A1)

q/p′
∫ ∞

s

W1(r)

(∫ ∞

r

W1(s)ds

)−1/p′

dr

= (p′A1)
q/p′

p

(∫ ∞

s

W1(r)dr

) 1/p

= (p′A1)
q/p′

p

(∫ ∞

s

∫
℘

rQ−1φ1(ry)dσ(y)dr

) 1/p

≤ (p′A1)
q/p′

pA
q/p
1

(∫ s

0

rQ−1

∫
℘

(ψ1(ry))
1−p′

dσ(y)dr

)−q/(p′p)

= Aq
1(p

′)q/p
′
p(g(s))−q, (5.21)

where we have used (5.13) in the last line. Putting (5.21) in (5.20) and recalling
(5.15), we obtain

∫
G

φ1(x)

(∫
B(0,r)

f(z)dz

)q

dx ≤
(∫ ∞

0

U(s)Ap
1(p

′)p−1pp/q(g(s))−pds

) q/p

= Aq
1(p

′)q/p
′
p

(∫ ∞

0

U(s)(g(s))−pds

) q/p

= Aq
1(p

′)q/p
′
p

(∫ ∞

0

∫
℘

sQ−1(f(sy))pψ1(sy)dσ(y)ds

) q/p

= Aq
1(p

′)q/p
′
p

(∫
G

ψ1(x)(f(x))
pdx

) q/p

, (5.22)

yielding (5.2) with C1 = A1(p
′)1/p

′
p 1/q.
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We now show the converse, namely, that (5.2) implies (5.3). For that, we set

f(x) := (ψ1(x))
1−p′

χ(0,R)(|x|),
with R > 0. For this f we observe the equality(∫

G

ψ1(x)(f(x))
pdx

) 1/p
(∫

|x|≤R

(ψ1(x))
1−p′

dx

)−1/p

=

(∫
|x|≤R

(ψ1(x))
1−p′

dx

) 1/p (∫
|x|≤R

(ψ1(x))
1−p′

dx

)−1/p

= 1.

(5.23)

Consequently, by (5.2) we have

C = C

(∫
G

ψ1(x)(f(x))
pdx

)1/p
(∫

|x|≤R

(ψ1(x))
1−p′

dx

)−1/p

≥
(∫

G

φ1(x)

(∫
|z|≤|x|

f(z)dz

)q

dx

) 1/q (∫
|x|≤R

(ψ1(x))
1−p′

dx

)−1/p

≥
(∫

|x|≥R

φ1(x)

(∫
|z|≤|x|

f(z)dz

)q

dx

) 1/q (∫
|x|≤R

(ψ1(x))
1−p′

dx

)−1/p

=

(∫
|x|≥R

φ1(x)dx

) 1/q (∫
|z|≤R

(ψ1(z))
1−p′

dz

)1/p′

. (5.24)

Combining (5.23) and (5.24), we obtain (5.3) with C ≥ A1. �

The next case is the version of Theorem 5.1.1 for the indices p > q:

Theorem 5.1.5 (Integral Hardy inequalities for p > q). Let G be a homogeneous
group of homogeneous dimension Q and let 1 < q < p <∞ and 1/δ = 1/q − 1/p.
Let φ3 and φ4 be positive functions on G. Then we have the following properties:

(1) The inequality(∫
G

(∫
B(0,|x|)

f(z)dz

)q

φ3(x)dx

) 1/q

≤ C1

(∫
G

(f(x))pψ3(x)dx

) 1/p

(5.25)
holds for all f ≥ 0 if and only if

∫
G

(∫
G\B(0,|x|)

φ3(z)dz

)δ/q (∫
B(0,|x|)

(ψ3(z))
1−p′

dz

)δ/q′

(ψ3(x))
1−p′

dx <∞.

(5.26)
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(2) The inequality(∫
G

(∫
G\B(0,|x|)

f(z)dz

)q

φ4(x)dx

) 1/q

≤ C2

(∫
G

(f(x))pψ4(x)dx

) 1/p

(5.27)
holds for all f ≥ 0 if and only if

∫
G

(∫
B(0,|x|)

φ4(z)dz

)δ/q (∫
G\B(0,|x|)

(ψ4(z))
1−p′

dz

)δ/q′

(ψ4(x))
1−p′

dx <∞.

(5.28)

Proof of Theorem 5.1.5. We will prove Part (1) of the theorem since Part (2) is
similar. We will denote

A3 :=

∫
G

(∫
G\B(0,|x|)

φ3(z)dz

)δ/q (∫
B(0,|x|)

(ψ3(z))
1−p′

dz

)δ/q′

(ψ3(x))
1−p′

dx.

First we prove that if A3 <∞, then we have inequality (5.25). Denote

W2(r) :=

∫
℘

rQ−1φ3(ry)dσ(y) (5.29)

and

G(s) :=

∫
℘

sQ−1h(sy)(ψ3(sy))
1−p′

dσ(y) (5.30)

for h ≥ 0 on G to be chosen later. Using the polar decomposition in Proposition
1.2.10 we have the following equalities:∫
G

φ3(x)

(∫
B(0,|x|)

h(z)(ψ3(z))
1−p′

dz

)q

dx

=

∫ ∞

0

∫
℘

rQ−1φ3(rw)dσ(w)

(∫ r

0

∫
℘

sQ−1h(sy)(ψ3(sy))
1−p′

dσ(y)ds

)q

dr

=

∫ ∞

0

W2(r)

(∫ r

0

G(s)ds

)q

dr

= q

∫ ∞

0

G(s)

(∫ s

0

G(r)dr

)q−1 (∫ ∞

s

W2(r)dr

)
ds

= q

∫
℘

∫ ∞

0

sQ−1h(sy)(ψ3(sy))
1−p′

(∫ s

0

∫
℘

rQ−1h(rw)(ψ3(rw))
1−p′

dσ(w)dr

)q−1

×
(∫ ∞

s

W2(r)dr

)
dsdσ(y)
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= q

∫
℘

∫ ∞

0

sQ−1h(sy)(ψ3(sy))
(1−p′)( 1

p+
q−1
p +p−q

p )

×
(∫

℘

∫ s

0
rQ−1h(rw)(ψ3(rw))

1−p′
drdσ(w)∫

℘

∫ s

0 rQ−1(ψ3(rw))1−p′drdσ(w)

)q−1

×
((∫

℘

∫ s

0

rQ−1(ψ3(rw))
1−p′

drdσ(w)

)q−1 (∫ ∞

s

W2(r)dr

))
dsdσ(y).

Here, using Hölder’s inequality with three factors with indices 1
p +

q−1
p + p−q

p = 1,
we can estimate∫

G

φ3(x)

(∫
B(0,|x|)

h(z)(ψ3(z))
1−p′

dz

)q

dx ≤ qK1K2K3, (5.31)

where

K1 =

(∫
℘

∫ ∞

0

sQ−1(h(sy))p(ψ3(sy))
1−p′

dsdσ(y)

) 1/p

=

(∫
G

(h(x))p(ψ3(x))
1−p′

dx

) 1/p

,

(5.32)

K2 =

(∫
℘

∫ ∞

0

sQ−1(ψ3(sy))
1−p′

×
(∫

℘

∫ s

0 rQ−1h(rw)(ψ3(rw))
1−p′

drdσ(w)∫
℘

∫ s

0 rQ−1(ψ3(rw))1−p′drdσ(w)

)p

dsdσ(y)

) q−1
p

(5.33)

and

K3 =

⎛⎝∫
℘

∫ ∞

0

sQ−1(ψ3(sy))
1−p′

(∫
℘

∫ s

0

rQ−1(ψ3(rw))
1−p′

drdσ(w)

) (q−1)p
p−q

×
(∫ ∞

s

W2(r)dr

) p
p−q

dsdσ(y)

) p−q
p

. (5.34)

Leaving K1 as it is, we will estimate K2 and K3. We rewrite K2 as

K2 =

(∫
G

(ψ3(x))
1−p′

(
∫
B(0,|x|)(ψ3(z))1−p′dz)p

(∫
B(0,|x|)

(ψ3(z))
1−p′

h(z)dz

)p

dx

) (q−1)/p

.

We want to apply (5.2) to K2 with indices p = q, and with functions f(x) =
(ψ3(x))

1−p′
h(x) and

φ1(x) =
(ψ3(x))

1−p′

(
∫
B(0,|x|)(ψ3(z))1−p′dz)p

, ψ1(x) = (ψ3(x))
(1−p′)(1−p).
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For that, we will check the condition that

A1(R) =

⎛⎝∫
|x|≥R

(ψ3(x))
1−p′

(∫
B(0,|x|)

(ψ3(z))
1−p′

dz

)−p

dx

⎞⎠ 1/p

×
(∫

|x|≤R

(ψ3(x))
1−p′

dx

)1/p′

<∞

(5.35)

holds uniformly for all R > 0. Assuming (5.35) uniformly in R > 0 for a moment,
the inequality (5.2) would imply that

K2 ≤ C

(∫
G

(ψ3(x))
(1−p′)(1−p+p)(h(x))pdx

) (q−1)/p

= C

(∫
G

(h(x))p(ψ3(x))
1−p′

dx

) (q−1)/p

,

(5.36)

which is something we will use later. So, let us check (5.35). For this, we denote

S(s) :=

∫
℘

sQ−1(ψ3(sw))
1−p′

dσ(w).

Using integration by parts we have

A1(R) =

(∫
℘

∫ ∞

R

rQ−1(ψ3(rw))
1−p′

(∫ r

0

S(s)ds

)−p

drdσ(w)

)1
p
(∫ R

0

S(s)ds

) 1
p′

=

(∫ ∞

R

(∫ r

0

S(s)ds

)−p

S(r)dr

) 1/p (∫ R

0

S(s)ds

)1/p′

≤
⎛⎝ 1

p− 1

(∫ R

0

S(s)ds

)1−p
⎞⎠ 1/p (∫ R

0

S(s)ds

)1/p′

= (p− 1)−1/p <∞,

so that (5.36) is confirmed. Next, for K3, taking into account

1

δ
=

1

q
− 1

p
=

p− q

pq

and using (5.26), we have

K3 =

(∫ ∞

0

∫
℘

(∫ ∞

s

W2(r)dr

)δ/q (∫
℘

∫ r

0

rQ−1(ψ3(rw))
1−p′

drdσ(w)

)δ/q′

×sQ−1(ψ3(sy))
1−p′

dσ(y)ds
) (p−q)/p
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=

⎛⎝∫
G

(∫
G\B(0,|x|)

φ3(z)dz

)δ
q
(∫

B(0,|x|)
(ψ3(z))

1−p′
dz

) δ
q′

(ψ3(x))
1−p′

dx

⎞⎠
p−q
p

= A
p−q
p

3 <∞. (5.37)

Now, plugging (5.32), (5.36) and (5.37) into (5.31), we obtain

∫
G

φ3(x)

(∫
B(0,|x|)

h(z)(ψ3(z))
1−p′

dz

)q

dx

≤ CA
p−q
p

3

(∫
G

(h(x))p(ψ3(x))
1−p′

dx

) 1
p+

q−1
p

,

which implies (5.25) after taking h := fψp′−1
3 .

Let us now show the converse, namely, that (5.25) implies (5.26). For this,
we consider a sequence of functions

fk(x) :=

(∫
|y|≥|x|

φ3(z)dz

)δ/(pq) (∫
αk≤|z|≤|x|

(ψ3(z))
1−p′

dz

)δ/(pq′)

× (ψ3(x))
1−p′

χ(αk,βk)(|x|), k = 1, 2, . . . .

Inserting these functions in the place of f(x) in (5.25), we obtain (5.26), if we take
0 < αk < βk with αk ↘ 0 and βk ↗∞ for k →∞. �

5.2 Convolution Hardy inequalities

In this section we discuss integral Hardy inequalities in the convolution form. Such
inequalities are particularly useful if we make particular choices of the convolu-
tion kernels. For example, by taking the Riesz kernels of hypoelliptic differential
operators on graded groups, such inequalities can be used to derive a number of
hypoelliptic versions of Hardy inequalities. While this topic falls outside the scope
of this book, we refer to [RY18a] for such applications. The inequalities that we
will present here have been established in [RY18a] and we follow the proofs there
in our exposition.

Theorem 5.2.1 (Convolution Hardy inequality). Let G be a homogeneous Lie group
of homogeneous dimension Q and with a homogeneous quasi-norm | · |. Let 1 <
p ≤ q < ∞, 0 < a < Q/p, 0 ≤ b < Q and a

Q = 1
p − 1

q + b
qQ . Assume that there is

C2 = C2(a,Q) > 0 such that

|T (1)
a (x)| ≤ C2|x|a−Q (5.38)
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holds for all x �= 0. Then there exists a positive constant C1 = C1(p, q, a, b) > 0
such that ∥∥∥∥∥f ∗ T (1)

a

|x| bq

∥∥∥∥∥
Lq(G)

≤ C1‖f‖Lp(G) (5.39)

holds for all f ∈ Lp(G).

The critical case b = Q of Theorem 5.2.1 will be shown in Theorem 5.2.5.

Remark 5.2.2 (Riesz kernels). Let us briefly describe a typical situation when
condition (5.38) is satisfied. Without going much into detail, let us assume that
R is a positive homogeneous left invariant hypoelliptic differential operator on
G of homogeneous degree ν. The existence of such an operator implies that the
group G is graded, see [FR16, Section 4.1]. The operators R satisfying the above
properties are called Rockland operators.

Let ht denote the heat kernel associated to the operatorR, see [FR16, Section
4.3.4] for a thorough treatment of this and for the proof of the following notes.
This heat kernel satisfies the following properties, see [FR16, Theorem 4.2.7 and
Lemma 4.3.8]:

Theorem 5.2.3 (Heat kernels). Let R be homogeneous left invariant hypoelliptic
differential operator on G of homogeneous degree ν and let ht be the associated
heat kernel. Then each ht is Schwartz and we have

∀s, t > 0 ht ∗ hs = ht+s, (5.40)

∀x ∈ G, r, t > 0 hrνt(rx) = r−Qht(x), (5.41)

∀x ∈ G ht(x) = ht(x−1), (5.42)∫
G

ht(x)dx = 1. (5.43)

Moreover, we have

∃C = Cα,N,� > 0 ∀t ∈ (0, 1] sup
|x|=1

|∂�
tX

αht(x)| ≤ Cα,N tN (5.44)

for any N ∈ N0, α ∈ Nn
0 and � ∈ N0.

Furthermore, for any multi-index α ∈ Nn
0 and any real number a with 0 <

a < (Q+ [α])/ν there exists a positive constant C > 0 such that∫ ∞

0

ta−1|Xαht(x)|dt ≤ C|x|−Q−[α]+νa. (5.45)

The fractional powers R−a/ν for {a ∈ R, 0 < a < Q} and (I +R)−a/ν for
a ∈ R+ are called Riesz and Bessel potentials, respectively, and they are well
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defined, see [FR16, Chapter 4.2]. Let us denote their respective kernels by Ia and
Ba. Then we have the relations

Ia(x) = 1

Γ
(
a
ν

) ∫ ∞

0

t
a
ν −1ht(x)dt (5.46)

for 0 < a < Q with a ∈ R, and

Ba(x) = 1

Γ
(
a
ν

) ∫ ∞

0

t
a
ν−1e−tht(x)dt (5.47)

for a > 0, where Γ denotes the Gamma function. Consequently, it can be shown
(see [FR16, Section 4.3.4]) that for any 0 < a < Q there exists a positive constant
C = C(Q, a) such that

|Ia(x)| ≤ C|x|−(Q−a) (5.48)

holds for all x �= 0. Therefore, the Riesz kernel Ia gives a typical example of an
operator satisfying condition (5.38).

Proof of Theorem 5.2.1. We split the integral in the left-hand side of (5.39) into
three parts: ∫

G

|(f ∗ T (1)
a )(x)|q dx

|x|b ≤ 3q(M1 +M2 +M3), (5.49)

with

M1 :=

∫
G

(∫
{2|y|<|x|}

|T (1)
a (y−1x)f(y)|dy

)q
dx

|x|b ,

M2 :=

∫
G

(∫
{|x|≤2|y|<4|x|}

|T (1)
a (y−1x)f(y)|dy

)q
dx

|x|b
and

M3 :=

∫
G

(∫
{|y|>2|x|}

|T (1)
a (y−1x)f(y)|dy

)q
dx

|x|b .

First, let us estimate M1. We can assume without loss of generality that | · | is
a norm (such a norm always exists, see Proposition 1.2.4, Part (2)) since replacing
the seminorm by an equivalent one only changes the appearing constants.

Observe that by the reverse triangle inequality and the assumption 2|y| < |x|
we have

|y−1x| ≥ |x| − |y| > |x| − |x|
2

=
|x|
2
, (5.50)
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which is |x| < 2|y−1x|. Taking into account this and that T
(1)
a (x) is bounded by a

radial function which is non-increasing with respect to |x|, we can estimate

M1 ≤
∫
G

(∫
{2|y|<|x|}

|f(y)|dy
)q (

sup
{|x|<2|z|}

|T (1)
a (z)|

)q
dx

|x|b

≤ C

∫
G

(∫
{2|y|<|x|}

|f(y)|dy
)q ( |x|

2

)(a−Q)q
dx

|x|b .
(5.51)

We will now apply Theorem 5.1.1, Part (1), to estimate M1. For this we need to
check condition (5.3), that is, that

sup
R>0

(∫
{2R<|x|}

( |x|
2

)(a−Q)q
dx

|x|b
) 1

q
(∫

{|x|<R}
dx

) 1
p′

<∞. (5.52)

To check this, we consider two cases: R ≥ 1 and 0 < R < 1. For R ≥ 1, we can
estimate(∫

{2R<|x|}

( |x|
2

)(a−Q)q
dx

|x|b
) 1

q
(∫

{|x|<R}
dx

) 1
p′

≤ CR
Q

p′

(∫
{2R<|x|}

( |x|
2

)(a−Q)q
dx

|x|b
) 1

q

≤ CR
Q
p′

(∫
{2R<|x|}

|x|(a−Q)q−bdx

) 1
q

≤ CR
Q

p′ R
(a−Q)q−b+Q

q

≤ C,

(5.53)

which is uniformly bounded since a
Q = 1

p− 1
q +

b
qQ and (a−Q)q−b+Q = −Qq

p′ �= 0.

Now let us check the condition (5.52) for 0 < R < 1. Here, taking into account
that (a−Q)q − b +Q = −Qq

p′ �= 0 we have

∫
{2R<|x|}

( |x|
2

)(a−Q)q
dx

|x|b ≤ CR(a−Q)q−b+Q. (5.54)

It follows with a
Q = 1

p − 1
q + b

qQ that

(∫
{2R<|x|}

( |x|
2

)(a−Q)q
dx

|x|b
) 1

q
(∫

{|x|<R}
dx

) 1
p′

≤ CRa−Q− b
q+

Q
q RQ/p′ ≤ C

(5.55)



252 Chapter 5. Integral Hardy Inequalities on Homogeneous Groups

holds for any 0 < R < 1. Thus, we have checked (5.52). Applying Theorem 5.1.1,
Part (1), we obtain

M
1
q

1 ≤ (p′)
1
p′ p

1
q A1‖f‖Lp(G). (5.56)

Let us now estimate M2. For this, we decompose M2 as

M2 =
∑
k∈Z

∫
{2k�|x|<2k+1}

(∫
{|x|�2|y|�4|x|}

|T (1)
a (y−1x)f(y)|dy

)q
dx

|x|b .

Since |x| � 2|y| � 4|x| and 2k � |x| < 2k+1, we have 2k−1 � |y| < 2k+2. As in
(5.50), assuming | · | is the norm and using the triangle inequality, we have

3|x| = |x|+ 2|x| ≥ |x|+ |y| ≥ |y−1x|, (5.57)

which implies 0 ≤ |y−1x| ≤ 3|x| < 3 · 2k+1. If we denote

Ĩa(x) := C2|x|a−Q,

then by the assumption we have

|T (1)
a (x)| ≤ Ĩa(x).

Taking into account these observations and applying Young’s inequality in Propo-
sition 1.2.13 with 1 + 1

q = 1
r + 1

p , r ∈ [1,∞], we can estimate M2 by

M2 ≤
∑
k∈Z

2−kb

∫
G

(([f · χ{2k−1�|·|<2k+2}] ∗ Ĩa)(x))qdx

=
∑
k∈Z

2−kb‖[f · χ{2k−1�|·|<2k+2}] ∗ Ĩa‖qLq(G)

≤
∑
k∈Z

2−kb‖Ĩa · χ{0�|·|<3·2k+1}‖qLr(G)‖f · χ{2k−1�|·|<2k+2}‖qLp(G)

= C2

∑
k∈Z

2−kb

(∫
|x|<3·2k+1

|x|(a−Q)rdx

) q
r

‖f · χ{2k−1�|x|<2k+2}‖qLp(G)

≤ C
∑
k∈Z

2−kb(3 · 2k+1)(
(a−Q)pq
pq+p−q +Q) pq+p−q

p ‖f · χ{2k−1�|x|<2k+2}‖qLp(G)

= C
∑
k∈Z

2−kb(3 · 2k+1)b‖f · χ{2k−1�|x|<2k+2}‖qLp(G)

≤ C
∑
k∈Z

‖f · χ{2k−1�|x|<2k+2}‖qLp(G)

≤ C‖f‖qLp(G),

(5.58)

since (a−Q)pq
pq+p−q +Q = bp

pq+p−q > 0 and q ≥ p.
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Now let us estimate M3. Without loss of generality, we may assume again
that | · | is a norm. Then, similarly to (5.50) we note that 2|x| < |y| implies
|y| < 2|y−1x|. Consequently we can estimate M3 as

M3 ≤
∫
G

(∫
{|y|>2|x|}

( |y|
2

)(a−Q)

|f(y)|dy
)q

dx

|x|b .

We will apply Theorem 5.1.1, Part (2), to estimate M3. For this, we need to check
that

sup
R>0

(∫
{|x|<R}

dx

|x|b
) 1

q
(∫

{2R<|x|}

( |x|
2

)(a−Q)p′

dx

) 1
p′

<∞. (5.59)

To verify this, we consider two cases: R ≥ 1 and 0 < R < 1. First, for R ≥ 1,

using the assumption |T (1)
a (x)| ≤ C|x|a−Q and that Q �= ap, one gets(∫

{2R<|x|}

( |x|
2

)(a−Q)p′

dx

) 1
p′

≤ C

(∫
{2R<|x|}

|x|(a−Q)p′
dx

) 1
p′

≤ CRa−Q
p .

(5.60)
Since R ≥ 1 we can estimate(∫

{|x|<R}

dx

|x|b
) 1

q
(∫

{2R<|x|}

( |x|
2

)(a−Q)p′

dx

) 1
p′

≤ CRa−Q
p +Q−b

q ≤ C,

since b < Q and a
Q = 1

p − 1
q + b

qQ . Now let us check the condition (5.59) for the
range 0 < R < 1. In this case, noting that ap−Q < 0 we have∫

{2R<|x|}

( |x|
2

)(a−Q)p′

dx ≤ C

∫
{2R<|x|}

|x|(a−Q)p′
dx ≤ CR(a−Q)p′+Q. (5.61)

Since ∫
{|x|<R}

dx

|x|b � CRQ−b,

we have(∫
{|x|<R}

dx

|x|b
) 1

q
(∫

{2R<|x|}

( |x|
2

)(a−Q)p′

dx

) 1
p′

≤ CR
Q−b

q R
(a−Q)p′+Q

p′ ≤ C,

(5.62)
since Q > b and a

Q = 1
p − 1

q + b
qQ . Thus, we have checked (5.59). Consequently,

the application of Theorem 5.1.1, Part (2), to M3 yields

M
1
q

3 ≤ (p′)
1
p′ p

1
q A2‖f‖Lp(G). (5.63)

Thus, (5.56), (5.63) and (5.58) complete the proof of Theorem 5.2.1. �
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Remark 5.2.4 (Schur test argument). In the case p = q, we can also prove Theorem
5.2.1 by using Schur’s test ([FR75]) as in the proof of Theorem 4.7.1. For the Riesz
kernels of the sub-Laplacian on stratified groups such an argument was used in
[CCR15], and the argument below was given in [RY18a].

For p = q, the condition a
Q = 1

p − 1
q + b

qQ in Theorem 5.2.1 implies that
b = ap, so we are interested in the Lp-boundedness of the operator

Saf := |x|−b/p(f ∗ |x|a−Q) = |x|−a(f ∗ |x|a−Q).

The adjoint, defined by (f, S∗
ag) = (Saf, g), is given by S∗

ag := (|x|−ag) ∗ |x|a−Q.

We now recall again the Schur test:

Assume that the integral operator S has a positive integral kernel, and that
there exist a positive function h and constants Ap and Bp such that

S(hp′
)(x) ≤ Ap(h(x))

p′
and S∗(hp)(x) ≤ Bp(h(x))

p

hold for almost all x ∈ G. Then we have

‖Saf‖Lp(G) ≤ A1/p′
p B 1/p

p ‖f‖Lp(G)

for all f ∈ Lp(G).

Let us now take hc(x) := |x|c−Q with c > 0 and consider the convolution
integrals

hp′
c ∗ |x|a−Q and (|x|−b/php

c) ∗ |x|a−Q,

which arise in the computation of Sa(h
p′
c ) and S∗

a(h
p
c). We see that the homogeneity

orders of hp′
c and |x|−b/php

c are (c−Q)p′ and (c−Q)p−b/p, respectively. Then, the
homogeneity orders of hp′

c ∗ |x|a−Q and (|x|−b/php
c) ∗ |x|a−Q are a−Q+ (c−Q)p′

and a − Q + (c − Q)p − b/p, respectively. Therefore, these convolution integrals
converge absolutely in G\{0} if and only if 0 < (c − Q)p′ + Q < Q − a and
0 < (c−Q)p− b/p+Q < Q− a, that is, if

max

(
Q

p
,
a

p
+

Q

p′

)
< c < Q− a

p′

since b = ap. This condition is true if 0 < a < Q/p.

Thus, it follows from Schur’s test that

‖|x|−a(f ∗ |x|a−Q)‖Lp(G) ≤ A1/p′
a,p B 1/p

a,p ‖f‖Lp(G),

where 0 < a < Q/p, 1 < p <∞, and f ∈ Lp(G).

Taking into account this and |T (1)
a (x)| ≤ C|x|a−Q, we obtain∥∥∥∥∥f ∗ T (1)

a

|x| bp

∥∥∥∥∥
Lp(G)

≤ C

∥∥∥∥∥ |f | ∗ |T (1)
a |

|x| bp

∥∥∥∥∥
Lp(G)

≤ C‖|x|−a(|f | ∗ |x|a−Q)‖Lp(G) ≤ C‖f‖Lp(G),

(5.64)

which proves Theorem 5.2.1 in the case p = q.
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Let us now show the critical case b = Q of Theorem 5.2.1.

Theorem 5.2.5 (Critical convolution Hardy inequality). Let G be a homogeneous
Lie group of homogeneous dimension Q with a homogeneous quasi-norm | · |. Let
1 < p < r < ∞ and p < q < (r − 1)p′, where 1/p + 1/p′ = 1. Assume that for
a = Q/p we have

|T (2)
a (x)| ≤ C2

{
|x|a−Q, for x ∈ G\{0},
|x|−Q, for x ∈ G with |x| ≥ 1,

(5.65)

for some positive C2 = C2(a,Q). Then there exists a positive constant C1 =
C1(p, q, r,Q) > 0 such that∥∥∥∥∥∥∥

f ∗ T (2)
Q/p(

log
(
e + 1

|x|
)) r

q |x|Qq

∥∥∥∥∥∥∥
Lq(G)

≤ C1‖f‖Lp(G) (5.66)

holds for all f ∈ Lp(G).

Remark 5.2.6. We note that compared to the condition (5.38), the decay assump-
tion in (5.65) for large x is stronger. Continuing with the notation of Remark
5.2.2, we observe that the Bessel kernel (5.47) of the operator (I + R)−a/ν for
0 < a < Q satisfies (5.65): there exists a positive constant C = C(Q, a) > 0 such
that we have, in particular,

|Ba(x)| ≤
{
C|x|−(Q−a), for x ∈ G\{0},
C|x|−Q, for x ∈ G with |x| ≥ 1.

(5.67)

We refer to [RY18a] for further details, as well as to the original proof of Theorem
5.2.5 that we follow here.

Proof of Theorem 5.2.5. Let us split the integral in the left-hand side of (5.66)
into three parts,∫

G

|(f ∗ T (2)
Q/p)(x)|q

dx∣∣∣log(e + 1
|x|

)∣∣∣r |x|Q ≤ 3q(N1 +N2 +N3), (5.68)

where

N1 :=

∫
G

(∫
{2|y|<|x|}

|T (2)
Q/p(y

−1x)f(y)|dy
)q

dx∣∣∣log(e+ 1
|x|

)∣∣∣r |x|Q ,

N2 :=

∫
G

(∫
{|x|≤2|y|<4|x|}

|T (2)
Q/p(y

−1x)f(y)|dy
)q

dx∣∣∣log(e+ 1
|x|

)∣∣∣r |x|Q
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and

N3 :=

∫
G

(∫
{|y|>2|x|}

|T (2)
Q/p(y

−1x)f(y)|dy
)q

dx∣∣∣log(e+ 1
|x|

)∣∣∣r |x|Q .

We begin by estimating N1. Similar to the argument in (5.50), in the region 2|y| <
|x| we have

|y−1x| ≥ |x| − |y| > |x| − |x|
2

=
|x|
2
, (5.69)

which is |x| < 2|y−1x|. Denote

|T (2)
a (x)| ≤ B̃a(x) := C2

{
|x|a−Q, for x ∈ G\{0},
|x|−Q, for x ∈ G with |x| ≥ 1.

(5.70)

Since T
(2)
Q/p(x) is bounded by B̃Q/p(x) which is non-increasing with respect to |x|,

then using (5.69) we get

N1 ≤
∫
G

(∫
{2|y|<|x|}

|f(y)|dy
)q (

sup
{|x|<2|z|}

|T (2)
Q/p(z)|

)q
dx∣∣∣log (e+ 1
|x|

)∣∣∣r |x|Q
≤

∫
G

(∫
{2|y|<|x|}

|f(y)|dy
)q (

B̃Q/p

(x
2

))q dx∣∣∣log(e+ 1
|x|

)∣∣∣r |x|Q .

We will now apply Theorem 5.1.1, Part (1), to estimate N1. For this we have to
check the condition (5.3), that is, that⎛⎝∫

{2R<|x|}

(
B̃Q/p

(x
2

))q dx∣∣∣log(e + 1
|x|

)∣∣∣r |x|Q
⎞⎠

1
q (∫

{|x|<R}
dx

) 1
p′

≤ A1 (5.71)

holds uniformly for all R > 0. To verify this uniform boundedness, we consider
two cases: R ≥ 1 and 0 < R < 1. First, for R ≥ 1, using the second equality in
(5.70), we can estimate⎛⎝∫

{2R<|x|}

(
B̃Q/p

(x
2

))q dx∣∣∣log (e+ 1
|x|

)∣∣∣r |x|Q
⎞⎠ 1

q (∫
{|x|<R}

dx

) 1
p′

≤ CR
Q

p′

(∫
{2R<|x|}

(
B̃Q/p

(x
2

))q dx

|x|Q
) 1

q

= CR
Q

p′

(∫
{2R<|x|}

|x|−Qq−Qdx

) 1
q

≤ CR−QR
Q

p′ ≤ C. (5.72)
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Next, let us check (5.71) for 0 < R < 1. We split the integral into two terms,∫
{2R<|x|}

(
B̃Q/p

(x
2

))q dx∣∣∣log(e+ 1
|x|

)∣∣∣r |x|Q
=

∫
{2R<|x|<2}

(
B̃Q/p

(x
2

))q dx∣∣∣log(e+ 1
|x|

)∣∣∣r |x|Q
+

∫
{|x|�2}

(
B̃Q/p

(x
2

))q dx∣∣∣log(e+ 1
|x|

)∣∣∣r |x|Q . (5.73)

We note that the second integral in the right-hand side of (5.73) is finite by the
second equality in (5.70). For the first integral, using the first equality in (5.70),
we can estimate∫

{2R<|x|<2}

∣∣∣B̃Q/p

(x
2

)∣∣∣q dx∣∣∣log(e+ 1
|x|

)∣∣∣r |x|Q
≤

∫
{2R<|x|<2}

∣∣∣B̃Q/p

(x
2

)∣∣∣q dx

|x|Q

≤ C

∫
{2R<|x|<2}

|x|−Qq/p′−Qdx

≤ CR−Qq/p′
.

Combining this with (5.73), we obtain⎛⎝∫
{2R<|x|}

∣∣∣B̃Q/p

(x
2

)∣∣∣q dx∣∣∣log(e+ 1
|x|

)∣∣∣r |x|Q
⎞⎠ 1

q (∫
{|x|<R}

dx

) 1
p′

≤ C(R−Q/p′
+ 1)RQ/p′ ≤ C

uniformly for all 0 < R < 1. Thus, we have verified (5.71), so that applying
Theorem 5.1.1, Part (1), to N1 we obtain

N
1
q

1 ≤ (p′)
1
p′ p

1
q A1‖f‖Lp(G). (5.74)

Now let us estimate N2. We decompose it into the sum

N2 =
∑
k∈Z

∫
{2k�|x|<2k+1}

(∫
{|x|�2|y|�4|x|}

|T (2)
Q/p(y

−1x)f(y)|dy
)q

× dx∣∣∣log(e+ 1
|x|

)∣∣∣r |x|Q .
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Since the function
(
log

(
1
|x|

))r

|x|Q is non-decreasing with respect to |x| near the
origin, there exists an integer k0 ∈ Z with k0 � −3 such that this function is
non-decreasing in |x| ∈ (0, 2k0+1). Fixing this k0, we decompose N2 further as

N2 = N21 +N22, (5.75)

where

N21 :=

k0∑
k=−∞

∫
{2k�|x|<2k+1}

(∫
{|x|�2|y|�4|x|}

|T (2)
Q/p(y

−1x)f(y)|dy
)q

× dx∣∣∣log(e+ 1
|x|

)∣∣∣r |x|Q
and

N22 :=
∞∑

k=k0+1

∫
{2k�|x|<2k+1}

(∫
{|x|�2|y|�4|x|}

|T (2)
Q/p(y

−1x)f(y)|dy
)q

× dx∣∣∣log(e+ 1
|x|

)∣∣∣r |x|Q .

Let us first estimate N22. Since |x| � 2|y| � 4|x| and 2k � |x| < 2k+1, we must
also have 2k−1 � |y| < 2k+2. Before starting to estimate N22, using (5.65) and
q > p, let us show that∫

G

|T (2)
Q/p(x)|r̃dx =

∫
|x|<1

|T (2)
Q/p(x)|r̃dx+

∫
|x|≥1

|T (2)
Q/p(x)|r̃dx

≤ C2

(∫
|x|<1

|x|−Qq(p−1)
pq+p−q dx+

∫
|x|≥1

|x|− Qpq
pq+p−q dx

)
<∞,

(5.76)

where r̃ ∈ [1,∞] is such that 1 + 1
q = 1

r̃ + 1
p .

Then, (5.76) and Young’s inequality in Proposition 1.2.13 with 1+ 1
q = 1

r̃ +
1
p

and r̃ ∈ [1,∞] imply that

N22 � C

∞∑
k=k0+1

∫
{2k�|x|<2k+1}

(∫
{|x|�2|y|�4|x|}

|T (2)
Q/p(y

−1x)f(y)|dy
)q

dx

� C‖[f · χ{2k−1�|·|<2k+2}] ∗ T (2)
Q/p‖qLq(G)

� C‖T (2)
Q/p‖qLr̃(G)

∞∑
k=k0+1

‖f · χ{2k−1�|·|<2k+2}‖qLp(G)

= C

∞∑
k=k0+1

(∫
{2k�|x|<2k+1}

|f(x)|pdx
) q/p
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� C

(∑
k∈Z

∫
{2k�|x|<2k+1}

|f(x)|pdx
) q/p

= C‖f‖qLp(G). (5.77)

Next, let us estimate N21. As in (5.69), assuming | · | is the norm and using
the triangle inequality and |y| � 2|x|, we can estimate

3|x| = |x|+ 2|x| ≥ |x|+ |y| ≥ |y−1x|. (5.78)

Since
(
log

(
1
|x|

))r

|x|Q is non-decreasing in |x| ∈ (0, 2k0+1) and 3|x| � |y−1x|, we
have (

log

(
1

|x|
))r

|x|Q ≥
(
log

(
1

|y−1x/ 3|
))r ∣∣∣∣y−1x

3

∣∣∣∣Q .

Consequently, this and (5.65) yield

N21 ≤ C

k0∑
k=−∞

∫
{2k≤|x|<2k+1}

(∫
{|x|≤2|y|≤4|x|}

|y−1x|− Q

p′ |f(y)|dy
)q

× dx(
log

(
1
|x|

))r

|x|Q

= C

k0∑
k=−∞

∫
{2k≤|x|<2k+1}

⎛⎜⎜⎝∫
{|x|≤2|y|≤4|x|}

|y−1x|− Q

p′ |f(y)|((
log

(
1
|x|

))r

|x|Q
) 1

q

dy

⎞⎟⎟⎠
q

dx

≤C

k0∑
k=−∞

∫
{2k≤|x|<2k+1}

⎛⎜⎜⎝∫{|x|≤2|y|≤4|x|}

|y−1x|− Q

p′ |f(y)|((
log

(
1

|(y−1x)/3|
))r
|(y−1x)/3|Q

) 1
q

dy

⎞⎟⎟⎠
q

dx.

Since |x| ≤ 2|y| ≤ 4|x| and 2k ≤ |x| < 2k+1 with k ≤ k0, we must also have
2k−1 ≤ |y| < 2k+2 and |y−1x| ≤ 3|x| < 3 · 2k0+1 ≤ 3/4, using (5.78) and k0 ≤ −3.
Taking into account these and setting

g(x) :=
χB 3

4
(0)(x)(

log
(

1
|x|

)) r
q |x|Qq + Q

p′
,

we have for N21 that

N21≤C

k0∑
k=−∞

∫
{2k≤|x|<2k+1}

(∫
{|x|≤2|y|≤4|x|}

|f(y)|(
log

(
1

|y−1x|
)) r

q |y−1x|Qq + Q

p′
dy

)q

dx

≤C

k0∑
k=−∞

‖[f ·χ{2k−1≤|·|<2k+2}]∗g‖qLq(G).
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Since p < q < (r − 1)p′, we use Young’s inequality in Proposition 1.2.13 with
1 + 1

q = 1
r̃ + 1

p and r̃ ∈ [1,∞), to get

N21 ≤ C‖g‖q
Lr̃(G)

k0∑
k=−∞

‖f · χ{2k−1≤|·|<2k+2}‖qLp(G) ≤ C‖f‖qLp(G), (5.79)

provided that g ∈ Lr̃(G). Since
(

Q
q + Q

p′

)
r̃ = Q, rr̃

q = rp′

p′+q and q < (r − 1)p′,
then changing variables, we obtain

‖g‖r̃Lr̃(G) =

∫
B(0,3/4)

dx(
log

(
1
x

)) rp′
p′+q |x|Q

= C

∫ ∞

log( 4
3 )

dt

t
rp′

p′+q

<∞.

Let us estimate N3 now. Without loss of generality, we may assume again
that | · | is the norm. Similarly to (5.69) we obtain |y| < 2|y−1x| from 2|x| < |y|.
Then, we have for N3 that

N3 ≤
∫
G

(∫
{|y|>2|x|}

∣∣∣B̃Q/p

(y
2

)∣∣∣ |f(y)|dy)q
dx∣∣∣log(e+ 1
|x|

)∣∣∣r |x|Q .

We will apply Theorem 5.1.1, Part (2), for the required estimate of N3. For this
we have to check the following condition:⎛⎝∫

{|x|<R}

dx∣∣∣log(e+ 1
|x|

)∣∣∣r |x|Q
⎞⎠

1
q (∫

{2R<|x|}

∣∣∣B̃Q/p

(x
2

)∣∣∣p′

dx

) 1
p′

≤ A2.

(5.80)
To check this, let us consider the cases: R ≥ 1 and 0 < R < 1. Then, for R ≥ 1 by
the second equality in (5.70), we get(∫

{2R<|x|}

∣∣∣B̃Q/p

(x
2

)∣∣∣p′

dx

) 1
p′

≤ C

(∫
{2R<|x|}

|x|−Qp′
dx

) 1
p′

≤ CR−Q
p . (5.81)

Moreover, we have∫
{|x|<R}

dx∣∣∣log(e+ 1
|x|

)∣∣∣r |x|Q =

∫
{|x|< 1

2}

dx∣∣∣log (e+ 1
|x|

)∣∣∣r |x|Q
+

∫
{ 1

2�|x|<R}
dx∣∣∣log(e+ 1
|x|

)∣∣∣r |x|Q ,

and we note that the first summand in the right-hand side of above is finite since
r > 1. For the second term, we get∫

{ 1
2≤|x|<R}

dx∣∣∣log(e+ 1
|x|

)∣∣∣r |x|Q ≤
∫
{ 1

2≤|x|<R}
dx

|x|Q ≤ C(1 + logR). (5.82)
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Combining (5.81) and (5.82), we have for R ≥ 1 that⎛⎝∫
{|x|<R}

dx∣∣∣log(e+ 1
|x|

)∣∣∣r |x|Q
⎞⎠

1
q (∫

{2R<|x|}

∣∣∣B̃Q/p

(x
2

)∣∣∣p′

dx

) 1
p′

≤ CR−Q
p (1 + logR)

1
q ≤ C.

Now let us check the condition (5.80) for 0 < R < 1. We split the integral into
two terms:∫

{2R<|x|}

∣∣∣B̃Q/p

(x
2

)∣∣∣p′

dx

=

∫
{2R<|x|<2}

∣∣∣B̃Q/p

(x
2

)∣∣∣p′

dx+

∫
{|x|�2}

∣∣∣B̃Q/p

(x
2

)∣∣∣p′

dx.

(5.83)

We note that the second integral in the right-hand side of above is finite by the
second equality in (5.70). Then, using the first equality in (5.70) we get for the
first integral that∫

{2R<|x|<2}

∣∣∣B̃Q/p

(x
2

)∣∣∣p′

dx ≤ C

∫
{2R<|x|<2}

|x|−Qdx ≤ C log

(
1

R

)
.

Combined with (5.83), it follows that∫
{2R<|x|}

∣∣∣B̃Q/p

(x
2

)∣∣∣p′

dx ≤ C

(
1 + log

(
1

R

))
. (5.84)

Since ∫
{|x|<R}

dx∣∣∣log(e+ 1
|x|

)∣∣∣r |x|Q � C

(
log

(
e+

1

R

))−(r−1)

,

and (5.84), and taking into account r > 1 and q < (r − 1)p′ we obtain that⎛⎝∫
{|x|<R}

dx∣∣∣log(e + 1
|x|

)∣∣∣r |x|Q
⎞⎠

1
q (∫

{2R<|x|}

∣∣∣B̃Q/p

(x
2

)∣∣∣p′

dx

) 1
p′

� C

(
log

(
e+

1

R

))− r−1
q

(
1 +

(
log

(
1

R

)) 1
p′
)

� C.

(5.85)

Thus, we have checked (5.80). Consequently, applying Theorem 5.1.1, Part (2), for
the term N3, we obtain

N
1
q

3 ≤ (p′)
1
p′ p

1
q A2‖f‖Lp(G). (5.86)

Finally, a combination of (5.74), (5.86), (5.75), (5.77), (5.79) and (5.68) completes
the proof of Theorem 5.2.5. �
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5.3 Hardy–Littlewood–Sobolev inequalities

on homogeneous groups

In this section we discuss the Hardy–Littlewood–Sobolev inequality on homoge-
neous groups. We show that it can be obtained as a simple consequence of the
convolution Hardy inequality in Theorem 5.2.1. In fact, the argument implies a
little more.

Theorem 5.3.1 (Hardy–Littlewood–Sobolev inequality). Let G be a homogeneous
Lie group of homogeneous dimension Q with a homogeneous quasi-norm | · |. Let
0 < λ < Q and 1 < p, q <∞ be such that

1/p+ 1/q + (α+ λ)/Q = 2

with 0 ≤ α < Q/p′ and α + λ ≤ Q, where 1/p + 1/p′ = 1. Then there exists a
positive constant C = C(Q, λ, p, α) > 0 such that∣∣∣∣∣

∫
G

∫
G

f(x)g(y)

|x|α|y−1x|λ dxdy
∣∣∣∣∣ ≤ C‖f‖Lp(G)‖g‖Lq(G) (5.87)

holds for all f ∈ Lp(G) and g ∈ Lq(G).

Remark 5.3.2 (Stein–Weiss inequality).

1. The original Hardy–Littlewood–Sobolev inequality goes back to the work
of Hardy–Littlewood [HL27], [HL30] and Sobolev [Sob38]. More specifically,
in [HL27], Hardy and Littlewood considered the one-dimensional fractional
operator on (0,∞), given by

Tλf(x) =

∫ ∞

0

f(y)

|x− y|λ dy, 0 < λ < 1, (5.88)

and proved that if 1 < p < q < ∞ and 1
q = 1

p + λ − 1, then there is C > 0
such that

‖Tλf‖Lq(0,∞) ≤ C‖f‖Lp(0,∞),

holds for all f ∈ Lp(0,∞). The N -dimensional analogue of (5.88) can be
written by the formula

Iλf(x) =

∫
RN

f(y)

|x− y|λ dy, 0 < λ < N. (5.89)

Consequently, if was shown by Sobolev in [Sob38] that if 1 < p < q <∞ and
1
q = 1

p + λ
N − 1, then there is C > 0 such that

‖Iλf‖Lq(RN ) ≤ C‖f‖Lp(RN ),

holds for all f ∈ Lp(RN ). In [SW58], Stein and Weiss obtained the follow-
ing two-weight extension of the Hardy–Littlewood–Sobolev inequality, which
is nowadays called the Stein–Weiss inequality. More specifically, they have

shown that if 0 < λ < N , 1 < p < ∞, α < N(p−1)
p , β < N

q , α + β ≥ 0,
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1
q = 1

p + λ+α+β
N − 1, and 1 < p ≤ q < ∞, then there is C > 0 such that we

have
‖|x|−βIλf‖Lq(RN ) ≤ C‖|x|αf‖Lp(RN ). (5.90)

2. An extension of the Hardy–Littlewood–Sobolev inequality to the Heisen-
berg groups was considered in [FS74]. The sharp constants in the Hardy–
Littlewood–Sobolev inequality in the cases of RN and the Heisenberg group
were obtained in [Lie83] and [FL12], respectively.

3. In [GMS10] the analogues of the Stein–Weiss inequality were obtained on
Carnot groups. Note that in [HLZ12] the authors also proved an analogue of
the Stein–Weiss inequality on the Heisenberg groups.

4. On general homogeneous groups the statement of Theorem 5.3.1 will be
here obtained as a consequence of the integral Hardy inequalities. The es-
timate (5.87) contains the Hardy–Littlewood–Sobolev inequality and half of
the Stein–Weiss inequality. The full Stein–Weiss inequality on homogeneous
groups was obtained in [KRS18b]: Let

Iλu(x) :=

∫
G

u(y)

|y−1x|λ dy, 0 < λ < Q. (5.91)

Let 0 < λ < Q, 1 < p <∞, α < Q
p′ , β < Q

q , α+ β ≥ 0, 1
q = 1

p + α+β+λ
Q − 1,

where 1
p + 1

p′ = 1 and 1
q + 1

q′ = 1. Then for 1 < p ≤ q <∞ we have

‖|x|−βIλu‖Lq(G) ≤ C‖|x|αu‖Lp(G). (5.92)

5. (Differential Stein–Weiss inequality on graded groups). Continuing with the
notation of Remark 5.2.2, let L̇p

a(G) be the homogeneous Sobolev space over
Lp of order a associated to a Rockland operator. Such spaces are well defined
on graded groups and do not depend on a particular choice of a Rockland
operator, we refer to [FR17] or to [FR16, Section 4.4] for the extensive anal-
ysis and exposition of their properties. The following differential version of
the Stein–Weiss inequality was obtained in [RY18a]:

Theorem 5.3.3 (Differential Stein–Weiss inequality). Let G be a graded group
of homogeneous dimension Q and let |·| be a quasi-norm on G. Let 1 < p, q <
∞, 0 ≤ a < Q/p and 0 ≤ b < Q/q. Let 0 < λ < Q, 0 ≤ α < a + Q/p′ and
0 ≤ β ≤ b be such that (Q− ap)/(pQ)+ (Q− q(b−β))/(qQ)+ (α+λ)/Q= 2
and α + λ ≤ Q, where 1/p+ 1/p′ = 1. Then there exists a positive constant
C = C(Q, λ, p, α, β, a, b) such that∣∣∣∣∫

G

∫
G

f(x)g(y)

|x|α|y−1x|λ|y|β dxdy
∣∣∣∣ ≤ C‖f‖L̇p

a(G)‖g‖L̇q
b(G) (5.93)

holds for all f ∈ L̇p
a(G) and g ∈ L̇q

b(G).

While the setting of graded groups falls outside the scope of this book,
we follow [RY18a] in the proof of Theorem 5.3.1 below.
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Proof of Theorem 5.3.1. Let Ta(x) := |x|a−Q with 0 < a < Q/r for some 1 < r <
∞. Then, using Hölder’s inequality we have∣∣∣∣∣

∫
G

∫
G

f(x)g(y)

|x|α|y−1x|λ dxdy
∣∣∣∣∣ =

∣∣∣∣∫
G

f(x)
(g ∗ TQ−λ)(x)

|x|α dx

∣∣∣∣
≤ ‖f‖Lp(G)

∥∥∥∥g ∗ TQ−λ

|x|α
∥∥∥∥
Lp′(G)

.

(5.94)

Note that the conditions α+ λ ≤ Q and 1/p+ 1/q+ (α+ λ)/Q = 2 imply q ≤ p′,
while 0 < λ < Q, α < Q/p′ and 1/p+ 1/q + (α+ λ)/Q = 2 give

0 < Q− λ = Q−Q

(
2− 1

p
− 1

q

)
+ α < Q−Q

(
2− 1

p
− 1

q

)
+

Q

p′
= Q/q.

Since we have 1 < q ≤ p′ <∞, 0 ≤ αp′ < Q, 0 < Q− λ < Q/q and (Q − λ)/Q =
1/q − 1/p′ + α/Q, using Theorem 5.2.1 in (5.94) we obtain (5.87). �
Remark 5.3.4 (Reversed Hardy–Littlewood–Sobolev inequality). Let us make some
remarks concerning the reversed Hardy–Littlewood–Sobolev inequality on homo-
geneous groups. Namely, consider the inequality∫

G

∫
G

f(x)|y−1x|λf(y)dxdy ≥ CQ,λ,p‖f‖θL1(G)‖f‖2−θ
Lp(G) (5.95)

for any 0 ≤ f ∈ L1 ∩ Lp(G) with f �≡ 0 and 0 < p < 1, where λ > 0 and
θ := (2Q− p(2Q+ λ))/(Q(1 − p)).

In the Euclidean case G = (Rn,+), i.e., with Q = n, the case p = 2n/(2n+λ)
was investigated in [DZ15] and [NN17], while the case p > n/(n+ λ) was studied
in [DFH18].

Following [RY18a], let us briefly recapture the argument in the setting of
general homogeneous groups. Namely, let us show that in the case 0 < p ≤ Q/(Q+
λ) the inequality (5.95) is not valid, namely, (5.95) fails for any CQ,λ,p > 0. In the
Euclidean case this was shown in [CDP18] when p < n/(n + λ) and in [DFH18]
when p ≤ n/(n+ λ).

Let f be a non-negative function with compact support, and let h be a non-
negative smooth function such that

∫
G
h(x)dx = 1. Then, for some A > 0, consider

the function
fε(x) := f(x) +Aε−Qh(x/ε).

Suppose now that (5.95) holds for some CQ,λ,p > 0. Putting this fε in the inequal-
ity (5.95), we obtain

CQ,λ,p ≤
∫
G

∫
G
fε(x)|y−1x|λfε(y)dxdy
‖fε‖θL1(G)‖fε‖2−θ

Lp(G)

→
∫
G

∫
G
f(x)|y−1x|λf(y)dxdy + 2A

∫
G
|x|λf(x)dx

(
∫
G
f(x)dx +A)θ(

∫
G
(f(x))pdx)(2−θ)/p

(5.96)
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as ε→ 0+, where we have used that

• ∫
G
fε(x)dx =

∫
G
f(x)dx +A;

• when ε→ 0+, we have ∫
G

(fε(x))
pdx→

∫
G

(f(x))pdx;

• when ε→ 0+, we have∫
G

∫
G

fε(x)|y−1x|λfε(y)dxdy

=

∫
G

∫
G

f(x)|y−1x|λf(y)dxdy + 2A

∫
G

∫
G

f(x)|(ε−1y)−1x|λh(y)dxdy

+A2ε−2Q

∫
G

∫
G

h
(x
ε

)
h
(y
ε

)
dxdy

→
∫
G

∫
G

f(x)|y−1x|λf(y)dxdy + 2A

∫
G

|x|λf(x)dx,

since
∫
G
h(x)dx = 1.

Note that in (5.96) we can take also the limit as A→ +∞ since it is valid for all
A > 0. Then, when θ > 1, that is, for p < Q/(Q+ λ), taking A → +∞ in (5.96)
we see that CQ,λ,p = 0. In the case θ = 1, that is, for p = Q/(Q + λ), taking the
limit as A→ +∞ in (5.96) we get

CQ,λ,p ≤
2
∫
G
|x|λf(x)dx

(
∫
G
(f(x))pdx)1/p

. (5.97)

Finally, we show that the right-hand side of (5.97) goes to zero as R → ∞ if we
insert the function

fR(x) =

{
|x|−(Q+λ), for 1 ≤ |x| ≤ R,

0, otherwise,
(5.98)

for any R > 1. Indeed, in this case p = Q/(Q+λ), and from (5.97) we obtain that

CQ,λ,p ≤
2
∫
G
|x|λfR(x)dx

(
∫
G
(fR(x))pdx)1/p

= 2(|℘| logR)−λ/Q → 0 (5.99)

as R → ∞, where |℘| is a Q − 1-dimensional surface measure of the unit quasi-
sphere in G.

Summarizing, we conclude that for 0 < p ≤ Q/(Q+ λ) the reversed Hardy–
Littlewood–Sobolev inequality (5.95) is not valid with any constant CQ,λ,p > 0.
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5.4 Maximal weighted integral Hardy inequality

Here we present a maximal Hardy inequality in the integral form, involving the
maximal function

(Mf)(x) :=
1

|B(0, |x|)|
∫
B(0,|x|)

f(z)dz.

Theorem 5.4.1 (Maximal integral weighted Hardy inequality). Let G be a homo-
geneous group of homogeneous dimension Q with a homogeneous quasi-norm | · |.
Let φ and ψ be positive functions defined on G. Then there exists a constant C > 0
such that ∫

G

φ(x) exp(M log f)(x)dx ≤ C

∫
G

ψ(x)f(x)dx (5.100)

holds for all positive f ≥ 0 if and only if

A := sup
R>0

RQ

∫
|x|≥R

φ(x) exp
(
M log 1

ψ

)
(x)

|x|2Q dx <∞. (5.101)

Remark 5.4.2. Inequalities of the type of those in Theorem 5.4.1 in the Abelian
case G = (Rn,+) were studied in [HKK01] for the one-dimensional case n = 1,
and in [DHK97] for the multidimensional case n ≥ 1. Theorem 5.4.1 was proved
in [RSY18a] and we follow the presentation there.

Proof of Theorem 5.4.1. Let us first show (5.101) implies (5.100) for all f ≥ 0.
Denoting

W3(x) := φ(x) exp

(
M log

1

ψ

)
(x), (5.102)

as well as u(x) := f(x)ψ(x), and z = |x|ξ, we have∫
G

φ(x) exp(M log f)(x)dx

=

∫
G

φ(x) exp

(
1

|B(0, |x|)|

(∫
B(0,|x|)

log

(
1

φ

)
(z)dz +

∫
|z|≤|x|

log(φf)(z)dz

))
dx

=

∫
G

φ(x) exp

(
M log

1

φ

)
(x) exp

(
1

|B(0, |x|)|
∫
|z|≤|x|

log(φ(z)f(z))dz

)
dx

=

∫
G

W3(x) exp

(
1

|B(0, |x|)|
∫
|z|≤|x|

log(u(z))dz

)
dx

=

∫
G

W3(x) exp

(
1

|x|Q|B(0, 1)|
∫
B(0,1)

log(u(|x|ξ))|x|Qdξ
)
dx. (5.103)

Since ∫
B(0,1)

log(|ξ|Q)dξ = Q

∫
℘

∫ 1

0

rQ−1 log rdrdσ(y) = −|B(0, 1)|,
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and by using Jensen’s inequality, we obtain∫
G

φ(x) exp(M log f)(x)dx

=

∫
G

W3(x) exp

(
1

|B(0, 1)|

(∫
B(0,1)

log(|ξ|Qu(|x|ξ))dξ −
∫
B(0,1)

log(|ξ|Q)dξ
))

dx

=

∫
G

W3(x) exp

(
1

|B(0, 1)|
∫
B(0,1)

log(|ξ|Qu(|x|ξ))dξ + 1

)
dx

= e

∫
G

W3(x) exp

(
1

|B(0, 1)|
∫
B(0,1)

log(|ξ|Qu(|x|ξ))dξ
)
dx

≤ e

|B(0, 1)|
∫
G

W3(x)

∫
B(0,1)

|ξ|Qu(|x|ξ)dξdx

=
e

|B(0, 1)|
∫
℘

∫
℘

∫ ∞

0

rQ−1W3(rw)

∫ 1

0

s2Q−1u(rsy)dsdrdσ(y)dσ(w),

where |ξ| = s and |x| = r. Furthermore, with t = rs we get∫
G

φ(x) exp(M log f)(x)dx

≤ e

|B(0, 1)|
∫
℘

∫
℘

∫ ∞

0

rQ−1W3(rw)

∫ 1

0

s2Q−1u(rsy)dsdrdσ(y)dσ(w)

=
e

|B(0, 1)|
∫
℘

∫
℘

∫ 1

0

s2Q−1

∫ ∞

0

W3

(
t

s
w

)(
t

s

)Q−1

u(ty)
dt

s
dsdσ(y)dσ(w)

=
e

|B(0, 1)|
∫
℘

∫
℘

∫ 1

0

sQ−1

∫ ∞

0

W3

(
t

s
w

)
tQ−1u(ty)dtdsdσ(y)dσ(w)

=
e

|B(0, 1)|
∫
℘

∫
℘

∫ ∞

0

tQ−1u(ty)

(∫ 1

0

sQ−1W3

(
tw

s

)
ds

)
dtdσ(y)dσ(w)

=
e

|B(0, 1)|
∫
℘

∫
℘

∫ ∞

0

tQ−1u(ty)

(∫ ∞

t

(
t

r

)Q−1

W3(rw)t
dr

r2

)
dtdσ(y)dσ(w)

=
e

|B(0, 1)|
∫
℘

∫
℘

∫ ∞

0

t2Q−1u(ty)

(∫ ∞

t

r−Q−1W3(rw)dr

)
dtdσ(y)dσ(w)

≤ e

|B(0, 1)|
∫
℘

∫
℘

∫ ∞

0

tQ−1u(ty)tQ
(∫ ∞

t

rQ−1W3(rw)dr

r2Q

)
dtdσ(w)dσ(y)

=
e

|B(0, 1)|
∫
G

u(x)

(
|x|Q

∫
|z|≥|x|

W3(z)

|z|2Q dz

)
dx ≤ A

e

|B(0, 1)|
∫
G

u(x)dx,

yielding (5.100), where we have used (5.101) in the last line.
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We now show that (5.100) implies (5.101). From (5.103) we notice that (5.100)
is equivalent to∫

G

W3(x) exp

(
1

|B(0, |x|)|
∫
|z|≤|x|

log(u(z))dz

)
dx ≤ C

∫
G

u(x)dx. (5.104)

Furthermore, for a function

u(x) = R−Qχ(0,R)(|x|) + e−2Q|x|−2QRQχ(R,∞)(|x|), x ∈ G, R > 0, (5.105)

we have ∫
G

W3(x) exp

(
1

|B(0, |x|)|
∫
|z|≤|x|

log(u(z))dz

)
dx

≤ C

∫
G

u(x)dx = C

∫
℘

∫ ∞

0

sQ−1u(s)dsdσ(y)

= C|℘|
(∫ R

0

sQ−1R−Qds+

∫ ∞

R

e−2QsQ−1RQs−2Qds

)

= C|℘|
(
1

Q
+

e−2Q

Q

)
=: C(Q) <∞,

since χ is the cut-off function. Thus, from this, by plugging (5.105) into the left-
hand side of (5.104) we calculate

∞ > C(Q) ≥
∫
G

W3(x) exp

(
1

|B(0, |x|)|
∫
|z|≤|x|

log(u(z))dz

)
dx

=

∫
℘

∫ ∞

0

sQ−1W3(sy) exp

(
1

|B(0, s)|
∫
℘

∫ s

0

rQ−1 log(u(r))drdσ(w)

)
dsdσ(y)

=

∫
℘

∫ ∞

0

sQ−1W3(sy) exp

( |℘|
sQ|B(0, 1)|

∫ s

0

rQ−1 log(u(r))dr

)
dsdσ(y)

=

∫
℘

(∫ R

0

sQ−1W3(sy) exp

( |℘|
sQ|B(0, 1)|

∫ s

0

rQ−1 log(u(r))dr

)
ds

)
dσ(y)

+

∫
℘

(∫ ∞

R

sQ−1W3(sy) exp

( |℘|
sQ|B(0, 1)|

(∫ R

0

rQ−1 log(R−Q)dr

+

∫ s

R

rQ−1 log(e−2Qr−2QRQ)dr

))
ds

)
dσ(y)

≥
∫
℘

(∫ ∞

R

sQ−1W3(sy) exp

(
|℘|

sQ|B(0, 1)|

(∫ R

0

rQ−1 log(R−Q)dr

+

∫ s

R

rQ−1 log(e−2Qr−2QRQ)dr

))
ds

)
dσ(y)
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=

∫
℘

(∫ ∞

R

sQ−1W3(sy) exp

(
|℘|

sQ|B(0, 1)|

(∫ R

0

rQ−1 log(R−Q)dr

+

∫ s

R

rQ−1 log(e−2Q)dr − 2Q

∫ s

R

rQ−1(log r)dr

+

∫ s

R

rQ−1 log(RQ)dr

))
ds

)
dσ(y)

=

∫
℘

(∫ ∞

R

sQ−1W3(sy) exp

( |℘|
sQ|B(0, 1)|

(
RQ log(R−Q)

Q
− 2Q

sQ −RQ

Q

−2Q
[
rQ log r

Q
− rQ

Q2

]s
R

+
sQ −RQ

Q
log(RQ)

))
ds

)
dσ(y)

=

∫
℘

∫ ∞

R

sQ−1W3(sy)

exp

( |℘|
|B(0, 1)|

(
−2 + 2RQ

sQ
− 2 log s+

2

Q
− 2RQ

QsQ
+ logR

))
dsdσ(y)

≥ e(2−2Q)

∫
℘

∫ ∞

R

sQ−1W3(sy)
R

|℘|
|B(0,1)|

s
2|℘|

|B(0,1)|
dsdσ(y)

= e2−2QRQ

∫
|x|≥R

W3(x)

|x|2Q dx = e2−2QRQ

∫
|x|≥R

φ(x) exp
(
M log 1

ψ

)
(x)

|x|2Q dx,

which implies (5.101), where we have used |℘|
|B(0,1)| = Q, 2RQ

sQ − 2RQ

QsQ > 0, and

(5.102) in the last two lines. �
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