
Chapter 3

Rellich, Caffarelli–Kohn–Nirenberg, and

Sobolev Type Inequalities

This chapter is devoted to other functional inequalities usually associated to the
Hardy inequalities. These include Rellich and Caffarell–Kohn–Nirenberg inequali-
ties. We also discuss different aspects of this analysis such as their stability, higher-
order inequalities, their weighted and extended versions.

3.1 Rellich inequality

In general, the Rellich type inequalities have the following form∫
Rn

|f(x)|p
|x|αE

dx ≤ C

∫
Rn

|Δf(x)|p
|x|βE

dx

for certain constants α, β and p. The classical result by Rellich appearing at the
1954 ICM in Amsterdam [Rel56] was the inequality∥∥∥∥ f

|x|2E

∥∥∥∥
L2(Rn)

≤ 4

n(n− 4)
‖Δf‖L2(Rn), n ≥ 5. (3.1)

To find analogues of (3.1) on the homogeneous groups is an interesting ques-
tion. The first obstacle to it is that there is neither stratification nor gradation
on general homogeneous groups, so there may be no homogeneous left invariant
hypoelliptic differential operators on G at all, to formulate an expression of the
form of the right-hand side of (3.1).

However, similar to the results on the Hardy type inequalities before, the
inequality (3.1) can be expressed in terms of the radial derivative

∂r =
x

|x|E · ∇,
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taking the form∥∥∥∥ f

|x|2E

∥∥∥∥
L2(Rn)

≤ 4

n(n− 4)

∥∥∥∥∂2
rf +

n− 1

|x|E ∂rf

∥∥∥∥
L2(Rn)

, n ≥ 5. (3.2)

It is well known that in the spherical coordinates on Rn the Laplacian ΔRn

decomposes in the radial and spherical parts as

ΔRnf =
∂2f

∂r2
+

n− 1

r

∂f

∂r
+

1

r2
ΔSn−1f.

So, the operator on the right-hand side in (3.2) is precisely the radial part of the
Laplacian on Rn, which can be also expressed as

∂2f

∂r2
+

n− 1

r

∂f

∂r
=

1

rn−1

∂

∂r

(
rn−1 ∂f

∂r

)
. (3.3)

Although there is no analogue of the Laplacian on general homogeneous groups,
using the radial operator R from Section 1.3, the expression (3.3) on a homoge-
neous group of homogeneous dimension Q and homogeneous quasi-norm | · | makes
perfect sense in the form of

R2f +
Q− 1

|x| Rf =
1

|x|Q−1
R (|x|Q−1Rf

)
. (3.4)

One aim of this section is to show that the Rellich inequality in the form
(3.2) extends to general homogeneous groups using the radial operator R, taking
the form: ∥∥∥∥ f

|x|2
∥∥∥∥
L2(G)

≤ 4

Q(Q− 4)

∥∥∥∥R2f +
Q− 1

|x| Rf

∥∥∥∥
L2(G)

, Q ≥ 5, (3.5)

for all complex-valued functions f ∈ C∞
0 (G\{0}). The operator on the right-hand

side of (3.5) is thus an analogue of the radial part of the Laplacian on Rn.

Thus, in the sequel we will be frequently use the Rellich type operator ap-
pearing in the right-hand side of (3.8) which we may denote by

R̃f := R2f +
Q− 1

|x| Rf. (3.6)

Similarly to the Hardy type inequalities from Chapter 2, the expression on
the right-hand side of (3.5) appears to be natural since there is no analogue of ho-
mogeneous Laplacian or sub-Laplacian on general homogeneous groups to extend
(3.1). Moreover, even on a group where such operators exist, this would usually
give a refinement of those inequalities since derivatives only in one direction ap-
pear.
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3.1.1 Rellich type inequalities in L2

In this section we prove the Rellich type inequality (3.5) and its weighted version.
This will be a corollary of the following identity relating different expressions
involving the radial derivatives and radially symmetric weights.

Theorem 3.1.1 (Identity leading to Rellich inequality). Let G be a homogeneous
group of homogeneous dimension Q ≥ 5. Then for arbitrary homogeneous quasi-
norm | · | on G and every complex-valued function f ∈ C∞

0 (G\{0}) we have the
identity∥∥∥∥R2f +

Q − 1

|x| Rf +
Q(Q− 4)

4|x|2 f

∥∥∥∥2
L2(G)

+
Q(Q− 4)

2

∥∥∥∥ 1

|x|Rf +
Q− 4

2|x|2 f

∥∥∥∥2
L2(G)

=

∥∥∥∥R2f +
Q− 1

|x| Rf

∥∥∥∥2
L2(G)

−
(
Q(Q− 4)

4

)2 ∥∥∥∥ f

|x|2
∥∥∥∥2
L2(G)

. (3.7)

Since the left-hand side of (3.7) is non-negative, this implies the following
Rellich type inequality on G for Q ≥ 5:

Corollary 3.1.2 (Rellich type inequality in L2(G)). For all complex-valued func-
tions f ∈ C∞

0 (G\{0}) we have∥∥∥∥ f

|x|2
∥∥∥∥
L2(G)

≤ 4

Q(Q− 4)

∥∥∥∥R2f +
Q− 1

|x| Rf

∥∥∥∥
L2(G)

, Q ≥ 5, (3.8)

where the constant 4
Q(Q−4) is sharp and it is attained if and only if f = 0.

Remark 3.1.3. Let us show that the constant 4
Q(Q−4) in (3.8) is sharp and is never

attained unless f = 0. Indeed, if the equality in (3.8) is attained, it follows that
both terms on the left-hand side of (3.7) must be zero. In particular, it means that

1

|x|Rf +
Q− 4

2|x|2 f = 0, (3.9)

and hence

Ef = −Q− 4

2
f.

In view of Proposition 1.3.1, Part (i), the function f must be positively homoge-
neous of order −Q−4

2 which is impossible since f ∈ C∞
0 (G\{0}) unless f = 0, so

that the constant is not attained unless f = 0.

Furthermore, the first term in (3.7) must be also zero, and by using (3.9) this
is equivalent to

R2f +
Q− 2

2|x| Rf = 0

which means that Rf is positively homogeneous of order −Q−2
2 . Thus, by taking

an approximation of homogeneous functions f of order −Q−4
2 , we have that Rf is
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homogeneous of order −Q−2
2 , so that the left-hand side of (3.7) converges to zero.

Therefore, the constant 4
Q(Q−4) in (3.8) is sharp.

Thus, in view of Remark 3.1.3, the statement of Corollary 3.1.2 follows from
the identity (3.7), which we will now prove.

Proof of Theorem 3.1.1. Introducing polar coordinates

(r, y) =

(
|x|, x

|x|
)

∈ (0,∞)× ℘

on G, using the polar decomposition formula from Proposition 1.2.10, as well as
integrating by parts we obtain∫

G

|f(x)|2
|x|4 dx =

∫ ∞

0

∫
℘

|f(ry)|2
r4

rQ−1dσ(y)dr

= − 2

Q− 4
Re

∫ ∞

0

rQ−4

∫
℘

f(ry)
df(ry)

dr
dσ(y)dr

=
2

(Q − 3)(Q− 4)
Re

∫ ∞

0

rQ−3

∫
℘

(∣∣∣∣df(ry)dr

∣∣∣∣2 + f(ry)
d2f(ry)

dr2

)
dσ(y)dr

=
2

(Q − 3)(Q− 4)

(∥∥∥∥ 1

|x|Rf

∥∥∥∥2
L2(G)

+Re

∫
G

f(x)

|x|2 R2f(x)dx

)
. (3.10)

For the first term, using identity (2.16) with α = 1, we have identity (2.17), i.e.,∥∥∥∥ 1

|x|Rf

∥∥∥∥2
L2(G)

=

(
Q− 4

2

)2 ∥∥∥∥ f

|x|2
∥∥∥∥2
L2(G)

+

∥∥∥∥ 1

|x|Rf +
Q− 4

2|x|2 f

∥∥∥∥2
L2(G)

. (3.11)

For the second term a direct calculation shows

Re

∫
G

f(x)

|x|2 R2f(x)dx

= Re

∫
G

f(x)

|x|2
(
R2f(x) +

Q− 1

|x| Rf(x)

)
dx− (Q− 1)Re

∫
G

f(x)

|x|3 Rf(x)dx

= Re

∫
G

f(x)

|x|2
(
R2f(x) +

Q− 1

|x| Rf(x)

)
dx

− Q− 1

2

∫ ∞

0

rQ−4

∫
℘

d|f(ry)|2
dr

dσ(y)dr

= Re

∫
G

f(x)

|x|2
(
R2f(x) +

Q− 1

|x| Rf(x)

)
dx

+
(Q − 1)(Q− 4)

2

∫ ∞

0

rQ−5

∫
℘

|f(ry)|2dσ(y)dr
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= Re

∫
G

f(x)

|x|2
(
R2f(x) +

Q− 1

|x| Rf(x)

)
dx

+
(Q − 1)(Q− 4)

2

∥∥∥∥ f

|x|2
∥∥∥∥2
L2(G)

. (3.12)

Combining (3.11) and (3.12) with (3.10) we arrive at∥∥∥∥ f

|x|2
∥∥∥∥2
L2(G)

=
2

(Q − 3)(Q− 4)

((
Q− 4

2

)2 ∥∥∥∥ f

|x|2
∥∥∥∥2
L2(G)

+

∥∥∥∥ 1

|x|Rf +
Q− 4

2|x|2 f

∥∥∥∥2
L2(G)

+Re

∫
G

f(x)

|x|2
(
R2f(x) +

Q− 1

|x| Rf(x)

)
dx+

(Q − 1)(Q− 4)

2

∥∥∥∥ f

|x|2
∥∥∥∥2
L2(G)

)
.

Collecting same terms, this gives

0 =
2Q

(Q − 3)4

∥∥∥∥ f

|x|2
∥∥∥∥2
L2(G)

+
2

(Q− 3)(Q− 4)

(
Re

∫
G

f(x)

|x|2
(
R2f(x) +

Q− 1

|x| Rf(x)

)
dx

+

∥∥∥∥ 1

|x|Rf +
Q− 4

2|x|2 f

∥∥∥∥2
L2(G)

)
,

that is,

Q(Q− 4)

4

∥∥∥∥ f

|x|2
∥∥∥∥2
L2(G)

= −Re

∫
G

f(x)

|x|2
(
R2f(x) +

Q− 1

|x| Rf(x)

)
dx−

∥∥∥∥ 1

|x|Rf +
Q− 4

2|x|2 f

∥∥∥∥2
L2(G)

.

Multiplying both sides by 4
Q(Q−4) and simplifying we obtain

Re

∫
G

f(x)

|x|2
(
f(x)

|x|2 +
4

Q(Q− 4)

(
R2f(x) +

Q− 1

|x| Rf(x)

))
dx

= − 4

Q(Q− 4)

∥∥∥∥ 1

|x|Rf +
Q− 4

2|x|2 f

∥∥∥∥2
L2(G)

.

(3.13)

On the other hand, we also have

2Re

∫
G

f(x)

|x|2
(
f(x)

|x|2 +
4

Q(Q− 4)

(
R2f(x) +

Q− 1

|x| Rf(x)

))
dx
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=

∥∥∥∥ f

|x|2 +
4

Q(Q− 4)

(
R2f +

Q− 1

|x| Rf

)∥∥∥∥2
L2(G)

+

∥∥∥∥ f

|x|2
∥∥∥∥2
L2(G)

−
∥∥∥∥ 4

Q(Q− 4)

(
R2f +

Q− 1

|x| Rf

)∥∥∥∥2
L2(G)

. (3.14)

From (3.13) and (3.14) we obtain

− 8

Q(Q− 4)

∥∥∥∥ 1

|x|Rf +
Q− 4

2|x|2 f

∥∥∥∥2
L2(G)

=

(
4

Q(Q− 4)

)2 ∥∥∥∥Q(Q− 4)

4

f

|x|2 +R2f +
Q− 1

|x| Rf

∥∥∥∥2
L2(G)

+

∥∥∥∥ f

|x|2
∥∥∥∥2
L2(G)

−
(

4

Q(Q− 4)

)2 ∥∥∥∥R2f +
Q− 1

|x| Rf

∥∥∥∥2
L2(G)

,

thus,∥∥∥∥R2f +
Q − 1

|x| Rf +
Q(Q− 4)

4|x|2 f

∥∥∥∥2
L2(G)

+
Q(Q− 4)

2

∥∥∥∥ 1

|x|Rf +
Q− 4

2|x|2 f

∥∥∥∥2
L2(G)

=

∥∥∥∥R2f +
Q− 1

|x| Rf

∥∥∥∥2
L2(G)

−
(
Q(Q− 4)

4

)2 ∥∥∥∥ f

|x|2
∥∥∥∥2
L2(G)

.

This gives identity (3.7). �

In the Euclidean setting of Rn the equalities of the type of Theorem 3.1.1
were analysed in [MOW17b]. Theorem 3.1.1 was obtained in [RS17b] and it can
be extended to all α ∈ R. We present these results next, following [Ngu17], also
correcting relevant statements. We will be always using the notation

R̃f := R2f +
Q− 1

|x| Rf. (3.15)

Theorem 3.1.4 (Weighted L2-Rellich inequalities). Let G be a homogeneous group
of homogeneous dimension Q ≥ 5 and let | · | be a homogeneous quasi-norm on G.
Then we have the following properties:

(1) For any α ∈ R, for all complex-valued functions f ∈ C∞
0 (G\{0}) we have the

identity∥∥∥∥∥ R̃f

|x|α
∥∥∥∥∥
2

L2(G)

= C2
α

∥∥∥∥ f

|x|α+2

∥∥∥∥2
L2(G)

+

∥∥∥∥∥ R̃f

|x|α + Cα
f

|x|α+2

∥∥∥∥∥
2

L2(G)

+ 2Cα

∥∥∥∥ Rf

|x|1+α
+

Q− 4− 2α

2|x|α+2
f

∥∥∥∥2
L2(G)

,

(3.16)
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where

Cα =
(Q+ 2α)(Q − 4− 2α)

4
. (3.17)

(2) For any α ∈ (−Q/2, (Q − 4)/2), we have the following weighted Rellich in-
equality for all complex-valued functions f ∈ C∞

0 (G\{0}),

Cα

∥∥∥∥ f

|x|α+2

∥∥∥∥
L2(G)

≤
∥∥∥∥∥ R̃f

|x|α
∥∥∥∥∥
L2(G)

, (3.18)

where the constant Cα > 0 as in (3.17) is sharp and it is attained if and only
if f = 0.

Proof of Theorem 3.1.4. Part (2) is an immediate consequence of Part (1), so we
prove Part (1) now.

We can assume that Cα �= 0 since otherwise (3.16) trivially holds. Moreover,
we can assume for the proof below that Q−3−2α �= 0. If this is zero, the statement
(3.16) would follow by continuity from the same identity for other α’s.

As in the proof of Theorem 3.1.1, we calculate∫
G

|f(x)|2
|x|4+2α

dx =

∫ ∞

0

rQ−5−2α

∫
℘

|f(ry)|2dσ(y)dr

=
1

Q− 4− 2α

∫ ∞

0

(rQ−4−2α)′
∫
℘

|f(ry)|2dσ(y)dr

= − 2

Q− 4− 2α
Re

∫ ∞

0

rQ−4−2α

∫
℘

f(ry)Rf(ry)dσ(y)dr

= − 2

(Q− 4− 2α)(Q− 3− 2α)
Re

∫ ∞

0

(rQ−3−2α)′
∫
℘

f(ry)Rf(ry)dσ(y)dr

=
2

(Q− 4− 2α)(Q − 3− 2α)
Re

∫ ∞

0

rQ−3−2α

×
∫
℘

(
|Rf(ry)|2 + f(ry)R2f(ry)

)
dσ(y)dr

=
2

(Q− 4− 2α)(Q − 3− 2α)
Re

∫
G

(
|Rf(x)|2
|x|2+2α

+
f(x)R2f(x)

|x|2+2α

)
dx. (3.19)

By Theorem 3.1.1 we have∫
G

|Rf |2
|x|2+2α

dx =
(Q − 4− 2α)2

4

∫
G

|f |2
|x|4+2α

dx+

∫
G

∣∣∣∣ Rf

|x|1+α
+

Q− 4− 2α

2|x|2+α
f

∣∣∣∣2 dx.
(3.20)

By integration by parts we obtain

Re

∫
G

fR2f

|x|2+2α
dx = Re

∫
G

fR̃f

|x|2+2α
dx− (Q − 1)Re

∫
G

fRf

|x|3+2α
dx (3.21)
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= Re

∫
G

fR̃f

|x|2+2α
dx+

(Q − 1)(Q− 4− 2α)

2

∫
G

|f |2
|x|4+2α

dx.

Plugging (3.20) and (3.21) into (3.19) we get∫
G

|f |2
|x|4+2α

dx = − 1

Cα
Re

∫
G

fR̃f

|x|2+2α
dx− 1

Cα

∫
G

∣∣∣∣ Rf

|x|1+α
+

Q − 4− 2α

2|x|2+α
f

∣∣∣∣2 dx
=

1

2C2
α

∫
G

|R̃f |2
|x|2α dx+

1

2

∫
G

|f |2
|x|2α+4

dx− 1

2C2
α

∫
G

∣∣∣∣∣ R̃f

|x|α + Cα
f

|x|α+2

∣∣∣∣∣
2

dx

− 1

Cα

∫
G

∣∣∣∣ Rf

|x|α+1
+

Q− 4− 2α

2|x|α+2
f

∣∣∣∣2 dx,
which gives equality (3.16).

The inequality (3.18) is a straightforward consequence of (3.16) since Cα > 0
for α ∈ (−Q/2, (Q− 4)/2). Let us now show that this constant is sharp. For this,
we consider the test function g(r) := r−(Q−4−2α)/2 which can be approximated
by smooth functions. For example, let η ∈ C∞

0 (R) be such that η = 1 on (−1, 1)

and η = 0 on R\(−2, 2). For any ε > 0, define fε(r) := (1− η(r/ε))r−
Q−4−2α

2 η(εr),
then

lim
ε→0

fε(r) = g(r).

We have ∥∥∥ R̃g
|x|α

∥∥∥2
L2(G)∥∥∥ g

|x|α+2

∥∥∥2
L2(G)

=

∫
G

1
|x|2α

∣∣∣R2g(|x|) + Q−1
|x| Rg(|x|)

∣∣∣2 dx∫
G

|g(|x|)|2
|x|4+2α dx

= C2
α,

which shows the sharpness of Cα. If for some function f , there is equality in (3.18),
then from (3.16) we must have

Rf +
Q− 4− 2α

2|x| f = 0.

In terms of the Euler operator this can be equivalently expressed by

Ef = −Q− 4− 2α

2
f.

By Proposition 1.3.1 this implies that f is positively homogeneous of order −(Q−
4− 2α)/2, that is, there exists function h : ℘ → C such that

f(x) = |x|−(Q−4−2α)/2h(x/|x|).
Since f(x)/|x|2+α is in L2(G), we must have h = 0 on ℘ and, consequently, f = 0
on ℘. �
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3.1.2 Rellich type inequalities in Lp

In this section we describe the Lp-versions of the L2-properties presented in Section
3.1.1, where we have followed the proofs in [RS17b]. In this section we follow
[Ngu17]. We start with the identity analogous to that in Theorem 3.1.1.

Theorem 3.1.5 (Identity leading to Lp-Rellich inequality). Let G be a homogeneous
group of homogeneous dimension Q and let |·| be a homogeneous quasi-norm on G.
Let 1 < p < Q and α ∈ R. Then for all complex-valued functions f ∈ C∞

0 (G\{0})
we have∫

G

1

|x|pα
∣∣∣∣Rf +

Q− 1

|x| f

∣∣∣∣p dx =
|Q + p′α|p

(p′)p

∫
G

|f |p
|x|p(1+α)

dx (3.22)

+ p

∫
G

1

|x|pαRp

(
Q+ p′α

p′
f

|x| ,Rf +
Q− 1

|x| f

)
dx,

where p′ = p/(p− 1) and Rp is as in (2.22).

Proof of Theorem 3.1.5. First, a direct calculation shows∫
G

|f |p
|x|p(1+α)

dx =

∫ ∞

0

rQ−p(1+α)−1

∫
℘

|f(ry)|pdσdr

=
1

Q− p(1 + α)

∫ ∞

0

(rQ−p(1+α))′
∫
℘

|f(ry)|pdσdr

= − p

Q− p(1 + α)
Re

∫ ∞

0

rQ−p(1+α)

∫
℘

|f(ry)|p−2f(ry)Rf(ry)dσ(y)dr

= − p

Q− p(1 + α)
Re

∫
G

|f |p−2fRf

|x|p(1+α)−1
dx

= − p

Q− p(1 + α)

⎛⎝Re

∫
G

|f |p−2f

|x|(p−1)(1+α)

Rf + Q−1
|x| f

|x|α − (Q− 1)

∫
G

|f |p
|x|p(1+α)

dx

⎞⎠ .

This implies further equalities,

∫
G

|f |p
|x|p(1+α)

dx =
p′

Q+ p′α
Re

∫
G

|f |p−2f

|x|(p−1)(1+α)

Rf + Q−1
|x| f

|x|α dx

=
p− 1

p

∫
G

|f |p
|x|p(1+α)

dx+
1

p

(p′)p

|Q+ p′α|p
∣∣∣∣Rf +

Q− 1

|x| f

∣∣∣∣2 dx
−
∫
G

Rp

(
f

|x|1+α
,

p′

Q+ p′α

Rf + Q−1
|x| f

|x|α
)
dx,

which proves (3.22). �
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Since the remainder term on the right-hand side of (3.22) is non-negative,
this implies the following Lp-version of the Rellich type inequality on G:

Corollary 3.1.6 (Rellich type inequality in Lp(G)). Let G be a homogeneous group
of homogeneous dimension Q and let | · | be a homogeneous quasi-norm on G. Let
1 < p < Q and α ∈ R. Then for all complex-valued functions f ∈ C∞

0 (G\{0})
we have ∥∥∥∥ 1

|x|α
(
Rf +

Q− 1

|x| f

)∥∥∥∥
Lp(G)

≥ |Q+ p′α|
p′

∥∥∥∥ f

|x|1+α

∥∥∥∥
Lp(G)

,

where the constant 4
Q(Q−4) is sharp and it is attained if and only if f = 0.

As a consequence of Theorem 3.1.5 we have

Corollary 3.1.7. Let G be a homogeneous group of homogeneous dimension Q.
Let | · | be any homogeneous quasi-norm on G and 1 < p < Q/2. Then for any
complex-valued f ∈ C∞

0 (G\{0}), we have∫
G

|R̃f |p
|x|pα dx =

|Q+ p′α|p
(p′)p

∫
G

|Rf |p
|x|p(1+α)

dx+ p

∫
G

1

|x|pαRp

(
Q+ p′α

p′
Rf

|x| , R̃f

)
dx

(3.23)
for any α ∈ R. Here Rp is as in (2.22). As a consequence, we obtain the following
weighted Lp-Rellich type inequality

|Q+ p′α|
p′

∥∥∥∥ Rf

|x|(1+α)

∥∥∥∥
Lp(G)

≤
∥∥∥∥∥ R̃f

|x|α
∥∥∥∥∥
Lp(G)

(3.24)

for any α ∈ R and any complex-valued function f ∈ C∞
0 (G\{0}). Moreover, the

inequality (3.24) is sharp and equality holds if and only if f = 0.

Proof of Corollary 3.1.7. The equality (3.23) is exactly (3.22) with f being re-
placed by Rf . The inequality (3.24) follows immediately from (3.23) by dropping
the non-negative remainder term on the right-hand side of (3.23). The sharpness
of (3.24) is proved by using approximations of the function r−(Q′p(1+α))/p. If the
equality occurs in (3.24) for some function f , then by (3.23) we must have

R̃f =
Q + p′α
p′|x| Rf,

which is equivalent to

R2f +
Q− p(1 + α)

p|x| Rf = 0.

This can be also expressed as

E(Rf) = −Q− p(1 + α)

p
Rf.

Hence Rf is positively homogeneous of degree −(Q′p(1 + α))/p, which forces
Rf = 0 since Rf/|x|1+α is in Lp(G). Thus, we get f = 0. �
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Theorem 3.1.8 (Another weighted Lp-Rellich inequality). Let G be a homogeneous
group of homogeneous dimension Q. Let 1 < p < Q/2. Let | · | be a homogeneous
quasi-norm on G. Then we have the following properties.

(1) For all α ∈ R and for all complex-valued functions f ∈ C∞
0 (G\{0}) we have

the identity∥∥∥∥∥ R̃f

|x|α
∥∥∥∥∥
p

Lp(G)

= |Cp,α|p
∫
G

|f |p
|x|p(2+α)

dx + p

∫
G

1

|x|pαRp

(
Cp,α

f

|x|2 ,−R̃f

)
dx

+ p|Cp,α|p−2Cp,α(p− 1)

∫
G

|f |p−2

|x|p(2+α)−2

∣∣∣∣R|f |+ Q− p(2 + α)

p|x| |f |
∣∣∣∣2 dx

+ p|Cp,α|p−2Cp,α

∫
G

|f |p−4(Im(fRf))2

|x|p(2+α)−2
dx. (3.25)

Here Rp is as in (2.22) and

Cp,α =
(Q− 2p− pα)(Q + p′α)

pp′
,

1

p
+

1

p′
= 1. (3.26)

(2) For any α ∈ (−(p − 1)Q/p, (Q − 2p)/p) and all complex-valued functions
f ∈ C∞

0 (G\{0}) we have

Cp,α

∥∥∥∥ f

|x|2+α

∥∥∥∥
Lp(G)

≤
∥∥∥∥∥ R̃f

|x|α
∥∥∥∥∥
Lp(G)

. (3.27)

Moreover, the constant Cp,α > 0 as in (3.26) is sharp and equality in (3.27)
holds if and only if f = 0.

Proof of Theorem 3.1.8. Inequality (3.27) in Part (2) follows from Part (1) in view
of the positivity of the constant Cp,α > 0 under the corresponding conditions on α,
so we prove Part (1) now. For the argument below we may assume that Cp,α �= 0,
and that the constant on the left-hand side in the following estimate is non-zero.
Then a direct calculation using Proposition 1.2.10 and integration by parts gives

(Q− p(2 + α))(Q − p(2 + α) + 1)

p

∫
G

|f(x)|p
|x|p(2+α)

dx

=
(Q − p(2 + α))(Q − p(2 + α) + 1)

p

∫ ∞

0

rQ−p(2+α)−1

∫
℘

|f(ry)|pdσ(y)dr

=
(Q − p(2 + α) + 1)

p

∫ ∞

0

(rQ−p(2+α))′
∫
℘

|f(ry)|pdσ(y)dr

= −(Q− p(2 + α) + 1)Re

∫ ∞

0

rQ−p(2+α)

∫
℘

|f(ry)|p−2f(ry)Rf(ry)dσ(y)dr
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= −Re

∫ ∞

0

(rQ−p(2+α)+1)′
∫
℘

|f(ry)|p−2f(ry)Rf(ry)dσ(y)dr

= Re

∫ ∞

0

rQ−p(2+α)+1

∫
℘

(p− 2)|f(ry)|p−4(Re(f(ry)Rf(ry)))2

+ |f(ry)|p−2|Rf(ry)|2 + |f(ry)|p−2f(ry)R2f(ry)dσ(y)dr

= Re

∫
G

1

|x|p(2+α)−2

(
(p− 2)|f |p−4(Re(fRf))2 + |f |p−2|Rf |2 + |f |p−2fR2f

)
dx

= Re

∫
G

|f |p−2f

|x|(p−1)(2+α)

R̃f

|x|α dx− (Q − 1)Re

∫
G

|f |p−2fRf

|x|p(2+α)−1
dx

+ (p− 1)

∫
G

|f |p−4(Re(fRf))2

|x|p(2+α)−2
dx+

∫
G

|f |p−4(Im(fRf))2

|x|p(2+α)−2
dx

= Re

∫
G

|f |p−2f

|x|(p−1)(2+α)

R̃f

|x|α dx+
(Q − 1)(Q− p(2 + α))

p

∫
G

|f |p
|x|p(2+α)

dx

+
4(p− 1)

p2

∫
G

(R(|f |p/2))2
|x|p(2+α)−2

dx+

∫
G

|f |p−4(Im(fRf))2

|x|p(2+α)−2
dx. (3.28)

By using Theorem 3.1.1 for |f | p2 , we obtain∫
G

(R(|f |p/2))2
|x|p(2+α)−2

dx =
(Q − p(2 + α))2

4

∫
G

|f |p
|x|p(2+α)

dx

+

∫
G

1

|x|p(2+α)−2

∣∣∣∣R|f |p/2 + Q− p(2 + α)

2|x| |f |p/2
∣∣∣∣2 dx.

Plugging this in (3.28) we get∫
G

|f(x)|p
|x|p(2+α)

dx

= − 1

Cp,α
Re

∫
G

|f |p−2f

|x|(p−1)(2+α)

R̃f

|x|α dx− 1

Cp,α

∫
G

|f |p−4(Im(fRf))2

|x|p(2+α)−2
dx

− 1

Cp,α

4(p− 1)

p2

∫
G

1

|x|p(2+α)−2

∣∣∣∣R|f | p2 +
Q− p(2 + α)

2|x| |f | p2
∣∣∣∣2 dx

=
p− 1

p

∫
G

|f |p
|x|p(2+α)

dx+
1

p

1

|Cp,α|p
∫
G

|R̃f |p
|x|pα dx−

∫
G

Rp

(
f

|x|2+α
,− 1

Cp,α

R̃f

|x|α
)
dx

− 4(p− 1)

p2Cp,α

∫
G

1

|x|p(2+α)−2

∣∣∣∣R|f | p2 +
Q− p(2 + α)

2|x| |f | p2
∣∣∣∣2 dx

− 1

Cp,α

∫
G

|f |p−4(Im(fRf))2

|x|p(2+α)−2
dx. (3.29)
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The equality (3.25) now follows from (3.29) and the equality

R(|f | p2 ) = p

2
|f | p2−1R(|f |).

Part (2). Clearly, inequality (3.27) follows from equality (3.25). As in the
proof of Theorem 3.1.4, the sharpness of (3.27) follows by considering appropriate
approximations of the function r−(Q−p(2+α))/p. Moreover, if we have equality in
(3.27) for some function f , then in view of Part (1) we must have

R(|f |) + Q− p(2 + α)

p|x| |f | = 0.

This means that

E(|f |) = −Q− p(2 + α)

p
|f |.

By Proposition 1.3.1 the function |f | must be positively homogeneous of degree
−(Q− p(2 + α))/p. Since |f |/|x|2+α is in Lp(G) we must have f = 0. �

3.1.3 Stability of Rellich type inequalities

The method used in the previous section also allows one to obtain the following
stability property for Rellich type inequalities. We present such a result following
[RS18].

Theorem 3.1.9 (Stability of Rellich type inequalities). Let G be a homogeneous
group of homogeneous dimension Q. Let | · | be a homogeneous quasi-norm on G

and let p ≥ 1. Let k ≥ 2, k ∈ N, be such that kp < Q. Then for all real-valued
radial functions u ∈ C∞

0 (G) we have∫
G

|R̃u|p
|x|(k−2)p

dx−Kp
k,p

∫
G

|u|p
|x|kp dx

≥ C sup
R>0

∫
G

∣∣∣|u(x)| p−2
2 u(x)−R

Q−kp
2 |u(R)| p−2

2 u(R)|x|−Q−kp
2

∣∣∣2
|x|kp

∣∣∣log R
|x|
∣∣∣2 dx,

(3.30)

where

R̃f = R2f +
Q− 1

|x| Rf

and

Kk,p =
(Q− kp)[(k − 2)p+ (p− 1)Q]

p2
. (3.31)
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Proof of Theorem 3.1.9. For k ≥ 2, k ∈ N, and kp < Q, as in the assumptions of
the theorem, let us denote

v(r) := r
Q−kp

p u(r), where r ∈ [0,∞). (3.32)

In particular, we have v(0) = 0 and v(∞) = 0. We then calculate as follows:

−R̃u = −R2
(
r

kp−Q
p v(r)

)
− Q− 1

r
R
(
r

kp−Q
p v(r)

)
= −R

(
kp−Q

p
r

kp−Q
p −1v(r) + r

kp−Q
p Rv(r)

)
− Q− 1

r

kp−Q

p
r

kp−Q
p −1v(r) − Q− 1

r
r

kp−Q
p Rv(r)

= − kp−Q

p

(
kp−Q

p
− 1

)
r

kp−Q
p −2v(r) − kp−Q

p
r

kp−Q
p −1Rv(r)

− kp−Q

p
r

kp−Q
p −1Rv(r) − r

kp−Q
p R2v(r)

− Q− 1

r

kp−Q

p
r

kp−Q
p −1v(r) − Q− 1

r
r

kp−Q
p Rv(r)

= − r
kp−Q

p −2

(
(kp−Q)(kp−Q− p)

p2
+

(Q− 1)(kp−Q)

p

)
v(r)

− r
kp−Q

p −2r2
(
R2v(r) +

1

r

(
2(kp−Q)

p
+ (Q− 1)

)
Rv(r)

)
= rk−2−Q

p (Kk,pv(r) − r2R̃kv(r)),

where Kk,p is as in (3.31), and where we denote

R̃kf := R2f +
2k + Q(p−2)

p − 1

r
Rf.

By using the first inequality in Lemma 2.4.2 with a = Kk,pv(r) and b = r2R̃kv(r),
and the fact that

∫∞
0

|v|p−2vv′dr = 0 in view of v(0) = 0 and v(∞) = 0, we obtain

J :=

∫
G

|R̃u|p
|x|(k−2)p

dx−Kp
k,p

∫
G

|u|p
|x|kp dx

= |℘|
∫ ∞

0

| − R̃u(r)|prQ−1−(k−2)pdr −Kp
k,p|℘|

∫ ∞

0

|u(r)|prQ−kp−1dr

= |℘|
∫ ∞

0

(
|Kk,pv(r) − r2R̃kv(r)|p − (Kk,pv(r))

p
)
r−1dr

≥ − p|℘|Kp−1
k,p

∫ ∞

0

|v|p−2vR̃kvrdr
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= − p|℘|Kp−1
k,p

∫ ∞

0

|v|p−2v

(
v′′ +

2k + Q(p−2)
p − 1

r
v′
)
rdr

= − p|℘|Kp−1
k,p

∫ ∞

0

|v|p−2vv′′rdr.

On the other hand, we have

−
∫ ∞

0

|v|p−2vv′′rdr = (p− 1)

∫ ∞

0

|v|p−2(v′)2rdr +
∫ ∞

0

|v|p−2vv′dr

= (p− 1)

∫ ∞

0

|v|p−2(v′)2rdr

=
4(p− 1)

p2

∫ ∞

0

(
p− 2

2

)2

|v|p−2(v′)2dr

+
4(p− 1)

p2

∫ ∞

0

(p− 2)|v|p−2(v′)2 + |v|p−2(v′)2rdr

=
4(p− 1)

p2

∫ ∞

0

((
|v| p−2

2

)′
v + |v| p−2

2 v′
)2

rdr

=
4(p− 1)

p2

∫ ∞

0

|(|v| p−2
2 v)′|2rdr

=
4(p− 1)

|℘2|p2
∫
G2

∣∣∣R(|v| p−2
2 v)

∣∣∣2 dx,
where G2 is a homogeneous group of homogeneous degree 2 and |℘2| is the mea-

sure of the corresponding unit 2-quasi-ball. By using Remark 2.2.9 for |v| p−2
2 v ∈

C∞
0 (G2\{0}) in p = Q = 2 case, and combining the above equalities, we obtain

J ≥ C1

∫
G2

∣∣∣|v(x)| p−2
2 v(x) − |v(R x

|x|)|
p−2
2 v(R x

|x|)
∣∣∣2

|x|2
∣∣∣log R

|x|
∣∣∣2 dx

= C1

∫ ∞

0

∣∣∣|v(r)| p−2
2 v(r) − |v(R)| p−2

2 v(R)
∣∣∣2

r
∣∣log R

r

∣∣2 dr

= C1

∫ ∞

0

∣∣∣|u(r)| p−2
2 u(r) −R

Q−kp
2 |u(R)| p−2

2 u(R)r−
Q−kp

2

∣∣∣2
r1−Q+kp

∣∣log R
r

∣∣2 dr

for any R > 0. That is, we have

J ≥ C sup
R>0

∫
G

∣∣∣|u(x)| p−2
2 u(x)−R

Q−kp
2 |u(R)| p−2

2 u(R)|x|−Q−kp
2

∣∣∣2
|x|kp

∣∣∣log R
|x|
∣∣∣2 dx.

The proof is complete. �



144 Chapter 3. Rellich, Caffarelli–Kohn–Nirenberg, Sobolev Type Inequalities

3.1.4 Higher-order Hardy–Rellich inequalities

In this section we show that by iterating the already established weighted Hardy
inequalities we get inequalities of higher order. An interesting feature is that we
also obtain the exact formula for the remainder which yields the sharpness of the
constants as well. That is, when p = 2, one can iterate the exact representation
formulae of the remainder that we obtained in Theorem 3.1.1. It implies higher-
order remainder equalities that can be then also used to argue the sharpness of
the constant.

Theorem 3.1.10 (Higher-order Hardy–Rellich identities and inequalities). Let G

be a homogeneous group of homogeneous dimension Q ≥ 3. Let α ∈ R and k ∈ N

be such that
k−1∏
j=0

∣∣∣∣Q− 2

2
− (α+ j)

∣∣∣∣ �= 0.

Then for all complex-valued functions f ∈ C∞
0 (G\{0}) we have

∥∥∥∥ f

|x|k+α

∥∥∥∥
L2(G)

≤
⎡⎣k−1∏

j=0

∣∣∣∣Q− 2

2
− (α + j)

∣∣∣∣
⎤⎦−1 ∥∥∥∥ 1

|x|αR
kf

∥∥∥∥
L2(G)

, (3.33)

where the constant above is sharp, and is attained if and only if f = 0.

Moreover, for all k ∈ N and α ∈ R, the following identity holds:∥∥∥∥ 1

|x|αR
kf

∥∥∥∥2
L2(G)

=

⎡⎣k−1∏
j=0

(
Q− 2

2
− (α + j)

)2
⎤⎦∥∥∥∥ f

|x|k+α

∥∥∥∥2
L2(G)

+

k−1∑
l=1

⎡⎣l−1∏
j=0

(
Q− 2

2
− (α+ j)

)2
⎤⎦

×
∥∥∥∥ 1

|x|l+α
Rk−lf +

Q− 2(l+ 1 + α)

2|x|l+1+α
Rk−l−1f

∥∥∥∥2
L2(G)

+

∥∥∥∥ 1

|x|αR
kf +

Q− 2− 2α

2|x|1+α
Rk−1f

∥∥∥∥2
L2(G)

. (3.34)

Remark 3.1.11. Let us point out some special cases of inequality (3.33).

1. For k = 1 inequality (3.33) gives the weighted L2-Hardy inequalities from
Corollary 2.1.6.

2. In particular, for k = 1 and α = 0, inequality (3.33) gives the L2-Hardy
inequality, i.e., (2.2) in the case of p = 2.

3. For k = 2, inequality (3.33) can be thought of as a (weighted) Hardy–Rellich
type inequality, while for larger k this corresponds to higher-order (weighted)
Rellich inequalities.
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Proof of Theorem 3.1.10. For any α ∈ R and Q ≥ 3 let us iterate the identity∥∥∥∥ 1

|x|αRf

∥∥∥∥2
L2(G)

=

(
Q− 2

2
− α

)2 ∥∥∥∥ f

|x|α+1

∥∥∥∥2
L2(G)

+

∥∥∥∥ 1

|x|αRf +
Q− 2(α+ 1)

2|x|α+1
f

∥∥∥∥2
L2(G)

,

(3.35)

given in (2.16), as follows. First, replacing f in (3.35) by Rf we have∥∥∥∥ 1

|x|αR
2f

∥∥∥∥2
L2(G)

=

(
Q− 2

2
− α

)2 ∥∥∥∥ Rf

|x|α+1

∥∥∥∥2
L2(G)

+

∥∥∥∥ 1

|x|αR
2f +

Q− 2(α+ 1)

2|x|α+1
Rf

∥∥∥∥2
L2(G)

.

(3.36)

Furthermore, replacing α by α+ 1, (3.35) implies that∥∥∥∥ 1

|x|α+1
Rf

∥∥∥∥2
L2(G)

=

(
Q− 2

2
− (α+ 1)

)2 ∥∥∥∥ f

|x|α+2

∥∥∥∥2
L2(G)

+

∥∥∥∥ 1

|x|α+1
Rf +

Q− 2(α+ 2)

2|x|α+2
f

∥∥∥∥2
L2(G)

.

Combination of this with (3.36) gives∥∥∥∥ 1

|x|αR
2f

∥∥∥∥2
L2(G)

=

(
Q− 2

2
− α

)2(
Q− 2

2
− (α + 1)

)2 ∥∥∥∥ f

|x|α+2

∥∥∥∥2
L2(G)

+

(
Q− 2

2
− α

)2 ∥∥∥∥ 1

|x|α+1
Rf +

Q− 2(α+ 2)

2|x|α+2
f

∥∥∥∥2
L2(G)

+

∥∥∥∥ 1

|x|αR
2f +

Q− 2− 2α

2|x|α+1
Rf

∥∥∥∥2
L2(G)

.

By using this iteration process further, we eventually arrive at the family of iden-
tities∥∥∥∥ 1

|x|αR
kf

∥∥∥∥2
L2(G)

=

⎡⎣k−1∏
j=0

(
Q− 2

2
− (α+ j)

)2
⎤⎦∥∥∥∥ f

|x|k+α

∥∥∥∥2
L2(G)

+
k−1∑
l=1

⎡⎣l−1∏
j=0

(
Q− 2

2
− (α + j)

)2
⎤⎦

×
∥∥∥∥ 1

|x|l+α
Rk−lf +

Q− 2(l+ 1 + α)

2|x|l+1+α
Rk−l−1f

∥∥∥∥2
L2(G)
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+

∥∥∥∥ 1

|x|αR
kf +

Q− 2− 2α

2|x|1+α
Rk−1f

∥∥∥∥2
L2(G)

, k = 1, 2, . . . ,

which give (3.34).

Now, by dropping positive terms, these identities imply that∥∥∥∥ 1

|x|αR
kf

∥∥∥∥2
L2(G)

≥ Ck,Q

∥∥∥∥ f

|x|k+α

∥∥∥∥2
L2(G)

,

where

Ck,Q =

k−1∏
j=0

(
Q− 2

2
− (α+ j)

)2

.

If Ck,Q �= 0, this can be written as∥∥∥∥ f

|x|k+α

∥∥∥∥2
L2(G)

≤ 1

Ck,Q

∥∥∥∥ 1

|x|αR
kf

∥∥∥∥2
L2(G)

,

which gives (3.33).

Now it remains to show the sharpness of the constant and the equality in
(3.33). To do this, we rewrite the equality

Rk−lf

|x|l+α
+

Q− 2(l+ 1 + α)

2|x|l+1+α
Rk−l−1f = 0

as

|x|R(Rk−l−1f) +
Q − 2(l+ 1 + α)

2
(Rk−l−1f) = 0,

and by Proposition 1.3.1, Part (i), this means that Rk−l−1f is positively homoge-
neous of degree −Q

2 + l+1+α. So, all the remainder terms vanish if f is positively

homogeneous of degree k − Q
2 + α. As this can be approximated by functions in

C∞
0 (G\{0}), the constant Ck,Q is sharp.

If this constant was attained, it would be on functions f which are posi-
tively homogeneous of degree k − Q

2 + α, in which case f
|x|k+α would be positively

homogeneous of degree −Q
2 . These are in L2 if and only if they are zero. �

Theorem 3.1.4 and Theorem 3.1.10 were proved in [RS17b]. They can be
extended further to derivatives of higher order. Such results have been recently
obtained in [Ngu17] and in the rest of this subsection we describe such extensions.

Theorem 3.1.12 (Further higher-order Hardy–Rellich identities and inequalities).
Let G be a homogeneous group of homogeneous dimension Q and let | · | be a
homogeneous quasi-norm on G. We denote

R̃f := R2f +
Q− 1

|x| Rf, Cβ :=
(Q+ 2β)(Q− 4− 2β)

4
, (3.37)
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for β ∈ R, for the constants appearing below. Let k ∈ N be a positive integer and
let α ∈ R. Then for all complex-valued functions f ∈ C∞

0 (G\{0}) we have the
following identities:

(1) If Q ≥ 4k + 1, then we have(
k−1∏
i=0

C2i+α

)2 ∥∥∥∥ f

|x|2k+α

∥∥∥∥2
L2(G)

=

∥∥∥∥∥R̃kf

|x|α
∥∥∥∥∥
2

L2(G)

−
∥∥∥∥∥ 1

|x|α
∣∣∣∣∣R̃kf + Cα

R̃k−1f

|x|2
∣∣∣∣∣
∥∥∥∥∥
2

L2(G)

−
k−1∑
j=1

(
k−1∏
i=0

C2i+α

)2 ∥∥∥∥∥ 1

|x|2j+α

∣∣∣∣∣R̃k−jf + C2j+α
R̃k−j−1f

|x|2
∣∣∣∣∣
∥∥∥∥∥
2

L2(G)

− 2Cα

∥∥∥∥ 1

|x|1+α

∣∣∣∣R(R̃k−1f) +
Q− 4− 2α

2|x| R̃k−1f

∣∣∣∣∥∥∥∥2
L2(G)

− 2

k−1∑
j=1

(
k−1∏
i=0

C2i+α

)2

C2j+α (3.38)

×
∥∥∥∥ 1

|x|1+α+2j

∣∣∣∣R(R̃k−j−1f) +
Q− 4− 2α− 4j

2|x| R̃k−j−1f

∣∣∣∣∥∥∥∥2
L2(G)

.

(2) If Q ≥ 4k + 3, then we have(
Q− 2− 2α

2

k−1∏
i=0

C2i+1+α

)2 ∥∥∥∥ f

|x|2k+1+α

∥∥∥∥2
L2(G)

=

∥∥∥∥∥R(R̃kf)

|x|α
∥∥∥∥∥
2

L2(G)

−
∥∥∥∥ 1

|x|α
∣∣∣∣R(R̃kf) +

Q− 2− 2α

2|x| R̃kf

∣∣∣∣∥∥∥∥2
L2(G)

− (Q − 2− 2α)2

4

∥∥∥∥∥ 1

|x|α
∣∣∣∣∣R̃kf + C1+α

R̃k−1f

|x|2
∣∣∣∣∣
∥∥∥∥∥
2

L2(G)

− (Q − 2− 2α)2

4

k−1∑
j=1

(
k−1∏
i=0

C2i+α

)2

×
∥∥∥∥∥ 1

|x|1+2j+α

∣∣∣∣∣R̃k−jf + C2j+1+α
R̃k−j−1f

|x|2
∣∣∣∣∣
∥∥∥∥∥
2

L2(G)

− (Q − 2− 2α)2

4
Cα+1

∥∥∥∥ 1

|x|2+α

∣∣∣∣R(R̃k−1f) +
Q− 6− 2α

2|x| R̃k−1f

∣∣∣∣∥∥∥∥2
L2(G)
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− (Q − 2− 2α)2

4

k−1∑
j=1

(
k−1∏
i=0

C2i+1+α

)2

C2j+1+α (3.39)

×
∥∥∥∥ 1

|x|2+α+2j

∣∣∣∣R(R̃k−j−1f) +
Q− 6− 2α− 4j

2|x| R̃k−j−1f

∣∣∣∣∥∥∥∥2
L2(G)

.

As consequences, for all complex-valued function f ∈ C∞
0 (G\{0}) we have the

following estimates:

(3) If Q ≥ 4k + 1 and α ∈ (−Q/2, (Q− 4k)/2), then we have(
k−1∏
i=0

C2i+α

)∥∥∥∥ f

|x|2k+α

∥∥∥∥
L2(G)

≤
∥∥∥∥∥R̃kf

|x|α
∥∥∥∥∥
L2(G)

. (3.40)

(4) If Q ≥ 4k + 3 and α ∈ (−(Q+ 2)/2, (Q− 4k − 2)/2), then we have(
Q− 2− 2α

2

k−1∏
i=0

C2i+1+α

)∥∥∥∥ f

|x|2k+1+α

∥∥∥∥
L2(G)

≤
∥∥∥∥∥R(R̃kf)

|x|α
∥∥∥∥∥
L2(G)

. (3.41)

Moreover, these inequalities in Parts (3) and (4) are sharp and the equalities hold
if only if f = 0.

Proof of Theorem 3.1.12. The equality (3.38) follows by induction using Theorem
3.1.4, which gives the case of k = 1. Furthermore, we have∫

G

|R(R̃kf)|2
|x|2α dx =

(Q− 2− 2α)2

4

∫
G

|R̃kf |2
|x|2+2α

dx

+

∫
G

1

|x|2α
∣∣∣∣R(R̃kf) +

Q− 2− 2α

2|x| R̃kf

∣∣∣∣2 dx.
(3.42)

Thus, (3.39) follows from (3.38) and (3.42). The inequalities (3.40) and (3.41)
follow directly from these equalities since Cα+2i > 0, Cα+2i+1 > 0 for any i =
0, . . . , k − 1 corresponding to each case. To check the sharpness of constants, we
use the arguments similar to those in the proof of Theorem 3.1.4, considering
approximations of the function r−(Q−4k−2α)/2. Indeed, one has∫

G

|fε|2
|x|4k+2α

dx = (− ln ε)|℘|+O(1),

and ∫
G

|R̃kf |2
|x|2α dx =

(
k−1∏
i=0

C2i+α

)2

(− ln ε)|℘|+O(1).

This proves the sharpness of (3.40). For (3.41), we use the approximation of the
function r−(Q−2−4k−2α)/2 and similar calculations.
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Finally, suppose that for some function f we have an equality in (3.40). Then
by (3.38), we must have

Rf +
Q− 4k − 2α

2|x| f = 0.

This is equivalent to

Ef = −Q− 4k − 2α

2
f.

By Proposition 1.3.1, Part (i), it follows that f is positively homogeneous of order
−(Q − 2α − 4k)/2. Since f/|x|α+2k ∈ L2(G), this forces to have f = 0. The
sharpness of (3.41) is proved in a similar way. �

Theorem 3.1.12 can be used to derive further weighted Rellich type inequal-
ities. First we start with one iteration, continuing using the notation R̃ as in
(3.37).

Theorem 3.1.13 (Iterated weighted Rellich inequality). Let G be a homogeneous
group of homogeneous dimension Q ≥ 5, and let | · | be a homogeneous quasi-norm
on G. Then for any α ∈ R and for all complex-valued functions f ∈ C∞

0 (G\{0})
we have the identity∥∥∥∥∥ R̃f

|x|α
∥∥∥∥∥
2

L2(G)

=
(Q+ 2α)2

4

∥∥∥∥ Rf

|x|1+α

∥∥∥∥2
L2(G)

+

∥∥∥∥ 1

|x|α
∣∣∣∣R2f +

Q− 2− 2α

2|x| Rf

∣∣∣∣∥∥∥∥2
L2(G)

.

(3.43)

As a consequence, for any α ∈ R we get the inequality

|Q+ 2α|
2

∥∥∥∥ Rf

|x|1+α

∥∥∥∥
L2(G)

≤
∥∥∥∥∥ R̃f

|x|α
∥∥∥∥∥
L2(G)

, (3.44)

for all complex-valued functions f ∈ C∞
0 (G\{0}). For Q + 2α �= 0 the inequality

(3.44) is sharp and the equality holds if and only if f = 0.

Proof of Theorem 3.1.13. By definition (3.37) we have∫
G

|R̃f |2
|x|2α dx =

∫
G

|R(Rf)|2
|x|2α dx+2(Q−1)Re

∫
G

R(Rf)Rf

|x|2α+1
dx+(Q−1)2

∫
G

|Rf |2
|x|2+2α

dx.

Moreover, we have

2Re

∫
G

R(Rf)Rf

|x|2α+1
dx = −(Q− 2− 2α)

∫
G

|Rf |2
|x|2+2α

dx.
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On the other hand, by Theorem 3.1.1 we have the identity∫
G

|R(Rf)|2
|x|2α dx =

(Q − 2− 2α)2

4

∫
G

|Rf |2
|x|2+2α

dx

+

∫
G

1

|x|2α
∣∣∣∣R2f +

Q− 2− 2α

2|x| Rf

∣∣∣∣2 dx.
Combining these inequalities we obtain (3.43).

Identity (3.43) then implies inequality (3.44). The sharpness of inequality
(3.44) can be verified by using approximations of the function r−(Q−2α−4k)/2. If
the equality in (3.44) holds for some function f , then we must have

R2f +
Q− 2− 2α

2|x| Rf = 0.

This is equivalent to

E(Rf) = −Q− 2− 2α

2
Rf

which implies, by Proposition 1.3.1, Part (i), that Rf is positively homogeneous of
degree −(Q− 2α− 2k)/2. Since Rf/|x|1+α is in L2(G), this implies that Rf = 0.
Consequently, we must also have f = 0. �

Theorem 3.1.13 implies further identities and inequalities.

Theorem 3.1.14 (Further higher-order Rellich type identities and inequalities).
Let G be a homogeneous group of homogeneous dimension Q with a homogeneous
quasi-norm | · |. Let k, l ∈ N be such that Q ≥ 4k + 1 and k ≥ l + 1. Then for all
complex-valued functions f ∈ C∞

0 (G\{0}) we have∥∥∥∥∥R̃kf

|x|α
∥∥∥∥∥
2

L2(G)

=
4

(Q − 2α)2

(
k−l−1∏
i=0

Q2 − 4(2i+ α)2

4

)2 ∥∥∥∥∥ RR̃lf

|x|2(k−l)−1+α

∥∥∥∥∥
2

L2(G)

+

(
k−l−2∏
i=0

C2i+α

)2
∥∥∥∥∥∥
∣∣∣R2R̃lf + Q+2−4(k−l)−2α

2|x| RR̃lf
∣∣∣

|x|2(k−l−1)+α

∥∥∥∥∥∥
2

L2(G)

+

∥∥∥∥∥∥
∣∣∣R̃kf + Cα

R̃k−1f
|x|2

∣∣∣
|x|α

∥∥∥∥∥∥
2

L2(G)

+
k−l−2∑
j=1

(
j−1∏
i=0

C2i+α

)2 ∥∥∥∥∥∥
∣∣∣R̃k−jf + C2j+α

R̃k−j−1f
|x|2

∣∣∣
|x|2j+α

∥∥∥∥∥∥
2

L2(G)

+ 2Cα

∥∥∥∥∥∥
∣∣∣R(R̃k−1f) + Q−4−2α

2|x| R̃k−1f
∣∣∣

|x|1+α

∥∥∥∥∥∥
2

L2(G)
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+ 2
k−l−2∑
j=1

(
j−1∏
i=0

C2i+α

)2

C2j+α

∥∥∥∥∥∥
∣∣∣R(R̃k−j−1f) + Q−4−2α−4j

2|x| R̃k−j−1f
∣∣∣

|x|1+2j+α

∥∥∥∥∥∥
2

L2(G)

(3.45)

and∥∥∥∥∥RR̃kf

|x|α
∥∥∥∥∥
2

L2(G)

=

(
k−l−1∏
i=0

Q2 − 4(1 + 2i+ α)2

4

)2 ∥∥∥∥∥ RR̃lf

|x|2(k−l)+α

∥∥∥∥∥
2

L2(G)

+
(Q− 2− 2α)2

4

(
k−l−2∏
i=0

C2i+1+α

)2
∥∥∥∥∥∥
∣∣∣R2R̃lf + Q+2−4(k−l)−2α

2|x| RR̃lf
∣∣∣

|x|2(k−l−1)+1+α

∥∥∥∥∥∥
2

L2(G)

+
(Q− 2− 2α)2

4

∥∥∥∥∥∥
∣∣∣R̃kf + Cα

R̃k−1f
|x|2

∣∣∣
|x|α

∥∥∥∥∥∥
2

L2(G)

+
(Q− 2− 2α)2

4

k−l−2∑
j=1

(
j−1∏
i=0

C2i+1+α

)2
∥∥∥∥∥∥
∣∣∣R̃k−jf + C2j+1+α

R̃k−j−1f
|x|2

∣∣∣
|x|2j+α+1

∥∥∥∥∥∥
2

L2(G)

+ 2C1+α
(Q− 2− 2α)2

4

∥∥∥∥∥∥
∣∣∣R(R̃k−1f) + Q−6−2α

2|x| R̃k−1f
∣∣∣

|x|2+α

∥∥∥∥∥∥
2

L2(G)

+ 2
(Q− 2− 2α)2

4

k−l−2∑
j=1

(
j−1∏
i=0

C2i+1+α

)2

C2j+1+α

×
∥∥∥∥∥∥
∣∣∣R(R̃k−j−1f) + Q−6−2α−4j

2|x| R̃k−j−1f
∣∣∣

|x|1+2j+α

∥∥∥∥∥∥
2

L2(G)

+

∥∥∥∥∥∥
∣∣∣RR̃kf + Q−2−2α

2
R̃kf
|x|

∣∣∣
|x|α

∥∥∥∥∥∥
2

L2(G)

. (3.46)

As consequences, we have the following weighted Rellich type inequalities for
all complex-valued functions f ∈ C∞

0 (G\{0}):
(1) For any α ∈ (−Q/2, (Q− 4(k− l− 1))/2) if k ≥ l+2 and α ∈ R if k = l+1,

we have

4

(Q − 2α)2

(
k−l−1∏
i=0

Q2 − 4(2i+ α)2

4

)2 ∥∥∥∥∥ RR̃lf

|x|2(k−l)−1+α

∥∥∥∥∥
2

L2(G)

≤
∥∥∥∥∥R̃kf

|x|α
∥∥∥∥∥
2

L2(G)

.

(3.47)
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(2) For any α ∈ (−(Q + 2)/2, (Q − 4(k − l) + 2)/2) if k ≥ l + 2 and α ∈ R if
k = l + 1, we have(

k−l−1∏
i=0

Q2 − 4(1 + 2i+ α)2

4

)2 ∥∥∥∥∥ RR̃lf

|x|2(k−l)+α

∥∥∥∥∥
2

L2(G)

≤
∥∥∥∥∥RR̃kf

|x|α
∥∥∥∥∥
2

L2(G)

.

(3.48)

Moreover, inequalities (3.47) and (3.48) are sharp and there is an equality in each
of them if and only if f = 0.

Proof of Theorem 3.1.14. Let g := R̃k+1f . Applying (3.38) to R̃k−l−1g and then
Theorem 3.1.13 to R̃R̃lf , one obtains equality (3.45). Note that

Q+ 4(k − l − 1) + 2α

2

k−l−2∏
i=0

C2i+α =
2

Q− 2α

k−l−1∏
i=0

Q2 − 4(2i+ α)2

4
.

By applying Theorem 3.1.1 to RR̃kf , and then using (3.45) for R̃kf with weights
|x|2(1+α), together with the equality

Q− 2− 2α

2

(Q + 4(k − l − 1) + 2 + 2α)2

4

k−l−2∏
i=0

C2i+α =

k−l−1∏
i=0

Q2 − 4(1 + α+ 2i)2

4
,

we also obtain (3.46).

Consequently, inequalities (3.47) and (3.48) follow from respective identities
(3.45) and (3.46) by dropping non-negative remainder terms on the right-hand
side. The sharpness of (3.47) and (3.48) follows by considering, respectively, as in
the previous theorems, approximations of the function r−(Q−2α−4k)/2 and of the
function r−(Q−2α−2−4k)/2.

If for some function f we have the equality in (3.47), then (3.45) implies that
we have

R(R̃k−1f) +
Q− 4− 2α

2|x| R̃k−1f = 0.

This means that

E(R̃k−1f) = −Q− 4− 2α

2
R̃k−1f.

By Proposition 1.3.1, Part (i), it follows that R̃k−1f is positively homogeneous of
order−(Q−4−2α)/2. Since R̃k−1f/|x|2α ∈ L2(G), we then must have R̃k−1f = 0,
which in turn implies f = 0. The same arguments also work for (3.48). �

Using the established theorems, as a corollary one gets the following weighted
Lp-Hardy–Rellich type identities which will, in turn, imply the corresponding in-
equalities.
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Theorem 3.1.15 (Higher-order weighted Lp-Hardy–Rellich type identities). Let G
be a homogeneous group of homogeneous dimension Q, with a homogeneous quasi-
norm | · | on G. Let k ∈ N be a positive integer, let 1 < p < Q/k, and let α ∈ R.
Then for all complex-valued functions f ∈ C∞

0 (G\{0}) we have the identities:

(1) If k = 2l, l ≥ 2, then∥∥∥∥ R̃lf

|x|α
∥∥∥∥p

Lp(G)

=

∣∣∣∣∣
l−1∏
i=0

Cp,2i+α

∣∣∣∣∣
p ∫

G

|f |p
|x|p(k+α)

dx+ p

∫
G

1

|x|pαRp

(
Cp,α

R̃l−1f

|x|2 ,−R̃lf

)
dx

+ p
l−1∑
j=1

∣∣∣∣∣
j−1∏
i=0

Cp,2i+α

∣∣∣∣∣
p ∫

G

1

|x|p(2j+α)
Rp

(
Cp,2j+α

R̃l−j−1f

|x|2 ,−R̃l−jf

)
dx

+Bp,α(p− 1)

∫
G

|R̃l−1f |p−2

|x|p(2j+α)−2

∣∣∣∣R|R̃l−1f |+ Q− p(2 + α)

p|x| |R̃l−1f |
∣∣∣∣2 dx

+Bp,α

∫
G

|R̃l−1f |p−4(Im(R̃l−1fRR̃l−1f))2

|x|p(2+α)−2
dx (3.49)

+

l−1∑
j=1

∣∣∣∣∣
j−1∏
i=0

Cp,2i+α

∣∣∣∣∣
p

Bp,α+2j

∫
G

|R̃l−j−1f |p−4(Im(R̃l−j−1fRR̃l−j−1f))2

|x|p(2(j+1)+α)−2
dx

+ (p− 1)

∫
G

|R̃l−j−1f |p−2

|x|p(2(j+1)+α)−2

∣∣∣∣R|R̃l−j−1f |+ Q− p(2(j + 1) + α)

p|x| |R̃l−j−1f |
∣∣∣∣2 dx,

where Rp is as in (2.22), i.e.,

Rp(ξ, η) :=
1

p
|η|p + p− 1

p
|ξ|p − Re(|ξ|p−2ξη),

as well as

Bp,α+2j = p|Cp,α+2j |p−2Cp,α+2j ,

and

Cp,α =
(Q− 2p− pα)(Q + p′α)

pp′
, p′ =

p

p− 1
.

(2) If k = 2l + 1, l ≥ 1, then

∥∥∥∥R(R̃lf)

|x|α
∥∥∥∥p

Lp(G)

=

∣∣∣∣Q− p(1 + α)

p

∣∣∣∣p
∣∣∣∣∣
l−1∏
i=0

Cp,2i+1+α

∣∣∣∣∣
p ∫

G

|f |p
|x|p(k+α)

dx

+ p

∫
G

1

|x|pαRp

(
−Q− p(1 + α)

p

R̃lf

|x| ,RR̃lf

)
dx

+ Ap,α

∫
G

1

|x|p(1+α)
Rp

(
Cp,1+α

R̃l−1f

|x|2 ,−R̃lf

)
dx
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+ Ap,α

l−1∑
j=1

∣∣∣∣∣
j−1∏
i=0

Cp,2i+1+α

∣∣∣∣∣
p ∫

G

1

|x|p(2j+1+α)
Rp

(
Cp,2j+1+α

R̃l−j−1f

|x|2 ,−R̃l−jf

)
dx

+ Ap,α
Bp,α+1

p

[
(p− 1)

∫
G

|R̃l−1f |p−2

|x|p(3+α)−2

∣∣∣∣R|R̃l−1f |+ Q− p(3 + α)

p|x| |R̃l−1f |
∣∣∣∣2 dx

]

+ Ap,α
Bp,α+1

p

[∫
G

|R̃l−1f |p−4(Im(R̃l−1fRR̃l−1f))2

|x|p(3+α)−2
dx

]
(3.50)

+ Ap,α

l−1∑
j=1

∣∣∣∣∣
j−1∏
i=0

Cp,2i+1+α

∣∣∣∣∣
p

Bp,α+2j+1

p

[ ∫
G

|R̃l−j−1f |p−4(Im(R̃l−j−1fRR̃l−j−1f))2

|x|p(2j+3+α)−2
dx

+ (p− 1)

∫
G

|R̃l−j−1f |p−2

|x|p(2j+3+α)−2

∣∣∣∣R|R̃l−j−1f |+ Q− p(2j + 3 + α)

p|x| |R̃l−j−1f |
∣∣∣∣2 dx

]
,

where Ap,α = p
∣∣∣Q−p(1+α)

p

∣∣∣p.
Proof of Theorem 3.1.15. The equality (3.49) follows from (3.25). The equality
(3.50) is consequence of (3.49) and (3.32). Note that in (3.50), if k = 2l+1, l ≥ 1,
then the terms concerning the sum from 1 to l − 1 do not appear if l = 1. �

By dropping the non-negative remainder terms in (3.49) and (3.50), we obtain
the following higher-order weighted Lp-Hardy–Rellich type inequalities.

Corollary 3.1.16 (Higher-order weighted Lp-Hardy–Rellich type inequalities). Let
G be a homogeneous group of homogeneous dimension Q and let | · | be a homo-
geneous quasi-norm on G. Then for any α ∈ R and all complex-valued functions
f ∈ C∞

0 (G\{0}) we have:

(1) if 1 < p < Q/2k and α ∈ (−Q(p− 1))/p, (Q− 2pk)/p), then(
k−1∏
i=0

Cp,2i+α

)∥∥∥∥ f

|x|(2k+α)

∥∥∥∥
Lp(G)

≤
∥∥∥∥∥R̃kf

|x|α
∥∥∥∥∥
Lp(G)

. (3.51)

(2) if 1 < p < Q/(2k + 1) and α ∈ (−(Q+ p′)/p′, (Q− p(2k + 1))/p), then

Q− p(1 + α)

p

(
k−1∏
i=0

Cp,2i+1+α

)∥∥∥∥ f

|x|(2k+1+α)

∥∥∥∥
Lp(G)

≤
∥∥∥∥∥RR̃kf

|x|α
∥∥∥∥∥
Lp(G)

.

(3.52)

In the above inequalities

Cp,α =
(Q − 2p− pα)(Q + p′α)

pp′
, p′ =

p

p− 1
.

Inequalities (3.51) and (3.52) are sharp and equalities hold in each of them if and
only if f = 0.
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Proof of Corollary 3.1.16. Inequalities (3.51) and (3.52) are immediate consequen-
ces of equalities (3.49) and (3.50), respectively, since Cp,2i+α+1 ≥ 0 for 0 ≤ i ≤ k−1
under the respective assumptions on indices. The sharpness of constants in (3.51)
and (3.52) can be checked by approximating the function r−(Q−p(2k+α))/p and the
function r−(Q−p(2k+1+α))/p, respectively, by smooth compactly supported func-
tions. Moreover, if for some function f an equality holds in any of these inequal-
ities, then it follows from Theorem 3.1.15 that |f | is positively homogeneous of
degree −(Q−p(2k+α))/p and −(Q−p(2k+1+α))/p, respectively, which implies
that f = 0 in view of the condition of Lp integrability. �

As usual, Hardy inequalities imply the corresponding uncertainty principles.

Corollary 3.1.17 (Higher-order Hardy–Rellich uncertainty principles). Let G be a
homogeneous group of homogeneous dimension Q and let | · | be a homogeneous
quasi-norm on G. Let k ∈ N be a positive integer and let p > 1. Then for all
complex-valued functions f ∈ C∞

0 (G\{0}) we have:

(1) if k = 2l, l ≥ 1, and α ∈ (−Q(p− 1)/p), (Q− 2pl)/p), then(
l−1∏
i=0

Cp,2i+α

)∫
G

|f |2dx ≤
(∫

G

|R̃lf |p
|x|pα dx

) 1/p(∫
G

|f |p′ |x|p′(2l+α)dx

)1/p′

.

(3.53)

(2) if k = 2l + 1, l ≥ 0, and α ∈ (−(Q + p′)/p′, (Q − p(2l + 1))/p) if l ≥ 1 and
α ∈ R if l = 0, then∣∣∣∣∣

Q−p(1+α)
p

Cp,2l+1+α

l∏
i=0

Cp,2i+1+α

∣∣∣∣∣
∫
G

|f |2dx

≤
(∫

G

|RR̃lf |p
|x|pα dx

) 1/p(∫
G

|f |p′ |x|p′(2l+1+α)dx

) 1/p′

.

(3.54)

Proof of Corollary 3.1.17. By the Hölder inequality, we have∫
G

|f |2dx =

∫
G

|f |
|x|2l+α

|f ||x|2l+αdx ≤
(∫

G

|f |p
|x|p(2l+α)

dx

)1
p
(∫

G

|f |p′ |x|p′(2l+α)dx

)1
p′
.

Further, applying inequality (3.51) to this, we get (3.53) with C2i+α > 0 for
0 ≤ i ≤ l − 1 and α ∈ (−Q(p − 1)/p, (Q − 2pl)/p). Inequality (3.54) is proved in
the same way. �

Combining Corollary 3.28 and Theorem 2.24, we obtain the weighted
Lp-Rellich type inequality below which is an Lp-analogue of Theorem 3.1.14.

Theorem 3.1.18 (Higher-order Lp-weighted Rellich identities and inequalities).
Let G be a homogeneous group of homogeneous dimension Q and let | · | be any
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homogeneous quasi-norm on G. Let k, l ∈ N be non-negative integers such that
k ≥ l + 1 and let p > 1. Then for any α ∈ R and for all complex-valued functions
f ∈ C∞

0 (G\{0}) we have∥∥∥∥∥R̃kf

|x|α
∥∥∥∥∥
p

Lp(G)

=
pp

|Q− pα|p
∣∣∣∣∣
k−l−1∏
i=0

(Q − p(2i+ α))(Q + p′(2i+ α))

pp′

∣∣∣∣∣
p ∫

G

|RR̃lf |p
|x|p(2(k−l)−1+α)

dx

+ p

∣∣∣∣∣
k−l−2∏
i=0

Cp,2i+α

∣∣∣∣∣
p ∫

G

Rp

(
Q+p′(2(k−l−1)+α)

p′
RR̃lf
|x| , R̃l+1f

)
|x|p(2(k−l−1)+α)

dx

+ p

∫
G

Rp

(
−Cp,α

R̃k−1f
|x|2 , R̃kf

)
|x|pα dx

+ p

k−l−2∑
j=1

∣∣∣∣∣
j−1∏
i=0

Cp,2i+α

∣∣∣∣∣
p ∫

G

Rp

(
−Cp,2j+α

R̃k−j−1f
|x|2 , R̃k−jf

)
|x|p(2j+α)

dx

+Bp,α(p− 1)

∫
G

|R̃k−1f |p−2

|x|p(2+α)−2

∣∣∣∣R|R̃k−1f |+ Q− p(2 + α)

p|x| |R̃k−1f |
∣∣∣∣2 dx

+Bp,α

∫
G

|R̃k−1f |p−4(Im(R̃l−1fRR̃k−1f))2

|x|p(2+α)−2
dx

+

k−l−2∑
j=1

∣∣∣∣∣
j−1∏
i=0

Cp,2i+α

∣∣∣∣∣
p

Bp,α+2j

∫
G

|R̃k−j−1f |p−4(Im(R̃k−j−1fRR̃k−j−1f))2

|x|p(2(j+1)+α)−2
dx

+ (p− 1)

∫
G

|R̃k−j−1f |p−2

|x|p(2(j+1)+α)−2

∣∣∣R|R̃k−j−1f |

+
Q− p(2(j + 1) + α)

p|x| |R̃k−j−1f |
∣∣∣∣2 dx, (3.55)

where Rp is as in (2.22):

Rp(ξ, η) :=
1

p
|η|p + p− 1

p
|ξ|p − Re(|ξ|p−2ξη),

Bp,α+2j = p|Cp,α+2j |p−2Cp,α+2j ,

and

Cp,α =
(Q − 2p− pα)(Q + p′α)

pp′
, p′ =

p

p− 1
.
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We also have∥∥∥∥∥RR̃kf

|x|α
∥∥∥∥∥
p

Lp(G)

=

∣∣∣∣∣
k−l−1∏
i=0

(Q− p(2i+ 1 + α))(Q + p′(2i+ 1 + α))

pp′

∣∣∣∣∣
p ∫

G

|RR̃lf |p
|x|p(2(k−l)−1+α)

dx

+Ap,α

∣∣∣∣∣
k−l−2∏
i=0

Cp,2i+1+α

∣∣∣∣∣
p ∫

G

Rp

(
Q+p′(2(k−l)−1+α)

p′
RR̃lf
|x| , R̃l+1f

)
|x|p(2(k−l)−1+α)

dx

+Ap,α

∫
G

Rp

(
−Cp,1+α

R̃k−j−1f
|x|2 , R̃k−jf

)
|x|p(1+α)

dx

+Ap,α

k−l−2∑
j=1

∣∣∣∣∣
j−1∏
i=0

Cp,2i+1+α

∣∣∣∣∣
p ∫

G

Rp

(
−Cp,2j+1+α

R̃k−j−1f
|x|2 , R̃k−jf

)
|x|p(2j+1+α)

dx

+Ap,α|Bp,α+1

p
(p− 1)

∫
G

|R̃k−1f |p−2

|x|p(3+α)−2

∣∣∣∣R|R̃k−1f |+ Q− p(3 + α)

p|x| |R̃k−1f |
∣∣∣∣2 dx

+Ap,α
Bp,α+1

p

∫
G

|R̃k−1f |p−4(Im(R̃k−1fRR̃k−1f))2

|x|p(3+α)−2
dx

+Ap,α

k−l−2∑
j=1

∣∣∣∣∣
j−1∏
i=0

Cp,2i+1+α

∣∣∣∣∣
p

Bp,2j+α+1

p

×
∫
G

|R̃k−j−1f |p−4(Im(R̃k−j−1fRR̃k−j−1f))2

|x|p(2(j+1)+1+α)−2
dx

+ (p− 1)

∫
G

|R̃k−j−1f |p−2

|x|p(2(j+1)+1+α)−2

×
∣∣∣∣R|R̃k−j−1f |+ Q− p(2(j + 1) + α)

p|x| |R̃k−j−1f |
∣∣∣∣2 dx

+ p

∫
G

1

|x|pαRp

(
−Q− p− pα

p

R̃kf

|x| ,RR̃kf

)
dx, (3.56)

where

Ap,α = p

∣∣∣∣Q − p(1 + α)

p

∣∣∣∣p .
Consequently, we obtain the following inequalities for all functions f ∈C∞

0 (G\{0}):
for any α ∈ (−Q(p− 1)/p, (Q− 2p(k − l − 1))/2) if k − l ≥ 2 and for any α ∈ R
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if k = l + 1, we have

p

|Q− pα|

∣∣∣∣∣
k−l−1∏
i=0

(Q − p(2i+ α))(Q + p′(2i+ α))

pp′

∣∣∣∣∣
∥∥∥∥∥ RR̃lf

|x|(2(k−l)−1+α)

∥∥∥∥∥
Lp(G)

≤
∥∥∥∥∥R̃kf

|x|α
∥∥∥∥∥
Lp(G)

;

(3.57)

and for any α ∈ (−(Q + p′)/p′, (Q − p(2(k − l − 1) + 1))/p) if k − l ≥ 2 and for
any α ∈ R if k = l + 1, we have∣∣∣∣∣

k−l−1∏
i=0

(Q− p(2i+ 1 + α))(Q + p′(2i+ 1 + α))

pp′

∣∣∣∣∣
∥∥∥∥∥ RR̃lf

|x|(2(k−l)−1+α)

∥∥∥∥∥
Lp(G)

≤
∥∥∥∥∥RR̃kf

|x|α
∥∥∥∥∥
Lp(G)

.

(3.58)

Moreover, these inequalities (3.57) and (3.58) are sharp and equality in any of
them holds if and only if f = 0.

Now let us present an extension of the critical Hardy inequality to the higher-
order derivatives. To do this, still following [Ngu17] until the end of this section,
we present a critical Rellich inequality for R̃ as follows.

Theorem 3.1.19 (Critical Rellich identity and inequality for R̃). Let G be a ho-
mogeneous group of homogeneous dimension Q ≥ 3 and let | · | be a homogeneous
quasi-norm on G. Let f ∈ C∞

0 (G\{0}) be any complex-valued function and denote

fR(x) := f(Rx/|x|)
for any x ∈ G and R > 0. Then we have∥∥∥∥∥ R̃f

|x|Qp −2

∥∥∥∥∥
p

Lp(G)

=

(
(p− 1)(Q− 2)

p

)p ∫
G

|f − fR|p
|x|Q

∣∣∣ln R
|x|
∣∣∣p dx

+ p

∫
G

1

|x|Q−2p
Rp

(
(Q− 2)

Rf

|x| , R̃f

)
dx

+ p(Q− 2)p
∫
G

1

|x|Q−p
Rp

(
−p− 1

p

f − fR

|x| ln R
|x|

,Rf

)
dx,

(3.59)

for any 1 < p < ∞ and any R > 0. Here Rp is as in (2.22). As a consequence,
for all complex-valued functions f ∈ C∞

0 (G\{0}) we have

(p− 1)(Q− 2)

p
sup
R>0

∥∥∥∥∥∥ f − fR

|x|Qp
∣∣∣ln R

|x|
∣∣∣
∥∥∥∥∥∥
Lp(G)

≤
∥∥∥∥∥ R̃f

|x|Qp −2

∥∥∥∥∥
Lp(G)

, 1 < p < ∞, (3.60)

with the constant sharp (p− 1)(Q− 2)/p.
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Proof of Theorem 3.1.19. Let 1 < p < ∞. Let us first restate equality (2.48) in
the form∫

G

|Rf |p
|x|Q−p

dx =

(
p− 1

p

)p ∫
G

|f − fR|p
|x|Q| ln R

|x| |p
dx

+ p

∫
G

1

|x|Q−p
Rp

(
−p− 1

p

f − fR

|x| ln R
|x|

,Rf

)
dx,

(3.61)

for any R > 0. It follows from Theorem 3.1.7 for α = (Q− 2p)/p that∫
G

|R̃f |p
|x|Q−2p

dx = (Q− 2)p
∫
G

|Rf |p
|x|Q−p

dx

+ p

∫
G

1

|x|Q−2p
Rp

(
(Q− 2)

Rf

|x| , R̃f

)
dx.

(3.62)

The combination of (3.61) and (3.62) gives (3.59), which in turn implies (3.60).

Let us now check the sharpness of (3.60). For small enough ε, δ > 0 and for
R > 2, let us define the function

fδ(x) :=

(
ln

R

|x|
)1− 1

p−δ

g(|x|),

where g is the function as in the proof of Theorem 3.1.4. A straightforward calcu-
lation gives

Rfδ(r) = −
(
1− 1

p
− δ

)
1

r

(
ln

R

r

)− 1
p−δ

g(r) +

(
ln

R

r

)1− 1
p−δ

g′(r)

and

R2fδ(r) = − 2

(
1− 1

p
− δ

)
1

r

(
ln

R

r

)− 1
p−δ

g′(r)

−
(
1− 1

p
− δ

)(
1

p
+ δ

)
1

r2

(
ln

R

r

)−1− 1
p−δ

g(r)

+

(
1− 1

p
− δ

)
1

r2

(
ln

R

r

)− 1
p−δ

g(r) +

(
ln

R

r

)1− 1
p−δ

g′′(r).

Therefore, we have

R̃fδ(r) = − 2

(
1− 1

p
− δ

)
1

r

(
ln

R

r

)− 1
p−δ

g′(r)

− (Q− 2)

(
1− 1

p
− δ

)
1

r2

(
ln

R

r

)− 1
p−δ

g(r)

−
(
1− 1

p
− δ

)(
1

p
+ δ

)
1

r2

(
ln

R

r

)−1− 1
p−δ

g(r) +

(
ln

R

r

)1− 1
p−δ

R̃g(r).
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Since (fδ)R = 0 we obtain∫
G

|fδ − (fδ)R|p
|x|Q|| ln R

|x| |p
dx = |℘|

∫ 2

0

1

r
(lnR− ln r)−1−δpg(r)pdr

≥ |℘|
∫ 1

0

1

r
(lnR− ln r)−1−δpdr

=
1

δp
(lnR)pσ|℘|.

Thus,

lim
δ→0

∫
G

|fδ − (fδ)R|p
|x|Q|| ln R

|x| |p
dx = ∞.

At the same time, direct calculations also give∫
G

1

|x|Q−2p

∣∣∣∣∣ 1|x|
(
ln

R

|x|
)− 1

p−δ

g′(|x|)
∣∣∣∣∣
p

dx = O(1),

∫
G

1

|x|Q−2p

∣∣∣∣∣ 1

|x|2
(
ln

R

|x|
)−1− 1

p−δ

g(|x|)
∣∣∣∣∣
p

dx = O(1),

∫
G

1

|x|Q−2p

∣∣∣∣∣
(
ln

R

|x|
)1− 1

p−δ

R̃g(|x|)
∣∣∣∣∣
p

dx = O(1),

and∫
G

1

|x|Q−2p

∣∣∣∣∣ 1|x|
(
ln

R

|x|
)− 1

p−δ

g′(|x|)
∣∣∣∣∣
p

dx = |℘|
∫ 2

0

1

r
(lnR− ln r)−1−δpg(r)pdr

=

∫
G

|fδ − (fδ)R|p
|x|Q|| ln R

|x| |p
dx

Consequently, we obtain

lim
δ→0

∫
G

|R̃fδ|p
|x|Q−2p dx∫

G

|fδ−(fδ)R|p
|x|Q|| ln R

|x| |p
dx

=

(
(p− 1)(Q− 2)

p

)p

.

This proves the sharpness of (3.60). �

Consequently, the following identities hold true.

Theorem 3.1.20 (Higher-order critical Rellich identities for R̃). Let G be a homo-
geneous group of homogeneous dimension Q ≥ 3 and let | · | be a homogeneous
quasi-norm on G. Let f ∈ C∞

0 (G\{0}) be any complex-valued function and denote

fR(x) := f(Rx/|x|)
for x ∈ G and R > 0.
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Then for 2 ≤ k < Q/2 we have∥∥∥∥∥ R̃kf

|x|Qp −2k

∥∥∥∥∥
p

Lp(G)

=

(
Q− 2

p′

)p
(

k−1∏
i=1

ai,Q

)p ∫
G

|f − fR|p
|x|Q|

∣∣∣ln R
|x|
∣∣∣p dx (3.63)

+ p

(
k−1∏
i=1

ai,Q

)p ∫
G

1

|x|Q−2p
Rp

(
(Q − 2)

Rf

|x| , R̃f

)
dx

+ p(Q− 2)p

(
k−1∏
i=1

ai,Q

)p ∫
G

1

|x|Q−p
Rp

(
−p− 1

p

f − fR

|x| ln R
|x|

,Rf

)
dx

+ p

∫
G

1

|x|Q−2kp
Rp

(
−ak−1,Q

R̃k−1f

|x|2 , R̃kf

)
dx

+ p

k−2∑
j=1

(
k−1∏
i=1

ai,Q

)p ∫
G

1

|x|Q−2(k−j)p
Rp

(
−ak−j−1,Q

R̃k−j−1f

|x|2 , R̃k−jf

)
dx

+ pap−1
k−1,Q(p− 1)

∫
G

|R̃k−1f |p−2

|x|Q−2(k−1)p−2

∣∣∣∣R|R̃k−1f |+ 2(k − 1)

|x| |R̃k−1f |
∣∣∣∣2 dx

+ pap−1
k−1,Q

∫
G

|R̃k−1f |p−4(Im(R̃k−1fRR̃k−1f))2

|x|Q−2(k−1)p−2
dx

+ p

l−1∑
j=1

⎛⎝ k−1∏
i=k−j

ak−i−1,Q

⎞⎠p

ap−1
k−i−1,Q

×
∫
G

|R̃k−j−1f |p−4(Im(R̃k−j−1fRR̃k−j−1f))2

|x|Q−2(k−j−1)p−2

+ p

l−1∑
j=1

⎛⎝ k−1∏
i=k−j

ak−i−1,Q

⎞⎠p

ap−1
k−i−1,Q(p− 1)

×
∫
G

|R̃k−j−1f |p−2

|x|Q−2(k−j−1)p−2

∣∣∣∣R|R̃k−j−1f |+ Q− 2p(2(j + 1) + α)

p|x| |R̃k−j−1f |
∣∣∣∣2 dx,

where
aj,Q = 2j(Q− 2j − 2)

and Rp is as in (2.22). For 1 ≤ k < (Q − 1)/2 we also have∥∥∥∥∥ RR̃kf

|x|Qp −(2k+1)

∥∥∥∥∥
p

Lp(G)

= (2k)p
(
(p− 1)(Q − 2)

p

)p
(

k−1∏
i=1

ai,Q

)p ∫
G

|f − fR|p
|x|Q

∣∣∣ln R
|x|
∣∣∣p dx

+ p(2k)p

(
k−1∏
i=1

ai,Q

)p ∫
G

1

|x|Q−2p
Rp

(
(Q− 2)

Rf

|x| , R̃f

)
dx
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+ p(2k)p(Q− 2)p

(
k−1∏
i=1

ai,Q

)p ∫
G

1

|x|Q−p
Rp

(
−p− 1

p

f − fR

|x| ln R
|x|

,Rf

)
dx

+ p(2k)p
∫
G

1

|x|Q−2kp
Rp

(
−ak−1,Q

R̃k−1f

|x|2 , R̃kf

)
dx

+ p(2k)p
k−2∑
j=1

⎛⎝ k−1∏
i=k−j

ai,Q

⎞⎠p∫
G

1

|x|Q−2(k−j)p
Rp

(
−ak−j−1,Q

R̃k−j−1f

|x|2 , R̃k−jf

)
dx

+ p(2k)pap−1
k−1,Q(p− 1)

∫
G

|R̃k−1f |p−2

|x|Q−2(k−1)p−2

∣∣∣∣R|R̃k−1f |+ 2(k − 1)

|x| |R̃k−1f |
∣∣∣∣2 dx

+ p(2k)pap−1
k−1,Q

∫
G

|R̃k−1f |p−4(Im(R̃k−1fRR̃k−1f))2

|x|Q−2(k−1)p−2
dx

+ p(2k)p
k−2∑
j=1

(
k−1∏
i=1

ak−i−1,Q

)p

ap−1
k−i−1,Q

×
∫
G

|R̃k−j−1f |p−4(Im(R̃k−j−1fRR̃k−j−1f))2

|x|Q−2(k−j−1)p−2
dx

+ p(2k)p
k−2∑
j=1

(
k−1∏
i=1

ak−i−1,Q

)p

ap−1
k−i−1,Q(p− 1)

×
∫
G

|R̃k−j−1f |p−2

|x|Q−2(k−j−1)p−2

∣∣∣∣R|R̃k−j−1f |+ Q− 2p(2(j + 1) + α)

p|x| |R̃k−j−1f |
∣∣∣∣2 dx

+ p

∫
G

1

|x|Q−(2k+1)p
Rp

(
−2k

R̃kf

|x| ,RR̃kf

)
dx. (3.64)

Proof of Theorem 3.1.20. Denoting g = R̃f and applying (3.49) to the function g
with l = k − 1, and then using (3.59), we arrive at (3.63). To prove (3.64) we use
Theorem 2.1.8 with α = (Q− 2(k + 1)p)/p which gives∥∥∥∥∥ RR̃kf

|x|Qp −(2k+1)

∥∥∥∥∥
p

Lp(G)

= (2k)p
∫
G

|R̃kf |p
|x|Q−2kp

dx

+ p

∫
G

1

|x|Q−(2k+1)p
Rp

(
−2k

R̃kf

|x| ,RR̃kf

)
dx.

(3.65)

Now, the combination of (3.65) and (3.63) implies (3.64). �

As a consequence of Theorem 3.1.20 we have the corresponding inequalities.

Corollary 3.1.21 (Higher-order critical Rellich inequalities for R̃). Let G be a ho-
mogeneous group of homogeneous dimension Q ≥ 3 and let | · | be a homogeneous
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quasi-norm on G. Let f ∈ C∞
0 (G\{0}) be any complex-valued function and denote

fR(x) := f(Rx/|x|)

with x ∈ G and R > 0. Let 1 < p < ∞. Then for any 2 ≤ k < Q/2 we have

2k−1(k − 1)!(p− 1)

p

k−1∏
i=0

(Q− 2i− 2) sup
R>0

∥∥∥∥∥∥ f − fR

|x|Qp
∣∣∣ln R

|x|
∣∣∣
∥∥∥∥∥∥
Lp(G)

≤
∥∥∥∥∥ R̃f

|x|Qp −2k

∥∥∥∥∥
Lp(G)

.

(3.66)
Furthermore, for any 1 ≤ k ≤ (Q− 1)/2 we have

2kk!(p− 1)

p

k−1∏
i=0

(Q− 2i− 2) sup
R>0

∥∥∥∥∥∥ f − fR

|x|Qp
∣∣∣ln R

|x|
∣∣∣
∥∥∥∥∥∥
Lp(G)

≤
∥∥∥∥∥ RR̃kf

|x|Qp −2(k+1)

∥∥∥∥∥
Lp(G)

.

(3.67)
Moreover, the constants in inequalities (3.66) and (3.67) are sharp.

Proof of Corollary 3.1.21. Inequalities (3.66) and (3.67) are immediate consequen-
ces of identities (3.63) and (3.64), respectively, since we have ai,Q ≥ 0 for 1 ≤ i ≤
k − 1, as well as the equalities

(Q − 2)(p− 1)

p

k−1∏
i=1

ai,Q =
2k−1(k − 1)!

p′

k−1∏
i=0

(Q− 2i− 2),

and
2k(Q− 2)(p− 1)

p

k−1∏
i=1

ai,Q =
2kk!(p− 1)

p

k−1∏
i=0

(Q − 2i− 2).

To show the sharpness of the constants in (3.66) and (3.67) we can use the same
argument as in the proof of Theorem 3.1.19 with the test function

fδ(x) :=

(
ln

R

|x|
)1− 1

p−δ

g(|x|).

This completes the proof. �
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3.2 Sobolev type inequalities

In this section we restate some of Hardy inequalities from the previous chapter in
terms of the Euler operator E from Section 1.3.2, relating them to Sobolev type
inequalities. We also briefly recast some of their proofs for the convenience of the
reader since fixing the notation in terms of the Euler and radial operators will be
useful in further arguments, especially for the analysis in Chapter 10.

The classical Sobolev inequality in Rn has the form

‖g‖Lp(Rn) ≤ C(p)‖∇g‖Lp∗(Rn), 1 < p, p∗ < ∞, (3.68)

where ∇ is the standard gradient in Rn and

1

p
=

1

p∗
− 1

n
.

The aim of this section is to discuss another version of the Sobolev inequality (we
call it Sobolev type inequality) with respect to the operator x ·∇ instead of ∇, that
is, the inequality

‖g‖Lp(Rn) ≤ C′(p)‖x · ∇g‖Lq(Rn). (3.69)

For any λ > 0, by setting g(x) = h(λx) in (3.69), it is straightforward to see that
p = q is a necessary condition to have inequality (3.69). So, one may concentrate
on the case p = q. In the case of Rn this inequality was analysed by Ozawa and
Sasaki [OS09], now we concentrate on the setting of general homogeneous groups.

We also note that the classical Sobolev inequality (3.68) can be extended to
nilpotent Lie groups: for stratified groups see Folland [Fol75], for graded groups
see [FR17], with a general summary presented also in [FR16], and for another
version on general homogeneous groups see Section 4.3.

3.2.1 Hardy and Sobolev type inequalities

The inequality (3.70) below is such an extension of (3.69) formulated in terms of
the Euler operator E. Moreover, it turns out to be possible to derive a formula
for the remainder in this inequality. For indices 1 < p < Q this Sobolev type
inequality implies the Hardy inequality and for p = 2 they are equivalent. All this
is the subject of the following statement, an analogue of Theorem 2.1.1.

In this section, unless stated otherwise, G is a homogeneous group of homo-
geneous dimension Q ≥ 1 and | · | is a homogeneous quasi-norm on G.

Proposition 3.2.1 (Sobolev type and Hardy inequalities). We have the following
properties.

(i) For all complex-valued functions f ∈ C∞
0 (G\{0}),

‖f‖Lp(G) ≤
p

Q
‖Ef‖Lp(G) , 1 < p < ∞, (3.70)

where the constant p
Q is sharp and the equality is attained if and only if f = 0.
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(ii) Let

u := u(x) = − p

Q
Ef(x), v := v(x) = f(x).

Then we have the following expression for the remainder:

‖u‖pLp(G) − ‖v‖pLp(G) = p

∫
G

Ip(v, u)|v − u|2dx, 1 < p < ∞, (3.71)

for all real-valued functions f ∈ C∞
0 (G\{0}), where

Ip(h, g) = (p− 1)

∫ 1

0

|ξh+ (1− ξ)g|p−2ξdξ.

(iii) For all complex-valued functions f ∈ C∞
0 (G\{0}) the identity (3.71) with

p = 2 holds and can be written in the form

‖Ef‖2L2(G) =

(
Q

2

)2

‖f‖2L2(G) +

∥∥∥∥Ef +
Q

2
f

∥∥∥∥2
L2(G)

, Q ≥ 1. (3.72)

(iv) In the case p = 2 and Q ≥ 3 the inequality (3.70) is equivalent to Hardy’s
inequality, i.e., for any g ∈ C∞

0 (G\{0}) the inequality∥∥∥∥ g

|x|
∥∥∥∥
L2(G)

≤ 2

Q− 2
‖Rg‖L2(G) ≡

2

Q− 2

∥∥∥∥ 1

|x|Eg
∥∥∥∥
L2(G)

. (3.73)

(v) In the case 1 < p < Q the inequality (3.70) yields Hardy’s inequality for any
f ∈ C∞

0 (G\{0}), i.e., the inequality∥∥∥∥ f

|x|
∥∥∥∥
Lp(G)

≤ p

Q − p
‖Rf‖Lp(G) . (3.74)

Remark 3.2.2.

1. As mentioned above in the Euclidian case, for any λ > 0, substituting g(x) =
h(λx) into the Sobolev type inequality

‖g‖Lp(G) ≤ C(p)‖Eg‖Lq(G), 1 < p, q < ∞, (3.75)

and using the fact that the Euler operator is a homogeneous operator of order
zero, we obtain that p = q is a necessary condition for having inequality
(3.75).

2. In the Euclidean case G=R
n the inequality (3.70) was observed in [BEHL08]:

for any n ≥ 1 and 1 ≤ p < ∞, for all f ∈ C∞
0 (Rn) we have

‖f‖Lp(Rn) ≤
p

n
‖x · ∇f‖Lp(Rn) .
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Indeed, this is a consequence of a simple integration by parts:

n

∫
Rn

|f(x)|pdx =

∫
Rn

div(x)|f(x)|pdx

= −pRe

∫
Rn

x · ∇f(x)|f(x)|p−2f(x)dx

≤ p

(∫
Rn

|x · ∇f(x)|pdx
) 1/p(∫

Rn

|f(x)|pdx
) p−1

p

,

using Hölder’s inequality in the last line.

There is a weighted version of the above inequality given in Theorem
6.6.1, see also Remark 6.6.2, Part 3.

3. The analysis in this section is based on [RSY18d].

Proof of Proposition 3.2.1. Let us first show that Part (ii) implies Part (i). By
dropping non-negative term in the right-hand side of (3.71), we get

‖f‖Lp(G) ≤
p

Q
‖Ef‖Lp(G) , 1 < p < ∞, Q ≥ 1, (3.76)

for all real-valued functions f ∈ C∞
0 (G\{0}). Consequently, this inequality is valid

for all complex-valued functions if we use the identity

∀z ∈ C : |z|p =

(∫ π

−π

| cos θ|pdθ
)−1 ∫ π

−π

|Re(z) cos θ + Im(z) sin θ|p dθ, (3.77)

see (2.8).

So, the inequality (3.70) holds true and the expression for the remainder
implies that the constant p

Q is sharp.

Let us show that this constant is attained only for f = 0. In view of the
identity (3.77), it is enough to check this only for real-valued functions f . If the
right-hand side of (3.71) is zero, then we must have the equality

− p

Q
Ef(x) = f(x),

which yields that

Ef = −Q

p
f.

By the property of the Euler operator in Lemma 1.3.1 this means that f is posi-
tively homogeneous function of order −Q

p , i.e., there exists a function h : ℘ → C,

where ℘ is defined by (1.12), such that

f(x) = |x|−Q
p h

(
x

|x|
)
. (3.78)
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In particular, (3.78) means that f cannot be compactly supported unless it is
identically equal to zero. Therefore, we have shown that Part (ii), namely (3.71)
implies Part (i) of Theorem 3.2.1.

Nevertheless, let us also give another direct proof of (3.70) for complex-valued
functions without using formula (3.77) and without using the remainder formula
in Part (ii).

Proof of Part (i). Introducing polar coordinates (r, y) = (|x|, x
|x|) ∈ (0,∞)×℘

onG, where the sphere ℘ is defined in (1.12), we now apply the polar decomposition
formula (1.13). This and integrating by parts yield∫

G

|f(x)|pdx =

∫ ∞

0

∫
℘

|f(ry)|prQ−1dσ(y)dr

= − p

Q

∫ ∞

0

rQ Re

∫
℘

|f(ry)|p−2f(ry)
df(ry)

dr
dσ(y)dr

= − p

Q
Re

∫
G

|f(x)|p−2f(x)Ef(x)dx.

(3.79)

By using the Hölder inequality with an index q such that 1
p + 1

q = 1 we obtain∫
G

|f(x)|pdx = − p

Q
Re

∫
G

|f(x)|p−2f(x)Ef(x)dx

≤ p

Q

(∫
G

∣∣|f(x)|p−2f(x)
∣∣q dx) 1

q
(∫

G

|Ef(x)|p dx
) 1

p

=
p

Q

(∫
G

|f(x)|pdx
)1− 1

p

‖Ef‖Lp(G) ,

which gives inequality (3.70) in Part (i).

Proof of Part (ii). With the notation

u := u(x) = − p

Q
Ef and v := v(x) = f(x),

the formula (3.79) can be reformulated as

‖v‖pLp(G) = Re

∫
G

|v|p−2vudx. (3.80)

For any real-valued function f formula (3.79) becomes∫
G

|f(x)|pdx = − p

Q

∫
G

|f(x)|p−2f(x)Ef(x)dx,

and (3.80) becomes

‖v‖pLp(G) =

∫
G

|v|p−2vudx. (3.81)
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Moreover, for all Lp-integrable real-valued functions u and v the following equali-
ties hold

‖u‖pLp(G) − ‖v‖pLp(G) + p

∫
G

(|v|p − |v|p−2vu)dx

=

∫
G

(|u|p + (p− 1)|v|p − p|v|p−2vu)dx

= p

∫
G

Ip(v, u)|v − u|2dx, 1 < p < ∞,

where

Ip(v, u) = (p− 1)

∫ 1

0

|ξv + (1− ξ)u|p−2ξdξ.

Combining this with (3.81) we arrive at

‖u‖pLp(G) − ‖v‖pLp(G) = p

∫
G

Ip(v, u)|v − u|2dx,

which proves the equality (3.71).

Now we prove Part (iii). If p = 2, then the identity (3.80) can be rewritten
as

‖v‖2L2(G) = Re

∫
G

vudx.

Thus, we have

‖u‖2L2(G) − ‖v‖2L2(G) = ‖u‖2L2(G) − ‖v‖2L2(G) + 2

∫
G

(|v|2 − Re vu)dx

=

∫
G

(|u|2 + |v|2 − 2Re vu)dx

=

∫
G

|u− v|2dx,

which gives (3.72).

To show Part (iv) first we verify that the inequality (3.70) implies (3.73). A
direct calculation shows

‖Ef‖2L2(G) =

∥∥∥∥E g

|x|
∥∥∥∥2
L2(G)

=

∫ ∞

0

∫
℘

∣∣∣∣(r d

dr

)
g(ry)

r

∣∣∣∣2 rQ−1dσ(y)dr

=

∥∥∥∥− g

|x| +
d

d|x|g
∥∥∥∥2
L2(G)

=

∥∥∥∥ g

|x|
∥∥∥∥2
L2(G)

− 2Re

∫
G

g

|x|
d

d|x|gdx+

∥∥∥∥ d

d|x|g
∥∥∥∥2
L2(G)

,
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where g = |x|f . From

−2Re

∫
G

g

|x|
d

d|x|gdx = −2Re

∫ ∞

0

∫
℘

g(ry)

r

d

dr
g(ry)rQ−1dσ(y)dr

= −Re

∫ ∞

0

∫
℘

d

dr
(|g|2)rQ−2dσ(y)dr

= (Q− 2)Re

∫ ∞

0

∫
℘

|g|2rQ−3dσ(y)dr

= (Q− 2)

∥∥∥∥ g

|x|
∥∥∥∥2
L2(G)

,

it follows that

‖Ef‖2L2(G) = (Q− 1)

∥∥∥∥ g

|x|
∥∥∥∥2
L2(G)

+

∥∥∥∥ d

d|x|g
∥∥∥∥2
L2(G)

. (3.82)

Combining (3.70) and (3.82) we obtain∥∥∥∥ g

|x|
∥∥∥∥2
L2(G)

≤ 4

Q2

(
(Q− 1)

∥∥∥∥ g

|x|
∥∥∥∥2
L2(G)

+

∥∥∥∥ d

d|x|g
∥∥∥∥2
L2(G)

)
,

which gives (3.73).

Conversely, let us assume that (3.73) is valid. Then with the notation f =
g/|x| we get∥∥∥∥ d

d|x| (|x|f)
∥∥∥∥2
L2(G)

= ‖f + Ef‖2L2(G)

= ‖f‖2L2(G) + 2Re

∫
G

f(x)Ef(x)dx + ‖Ef‖2L2(G).

Hence by (1.42) and (3.73) it follows that

‖f‖2L2(G) ≤
4

(Q− 2)2

(
‖Ef‖2L2(G) − (Q− 1) ‖f‖2L2(G)

)
,

which gives

‖f‖L2(G) ≤
2

Q
‖Ef‖L2(G).

Now it remains to prove Part (v). We will show that the inequality (3.70)
gives (3.74). We have

‖R(|x|f)‖Lp(G) = ‖Ef + f‖Lp(G) ≥ ‖Ef‖Lp(G) − ‖f‖Lp(G).

Finally, by using the inequality (3.70) we establish

‖R(|x|f)‖Lp(G) ≥ Q− p

p
‖f‖Lp(G),

which implies the Hardy inequality (3.74). �
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3.2.2 Weighted Lp-Sobolev type inequalities

Now we establish weighted Lp-Sobolev type inequalities on the homogeneous group
G of homogeneous dimension Q ≥ 1.

Theorem 3.2.3 (Weighted Lp-Sobolev type inequalities). For all complex-valued
functions f ∈ C∞

0 (G\{0}), 1 < p < ∞, and any homogeneous quasi-norm | · | on
G for αp �= Q we have∥∥∥∥ f

|x|α
∥∥∥∥
Lp(G)

≤
∣∣∣∣ p

Q− αp

∣∣∣∣ ∥∥∥∥ 1

|x|αEf
∥∥∥∥
Lp(G)

for all α ∈ R. (3.83)

If αp �= Q then the constant
∣∣∣ p
Q−αp

∣∣∣ is sharp.

For αp = Q we have∥∥∥∥∥ f

|x|Qp

∥∥∥∥∥
Lp(G)

≤ p

∥∥∥∥∥ log |x||x|Qp
Ef

∥∥∥∥∥
Lp(G)

, (3.84)

where the constant p is sharp.

Proof of Theorem 3.2.3. Using the integration by parts formula from Proposition
1.2.10, for αp �= Q we obtain∫

G

|f(x)|p
|x|αp dx =

∫ ∞

0

∫
℘

|f(ry)|prQ−1−αpdσ(y)dr

= − p

Q− αp

∫ ∞

0

rQ−αpRe

∫
℘

|f(ry)|p−2f(ry)
df(ry)

dr
dσ(y)dr

≤
∣∣∣∣ p

Q− αp

∣∣∣∣ ∫
G

|Ef(x)||f(x)|p−1

|x|αp dx =

∣∣∣∣ p

Q − αp

∣∣∣∣ ∫
G

|Ef(x)||f(x)|p−1

|x|α+α(p−1)
dx.

By Hölder’s inequality, it follows that∫
G

|f(x)|p
|x|αp dx ≤

∣∣∣∣ p

Q− αp

∣∣∣∣ (∫
G

|Ef(x)|p
|x|αp dx

) 1
p
(∫

G

|f(x)|p
|x|αp dx

) p−1
p

,

which gives (3.83).

Now we show the sharpness of the constant. We need to check the equality
condition in the above Hölder inequality. Let us consider the function

g(x) =
1

|x|C ,

where C ∈ R, C �= 0 and αp �= Q. Then by a direct calculation we obtain∣∣∣∣ 1C
∣∣∣∣p( |Eg(x)|

|x|α
)p

=

( |g(x)|p−1

|x|α(p−1)

) p
p−1

,
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which satisfies the equality condition in Hölder’s inequality. This gives the sharp-

ness of the constant
∣∣∣ p
Q−αp

∣∣∣ in (3.83).

Now let us prove (3.84). Using integration by parts, we have∫
G

|f(x)|p
|x|Q dx =

∫ ∞

0

∫
℘

|f(ry)|prQ−1−Qdσ(y)dr

= −p

∫ ∞

0

log rRe

∫
℘

|f(ry)|p−2f(ry)
df(ry)

dr
dσ(y)dr

≤ p

∫
G

|Ef(x)||f(x)|p−1

|x|Q | log |x||dx = p

∫
G

|Ef(x)| log |x|||
|x|Qp

|f(x)|p−1

|x|Q(p−1)
p

dx.

By Hölder’s inequality, it follows that∫
G

|f(x)|p
|x|Q dx ≤ p

(∫
G

|Ef(x)|p| log |x||p
|x|Q dx

) 1/p(∫
G

|f(x)|p
|x|Q dx

) (p−1)/p

,

which gives (3.84).

Now we show the sharpness of the constant. We need to check the equality
condition in the above Hölder inequality. Let us consider the function

h(x) = (log |x|)C ,
where C ∈ R and C �= 0. Then by a direct calculation we obtain∣∣∣∣ 1C

∣∣∣∣p
(
|Eh(x)|| log |x||

|x|Qp

)p

=

(
|h(x)|p−1

|x|Q(p−1)
p

)p/(p−1)

,

which satisfies the equality condition in Hölder’s inequality. This gives the sharp-
ness of the constant p in (3.84). �

Let us consider separately the case p = 2, that is, let us restate Theorem
2.1.5 in terms of the operator E:

Proposition 3.2.4 (An identity for Euler operator). For every complex-valued func-
tion f ∈ C∞

0 (G\{0}) we have∥∥∥∥ 1

|x|αEf
∥∥∥∥2
L2(G)

=

(
Q

2
− α

)2 ∥∥∥∥ f

|x|α
∥∥∥∥2
L2(G)

+

∥∥∥∥ 1

|x|αEf +
Q− 2α

2|x|α f

∥∥∥∥2
L2(G)

, (3.85)

for any α ∈ R.

Remark 3.2.5.

1. By dropping the non-negative last term in (3.85) we immediately get the
following inequality for α ∈ R with Q− 2α �= 0:∥∥∥∥ f

|x|α
∥∥∥∥
L2(G)

≤ 2

|Q− 2α|
∥∥∥∥ 1

|x|αEf
∥∥∥∥
L2(G)

, (3.86)
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for all complex-valued functions f ∈ C∞
0 (G\{0}), where the constant in

(3.86) is sharp and the equality is attained if and only if f = 0. This statement
on the constant and the equality follows by the same argument as that in
Remark 2.1.7.

2. By iterating the established weighted Sobolev inequality (3.83) one obtains
inequalities of higher order. Thus, for 1 < p < ∞, k ∈ N and α ∈ R with
Q �= αp we have ∥∥∥∥ f

|x|α
∥∥∥∥
Lp(G)

≤
∣∣∣∣ p

Q− αp

∣∣∣∣k ∥∥∥∥Ekf

|x|α
∥∥∥∥
Lp(G)

(3.87)

for any complex-valued function f ∈ C∞
0 (G\{0}).

3. For k = 1 (3.87) implies the weighted Sobolev inequality and for k = 1 and
α = 0 this gives the Sobolev inequality. In the case k = 2 this can be thought
of as a (weighted) Sobolev–Rellich type inequality.

3.2.3 Stubbe type remainder estimates

The remainders in Hardy inequalities may be described in different ways: there
may be equalities or estimates of different forms. These are discussed in some
detail at various spaces of this book. Here, we give a remainder estimate in the
most basic case of L2. Such a type of inequalities have been analysed on Rn by
Stubbe [Stu90], and here we give its general version on homogeneous groups.

In the proof of the following statement we will use the useful feature that
some estimates involving radial derivatives of the Euler operator can be proved
first for radial functions, and then extended to non-radial ones by a more abstract
argument, see Section 1.3.3.

Theorem 3.2.6 (Stubbe type remainder estimate). Let G be a homogeneous group
of homogeneous dimension Q ≥ 3. Let | · | be a homogeneous quasi-norm. Then we

have for all f ∈ C∞
0 (G) and 0 ≤ δ < Q2

4 , the inequality

∫
G

|Ef(x)|2dx − δ

∫
G

|f(x)|2dx ≥
(

Q2

4 − δ
)Q−1

Q

(
(Q−2)2

4

)Q−1
Q

SQ

(∫
G

|x|2∗ |g(|x|)|2∗dx
) 2/2∗

(3.88)
with sharp constant, where

g(|x|) = M(f)(|x|) := 1

|℘|
∫
℘

f(|x|, y)dσ(y)

and

SQ := |℘| 2
QQ

Q−2
Q (Q− 2)

(
Γ(Q/2)Γ(1 +Q/2)

Γ(Q)

)2/Q

. (3.89)
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Remark 3.2.7.

1. In the Abelian case G = (Rn,+), we have Q = n, and inequality (3.88)
becomes ∫

Rn

|(x · ∇)f(x)|2dx− δ

∫
Rn

|f(x)|2dx

≥
(

n2

4 − δ
)n−1

n

(
(n−2)2

4

)n−1
n

Sn

(∫
G

|x|2∗ |g(|x|)|2∗dx
) 2

2∗

.

(3.90)

2. An interesting observation is that the constant in the above inequality on Rn

is sharp for any quasi-norm | · |, that is, it does not depend on the quasi-norm
| · |. Therefore, this inequality is new already in the Euclidean setting of Rn.
When |x| = √

x2
1 + x2

2 + · · ·+ x2
n is the Euclidean distance, the inequality

(3.90) was investigated in Rn in [BEHL08, Corollary 4.4] and in [Xia11,
Theorem 1.1].

3. The following result, proved in [Bli30], will be useful in the proof: Let f be
a non-negative function. Then for s ≥ 0 and q > p > 1 we have(∫ ∞

0

∣∣∣∣∫ s

0

f(r)dr

∣∣∣∣q rq/p−q−1dr

) p/q

≤ Cp,q

∫ ∞

0

|f(r)|pdr, (3.91)

where

Cp,q = (q − q/p)−p/q

⎛⎝ (q/p− 1)Γ
(

pq
q−p

)
Γ
(

p
q−p

)
Γ
(

p(q−1)
q−p

)
⎞⎠ (q−p)/q

is sharp. Moreover, the equality in (3.91) is attained for functions of the form

f(r) = c1(c2r
q/p−1 + 1) q/(p−q), c1 > 0, c2 > 0. (3.92)

Proof of Theorem 3.2.6. First we prove inequality (3.88) for | · |-radial functions
f(x) = f̃(|x|). Then we have g(r) = f̃(r) since

g(|x|) = M(f)(|x|) := 1

|℘|
∫
℘

f(|x|, y)dσ(y),

and we also have Ef(x) = |x|f̃ ′(|x|). We calculate∫
G

|Ef̃(|x|)|2dx− β(Q − β)

∫
G

|f̃(|x|)|2dx

= |℘|
(∫ ∞

0

|f̃ ′(r)|2rQ+1dr − β(Q− β)

∫ ∞

0

|f̃(r)|2rQ−1dr

)
,

(3.93)
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where 0 ≤ β < Q/2. Using the notation h(|x|) := |x|β f̃(|x|), and integrating by
parts we obtain∫ ∞

0

|h′(r)|2rQ+1−2βdr

=

∫ ∞

0

|βrβ−1f̃(r) + rβ f̃ ′(r)|2rQ+1−2βdr

= β2

∫ ∞

0

|f̃(r)|2rQ−1dr +

∫ ∞

0

|f̃ ′(r)|2rQ+1dr + β

∫ ∞

0

d

dr
|f̃(r)|2rQdr

=

∫ ∞

0

|f̃ ′(r)|2rQ+1dr − β(Q − β)

∫ ∞

0

|f̃(r)|2rQ−1dr.

(3.94)

Moreover, by changing the variables s = rQ−2β we get∫ ∞

0

|h′(r)|2rQ+1−2βdr =

∫ ∞

0

|(Q − 2β)s
Q−2β−1
Q−2β h′(s)|2sQ−2β+1

Q−2β
s

1
Q−2β−1ds

Q− 2β

= (Q − 2β)

∫ ∞

0

s2|h′(s)|2ds.
(3.95)

Combining (3.94) and (3.95), we restate (3.93) as∫
G

|Ef̃(|x|)|2dx− β(Q − β)

∫
G

|f̃(|x|)|2dx = |℘|(Q− 2β)

(∫ ∞

0

s2|h′(s)|2ds
)
.

(3.96)
Now setting φ(s) := h′(s) and ψ(s) := s−2φ(s−1), and using (3.91) with p = 2
and q = 2∗, we obtain∫ ∞

0

s2|h′(s)|2ds =
∫ ∞

0

s2|φ(s)|2ds =
∫ ∞

0

|ψ(s)|2ds

≥
(

Q

Q− 2

)Q−2
Q
(
Γ(Q/2)Γ(1 +Q/2)

Γ(Q)

) 2
Q

(∫ ∞

0

∣∣∣∣∫ s

0

|ψ(t)|dt
∣∣∣∣2∗ s 2−2Q

Q−2 ds

) 2
2∗

=

(
Q

Q− 2

)Q−2
Q
(
Γ(Q/2)Γ(1 +Q/2)

Γ(Q)

) 2
Q

(∫ ∞

0

∣∣∣∣∫ ∞

s−1

|φ(t)|dt
∣∣∣∣2∗ s 2−2Q

Q−2 ds

) 2
2∗

≥
(

Q

Q− 2

)Q−2
Q
(
Γ(Q/2)Γ(1 +Q/2)

Γ(Q)

) 2
Q
(∫ ∞

0

|h(s−1)|2∗s 2−2Q
Q−2 ds

) 2
2∗

=

(
Q

Q− 2

)Q−2
Q
(
Γ(Q/2)Γ(1 +Q/2)

Γ(Q)

) 2
Q
(∫ ∞

0

|h(s)|2∗s 2
Q−2 ds

) 2
2∗

= (Q− 2β)
2
2∗

(
Q

Q− 2

)Q−2
Q
(
Γ(Q/2)Γ(1 +Q/2)

Γ(Q)

)2
Q
(∫ ∞

0

|rf̃(r)|2∗rQ−1dr

) 2
2∗

,
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where we have used s = rQ−2β and h(r) = rβ f̃(r) in the last line. Thus, now
(3.96) implies that∫
G

|Ef̃(|x|)|2dx−β(Q−β)

∫
G

|f̃(|x|)|2dx

≥|℘|(Q−2β)
2Q−2

Q

(
Q

Q−2

)Q−2
Q
(
Γ(Q/2)Γ(1+Q/2)

Γ(Q)

) 2
Q
(∫ ∞

0

|rf̃(r)|2∗rQ−1dr

) 2
2∗

= |℘| 2
Q (Q−2β)

2Q−2
Q

(
Q

Q−2

)Q−2
Q
(
Γ(Q/2)Γ(1+Q/2)

Γ(Q)

) 2
Q
(∫

G

|x|2∗ |f̃(|x|)|2∗dx
) 2

2∗

.

(3.97)

Here, denoting β = (Q −
√
Q2 − 4δ)/2 for 0 ≤ δ < Q2/4 and recalling that

g(|x|) = f̃(|x|), we see that (3.97) (with (3.89)) yields∫
G

|Ef̃(|x|)|2dx−δ

∫
G

|f̃(|x|)|2dx

≥|℘| 2
Q (Q2−4δ)

Q−1
Q

(
Q

Q−2

)Q−2
Q
(
Γ(Q/2)Γ(1+Q/2)

Γ(Q)

) 2
Q
(∫

G

|x|2∗ |g(|x|)|2∗dx
) 2

2∗

=

(
Q2−4δ

(Q−2)2

)Q−1
Q

SQ

(∫
G

|x|2∗ |g(|x|)|2∗dx
) 2

2∗
. (3.98)

That is, we obtain (3.88) with sharp constant for all |·|-radial functions f ∈ C∞
0 (G).

Finally, using Proposition 1.3.3, and in (3.98) with g(|x|) = f̃(|x|), we get
(3.88) for non-radial functions. Clearly, the constant in (3.88) is sharp, since this
constant is sharp for radial functions by Remark 3.2.7, Part (3). �

3.3 Caffarelli–Kohn–Nirenberg inequalities

This section is devoted to deriving the Caffarelli–Kohn–Nirenberg inequalities in
the setting of homogeneous groups. Here we will be working with the radial oper-
ators and general quasi-norms. The case of stratified groups with the horizontal
gradient and weights will be discussed in Section 6.7.

First, we recall the classical Caffarelli–Kohn–Nirenberg inequalities on Rn

due to Caffarelli, Kohn and Nirenberg [CKN84], with | · | denoting the usual Eu-
clidean distance:

Theorem 3.3.1 (Classical Caffarelli–Kohn–Nirenberg inequality). Let n ∈ N and
let p, q, r, a, b, d, δ ∈ R be such that p, q ≥ 1, r > 0, 0 ≤ δ ≤ 1, and

1

p
+

a

n
,
1

q
+

b

n
,
1

r
+

c

n
> 0, (3.99)
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where
c = δd+ (1− δ)b.

Then there exists a positive constant C such that

‖|x|cf‖Lr(Rn) ≤ C‖|x|a|∇f |‖δLp(Rn)‖|x|bf‖1−δ
Lq(Rn) (3.100)

holds for all f ∈ C∞
0 (Rn), if and only if the following conditions hold:

1

r
+

c

n
= δ

(
1

p
+

a− 1

n

)
+ (1− δ)

(
1

q
+

b

n

)
, (3.101)

a− d ≥ 0 if δ > 0, (3.102)

a− d ≤ 1 if δ > 0 and
1

r
+

c

n
=

1

p
+

a− 1

n
. (3.103)

Thus, in this section we are interested in inequalities of this type, and we
show that some Caffarelli–Kohn–Nirenberg inequalities continue to hold in the
setting of homogeneous groups, in particular, including the cases of anisotropic
structures on Rn, i.e., the quasi-norm | · | does not need to be the Euclidean norm
| · |E on Rn.

Some inequalities will be obtained as a consequence of the weighted Hardy
inequalities. As a particular case of such weighted inequalities we can think of the
inequalities (∫

Rn

|x|−pβ
E |f |pdx

) 2
p

≤ Cα,β

∫
Rn

|x|−2α
E |∇f |2dx, (3.104)

for f ∈ C∞
0 (Rn), where for n ≥ 3:

−∞ < α <
n− 2

2
, α ≤ β ≤ α+ 1, and p =

2n

n− 2 + 2(β − α)
,

and for n = 2:

−∞ < α < 0, α < β ≤ α+ 1, and p =
2

β − α
.

Here

|x|E =
√
x2
1 + · · ·+ x2

n

is the standard Euclidean norm. Moreover, we are interested in replacing the
Euclidean norm by a general quasi-norm as well as extending such inequalities
to general homogeneous groups.

As a special case we can highlight the case of p = 2 that was also studied by
[WW03] in the Euclidean setting. Here, for all f ∈ C∞

0 (Rn) we have∫
Rn

|x|−2(α+1)
E |f |2dx ≤ C̃α

∫
Rn

|x|−2α
E |∇f |2dx,
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with any n ≥ 2 and −∞ < α < 0, which in turn can be written for any f ∈
C∞

0 (Rn\{0}) as ∥∥∥∥ 1

|x|α+1
E

|f |
∥∥∥∥
L2(Rn)

≤ Cα

∥∥∥∥ 1

|x|αE
|∇f |

∥∥∥∥
L2(Rn)

, (3.105)

for all α ∈ R.

A homogeneous group version of the inequality (3.105) was obtained in Corol-
lary 2.1.6, that is, it was proved that if G is a homogeneous group of homoge-
neous dimension Q, then for any homogeneous quasi-norm | · | on G and for every
f ∈ C∞

0 (G\{0}) we have

|Q− 2− 2α|
2

∥∥∥∥ f

|x|α+1

∥∥∥∥
L2(G)

≤
∥∥∥∥ 1

|x|αRf

∥∥∥∥
L2(G)

for all α ∈ R, (3.106)

where R is the radial derivative operator with respect to the norm | · |. Note that if
α �= Q−2

2 , then the constant in (3.106) was shown to be sharp for any homogeneous
quasi-norm | · | on G.

Remark 3.3.2.

1. An alternative formulation of Theorem 3.3.1 emphasizing the appearing in-
dices was given by D’Ancona and Luca [DL12].

2. The improved versions of the Caffarelli–Kohn–Nirenberg inequality for ra-
dially symmetric functions with respect to the range of parameters were
investigated in [NDD12]. In [ZHD15] and [HZ11], weighted Hardy type in-
equalities were obtained for the generalized Baouendi–Grushin vector fields:
for γ = 0 it gives the standard gradient in Rn. We also refer to [HNZ11],
[Han15] for weighted Hardy inequalities on the Heisenberg group, to [HZD11]
and [ZHD14] on the H-type groups, and a recent paper [Yac18] on Lie groups
of polynomial growth.

3. The analysis in this section is based on [ORS18] as well as on [RSY17b] and
[RSY18b].

3.3.1 Lp-Caffarelli–Kohn–Nirenberg inequalities

In this section we generalize inequality (3.106) to Lp-cases for all 1 < p < ∞. Since
all the inequalities are of similar type we will keep calling them the Caffarelli–
Kohn–Nirenberg inequalities.

Theorem 3.3.3 (Caffarelli–Kohn–Nirenberg inequality for Lp-norms). Let G be a
homogeneous group of homogeneous dimension Q ≥ 2 and let | · | be a homogeneous
quasi-norm on G. Then we have

|Q− γ|
p

∥∥∥∥∥ f

|x| γp

∥∥∥∥∥
p

Lp(G)

≤
∥∥∥∥ 1

|x|αRf

∥∥∥∥
Lp(G)

∥∥∥∥∥ f

|x| β
p−1

∥∥∥∥∥
p−1

Lp(G)

, (3.107)
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for all complex-valued functions f ∈ C∞
0 (G\{0}), 1 < p < ∞, and all α, β ∈ R

with
γ = α+ β + 1.

If γ �= Q then the constant |Q−γ|
p is sharp.

Before proving this theorem let us point out some of its implications.

Remark 3.3.4.

1. In the Euclidean case G = (Rn,+), Theorem 3.3.3 gives the inequality

|n− γ|
p

∥∥∥∥∥ f

|x| γp

∥∥∥∥∥
p

Lp(Rn)

≤
∥∥∥∥ 1

|x|α
df

d|x|
∥∥∥∥
Lp(Rn)

∥∥∥∥∥ f

|x| β
p−1

∥∥∥∥∥
p−1

Lp(Rn)

,

with the optimal constant. In particular, for the standard Euclidean distance
|x|E =

√
x2
1 + · · ·+ x2

n, by using the Cauchy–Schwarz inequality, it follows
that

|n− γ|
p

∥∥∥∥∥ f

|x|
γ
p

E

∥∥∥∥∥
p

Lp(Rn)

≤
∥∥∥∥ 1

|x|αE
∇f

∥∥∥∥
Lp(Rn)

∥∥∥∥∥∥ f

|x|
β

p−1

E

∥∥∥∥∥∥
p−1

Lp(Rn)

,

for all f ∈ C∞
0 (Rn\{0}), with the sharp constant.

2. In the case α = 0, β = p − 1, and 1 < p < Q, the inequality (3.107) implies
the homogeneous group version of the Lp-Hardy inequality∥∥∥∥ 1

|x|f
∥∥∥∥
Lp(G)

≤ p

Q− p
‖Rf‖Lp(G) , (3.108)

again with p
Q−p being the best constant, see Section 2.1.1.

3. For G = (Rn,+), n ≥ 3, inequality (3.108) gives∥∥∥∥ f

|x|
∥∥∥∥
Lp(Rn)

≤ p

n− p

∥∥∥∥ df

d|x|
∥∥∥∥
Lp(Rn)

. (3.109)

For the Euclidean distance, by the Cauchy–Schwarz inequality, it implies the
classical Hardy inequality:∥∥∥∥ f

|x|E

∥∥∥∥
Lp(Rn)

≤ p

n− p
‖∇f‖Lp(Rn) ,

for all f ∈ C∞
0 (Rn\{0}).

4. For the Euclidean distance, the exact formulae of the difference between
the right-hand side and the left-hand side of inequality (3.109) were investi-
gated by Ioku, Ishiwata and Ozawa [IIO16b], see also Machihara, Ozawa and
Wadade [MOW17a] as well as [IIO16a].
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5. One can obtain a number of Heisenberg–Pauli–Weyl type uncertainty in-
equities directly from the inequality (3.107) which have various consequences
and applications. For instance, if αp = α+ β + 1, inequality (3.107) gives

|Q− αp|
p

∥∥∥∥ f

|x|α
∥∥∥∥p
Lp(G)

≤
∥∥∥∥Rf

|x|α
∥∥∥∥
Lp(G)

∥∥∥∥|x| 1
p−1

f

|x|α
∥∥∥∥p−1

Lp(G)

. (3.110)

For α+ β + 1 = 0 and α = −p, inequality (3.107) gives

Q

p
‖f‖pLp(G) ≤ ‖|x|pRf‖Lp(G)

∥∥∥∥ f

|x|
∥∥∥∥p−1

Lp(G)

, (3.111)

all with sharp constants.

The Hardy inequality immediately implies a version of the Heisenberg–Pauli–
Weyl uncertainty principle.

Corollary 3.3.5 (Heisenberg–Pauli–Weyl type uncertainty principle). Let G be a
homogeneous group of homogeneous dimension Q ≥ 2 and let | · | be a homogeneous
quasi-norm on G. Then we have

‖f‖2L2(G) ≤
p

Q− p
‖Rf‖Lp(G) ‖|x|f‖L p

p−1 (G)
, 1 < p < Q, (3.112)

for all f ∈ C∞
0 (G\{0}).

Proof of Corollary 3.3.5. By applying the Hölder inequality to (3.108) with 1 <
p < Q, we get

‖f‖2L2(G) ≤
∥∥∥∥ 1

|x|f
∥∥∥∥
Lp(G)

‖|x|f‖
L

p
p−1 (G)

≤ p

Q− p
‖Rf‖Lp(G) ‖|x|f‖L p

p−1 (G)
,

(3.113)
giving (3.112). �
Remark 3.3.6.

1. For the Euclidean space G = (Rn,+) and p = 2, inequality (3.112) implies
the uncertainty principle for any homogeneous quasi-norm |x| on Rn:(∫

Rn

|f(x)|2dx
)2

≤
(

2

n− 2

)2 ∫
Rn

∣∣∣∣df(x)d|x|
∣∣∣∣2 dx∫

Rn

|x|2|f(x)|2dx. (3.114)

In turn this gives the classical uncertainty principle on Rn with the standard
Euclidean distance:(∫

Rn

|f(x)|2dx
)2

≤
(

2

n− 2

)2 ∫
Rn

|∇f(x)|2dx
∫
Rn

|x|2E |f(x)|2dx,

which is the Heisenberg–Pauli–Weyl uncertainty principle on the Euclidean
spaces Rn, n > 2.
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2. The stratified groups version of Corollary 3.3.5 will be discussed in Sec-
tion 4.7.

Proof of Theorem 3.3.3. In the case γ = Q the inequality is trivial, so we may
assume that γ �= Q. To use the polar decomposition in Proposition 1.2.10 we
denote (r, y) = (|x|, x

|x|) ∈ (0,∞)×℘ on G, where ℘ is the unit quasi-sphere. Then

a direct calculation gives that∫
G

|f(x)|p
|x|γ dx =

∫ ∞

0

∫
℘

|f(ry)|p
rγ

rQ−1dσ(y)dr

=
1

Q− γ

∫ ∞

0

∫
℘

|f(ry)|p d r
Q−γ

dr
dσ(y)dr

= − 1

Q− γ
Re

∫ ∞

0

∫
℘

pf(ry)|f(ry)|p−2

(
df(ry)

dr

)
1

rγ−1
rQ−1dσ(y)dr

= − p

Q− γ
Re

∫
G

f(x)
|f(x)|p−2

|x|γ−1

(
d

d|x|f(x)
)
dx

≤
∣∣∣∣ p

Q− γ

∣∣∣∣ ∫
G

|f(x)|p−1

|x|γ−1

∣∣∣∣ d

d|x|f(x)
∣∣∣∣ dx

=

∣∣∣∣ p

Q− γ

∣∣∣∣ ∫
G

|f(x)|p−1

|x|α+β
|Rf(x)| dx

≤
∣∣∣∣ p

Q− γ

∣∣∣∣ (∫
G

|Rf(x)|p
|x|αp dx

) 1/p
(∫

G

|f(x)|p
|x| βp

p−1

dx

) (p−1)/p

,

using the Hölder inequality in the last line. Thus, we obtain∣∣∣∣Q− γ

p

∣∣∣∣ ∫
G

|f(x)|p
|x|γ dx ≤

(∫
G

|Rf(x)|p
|x|αp dx

) 1/p
(∫

G

|f(x)|p
|x| βp

p−1

dx

) (p−1)/p

,

yielding (3.107).

Now it remains to show the sharpness of the constant. To do it we have
to examine the equality condition in the Hölder inequality. Let us consider the
following function

g(x) =

{
e−

C
λ |x|λ , λ := α− β

p−1 + 1 �= 0,
1

|x|C , α− β
p−1 + 1 = 0,

where C =
∣∣∣Q−γ

p

∣∣∣ and γ �= Q. Then one can readily check that∣∣∣∣ p

Q− γ

∣∣∣∣p |Rg(x)|p
|x|αp =

|g(x)|p
|x| βp

p−1

,

satisfying the equality condition in the Hölder inequality. This means that the
constant | (Q − γ)/ p| is sharp. �
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3.3.2 Higher-order Lp-Caffarelli–Kohn–Nirenberg inequalities

By iterating the Lp-Caffarelli–Kohn–Nirenberg type inequalities from Theorem
3.3.3 we can establish higher-order inequalities.

Theorem 3.3.7 (Higher-order Lp-Caffarelli–Kohn–Nirenberg inequalities). Let G

be a homogeneous group of homogeneous dimension Q ≥ 2 and let | · | be a homo-
geneous quasi-norm on G. Then for all k,m ∈ N and all 1 < p < ∞ we have

|Q− γ|
p

∥∥∥∥∥ f

|x| γp

∥∥∥∥∥
p

Lp(G)

≤ Ãα,mÃβ,k

∥∥∥∥ 1

|x|α−m
Rm+1f

∥∥∥∥
Lp(G)

∥∥∥∥∥ 1

|x| β
p−1−k

Rkf

∥∥∥∥∥
p−1

Lp(G)

,

(3.115)
for all complex-valued function f ∈ C∞

0 (G\{0}),

γ = α+ β + 1,

and α ∈ R such that
∏m−1

j=0 |Q− p(α− j)| �= 0, and

Ãα,m := pm

⎡⎣m−1∏
j=0

|Q− p(α− j)|
⎤⎦−1

,

as well as β ∈ R such that
∏k−1

j=0

∣∣∣Q− p( β
p−1 − j)

∣∣∣ �= 0, and

Ãβ,k := pk(p−1)

⎡⎣k−1∏
j=0

∣∣∣∣Q− p

(
β

p− 1
− j

)∣∣∣∣
⎤⎦−(p−1)

.

For p = 2 the above constants are sharp.

Proof of Theorem 3.3.7. First, let us consider in (3.107) the case

β = γ

(
1− 1

p

)
.

In this case we have β = (α+1)(p−1) and γ = p(α+1), so that inequality (3.107)
becomes∥∥∥∥ f

|x|α+1

∥∥∥∥
Lp(G)

≤ p

|Q − p(α+ 1)|
∥∥∥∥ 1

|x|αRf

∥∥∥∥
Lp(G)

, 1 < p < ∞, (3.116)

for all f ∈ C∞
0 (G\{0}) and every α ∈ R with α �= Q

p − 1.
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Now taking Rf instead of f and α−1 instead of α in (3.116) we consequently
obtain ∥∥∥∥Rf

|x|α
∥∥∥∥
Lp(G)

≤ p

|Q− pα|
∥∥∥∥ 1

|x|α−1
R2f

∥∥∥∥
Lp(G)

,

for α �= Q
p . Combining it with (3.116) we get∥∥∥∥ f

|x|α+1

∥∥∥∥
Lp(G)

≤ p

|Q− p(α+ 1)|
p

|Q− pα|
∥∥∥∥ 1

|x|α−1
R2f

∥∥∥∥
Lp(G)

,

for every α ∈ R such that α �= Q
p − 1 and α �= Q

p . This iteration process yields∥∥∥∥ f

|x|θ+1

∥∥∥∥
Lp(G)

≤ Aθ,k

∥∥∥∥ 1

|x|θ+1−k
Rkf

∥∥∥∥
Lp(G)

, 1 < p < ∞, (3.117)

for all f ∈ C∞
0 (G\{0}) and all θ ∈ R such that

∏k−1
j=0 |Q− p(θ + 1− j)| �= 0, and

Aθ,k := pk

⎡⎣k−1∏
j=0

|Q− p(θ + 1− j)|
⎤⎦−1

.

Similarly, we get∥∥∥∥ Rf

|x|ϑ+1

∥∥∥∥
Lp(G)

≤ Aϑ,m

∥∥∥∥ 1

|x|ϑ+1−m
Rm+1f

∥∥∥∥
Lp(G)

, 1 < p < ∞, (3.118)

for all f ∈ C∞
0 (G\{0}) and all ϑ ∈ R such that

∏m−1
j=0 |Q− p(ϑ+ 1− j)| �= 0, and

Aϑ,m := pm

⎡⎣m−1∏
j=0

|Q− p(ϑ+ 1− j)|
⎤⎦−1

.

Now putting ϑ+ 1 = α and θ+ 1 = β
p−1 into (3.118) and (3.117), respectively, we

arrive at (3.115).

Let us now show the sharpness of the constants in the case p = 2. This will
follow from having an exact form of the remainder in these inequalities. Recall

Theorem 3.1.10 saying that if Q ≥ 3, α ∈ R, k ∈ N and
∏k−1

j=0

∣∣∣Q−2
2 − (α + j)

∣∣∣ �= 0,

then for all complex-valued functions f ∈ C∞
0 (G\{0}) we have

∥∥∥∥ f

|x|k+α

∥∥∥∥
L2(G)

≤
⎡⎣k−1∏

j=0

∣∣∣∣Q− 2

2
− (α+ j)

∣∣∣∣
⎤⎦−1 ∥∥∥∥ 1

|x|αR
kf

∥∥∥∥
L2(G)

, (3.119)
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where the constant is sharp. In addition, from (3.34) we have the identity∥∥∥∥ 1

|x|αR
kf

∥∥∥∥2
L2(G)

=

⎡⎣k−1∏
j=0

(
Q− 2

2
− (α + j)

)2
⎤⎦∥∥∥∥ f

|x|k+α

∥∥∥∥2
L2(G)

+

k−1∑
l=1

⎡⎣l−1∏
j=0

(
Q− 2

2
− (α+ j)

)2
⎤⎦

×
∥∥∥∥ 1

|x|l+α
Rk−lf +

Q− 2(l+ 1+ α)

2|x|l+1+α
Rk−l−1f

∥∥∥∥2
L2(G)

+

∥∥∥∥ 1

|x|αR
kf +

Q− 2− 2α

2|x|1+α
Rk−1f

∥∥∥∥2
L2(G)

, (3.120)

for all k ∈ N and α ∈ R. When p = 2, Theorem 3.3.3 can be restated that for each
f ∈ C∞

0 (G\{0}) we have

|Q − γ|
2

∥∥∥∥ f

|x| γ2
∥∥∥∥2
L2(G)

≤
∥∥∥∥ 1

|x|αRf

∥∥∥∥
L2(G)

∥∥∥∥ f

|x|β
∥∥∥∥
L2(G)

, ∀α, β ∈ R, (3.121)

where γ = α+ β + 1. The sharpness then follows from the following remark. �
Remark 3.3.8. Combining (3.121) with (3.119) (or with (3.120)), one can obtain
a number of inequalities with sharp constants, for example:

|Q− γ|
2

∥∥∥∥ f

|x| γ2
∥∥∥∥2
L2(G)

≤ Cj(β, k)

∥∥∥∥ 1

|x|αRf

∥∥∥∥
L2(G)

∥∥∥∥ 1

|x|β−k
Rkf

∥∥∥∥
L2(G)

, (3.122)

for γ = α+ β + 1 and all α, β ∈ R and k ∈ N, such that,

Cj(β, k) :=

⎡⎣k−1∏
j=0

∣∣∣∣Q− 2

2
− (β − k + j)

∣∣∣∣
⎤⎦−1

�= 0,

as well as

|Q− γ|
2

∥∥∥∥ f

|x| γ2
∥∥∥∥2
L2(G)

≤ Cj(α, k)

∥∥∥∥ 1

|x|α−k
Rk+1f

∥∥∥∥
L2(G)

∥∥∥∥ f

|x|β
∥∥∥∥
L2(G)

, (3.123)

for γ = α+ β + 1 and all α, β ∈ R and k ∈ N, such that,

Cj(α, k) :=

⎡⎣k−1∏
j=0

∣∣∣∣Q− 2

2
− (α+ k + j)

∣∣∣∣
⎤⎦−1

�= 0.

It follows from (3.120) that these constants Cj(β, k) and Cj(α, k) in (3.122) and
(3.123) are sharp.
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3.3.3 New type of Lp-Caffarelli–Kohn–Nirenberg inequalities

In this section, we introduce new Caffarelli–Kohn–Nirenberg type inequalities on
homogeneous groups.

Theorem 3.3.9 (New types of Lp-Caffarelli–Kohn–Nirenberg inequalities). Let G be
a homogeneous group of homogeneous dimension Q ≥ 2. Let | · | be a homogeneous
quasi-norm on G. Let 0 < δ < 1. Then for all f ∈ C∞

0 (G\{0}) we have∥∥∥∥∥ f

|x|Q−p
p +δ

∥∥∥∥∥
Lp(G)

≤ pδ

∥∥∥∥∥ log |x|
|x|Q−p

p

Rf

∥∥∥∥∥
δ

Lp(G)

∥∥∥∥∥ f

|x|Q−p
p

∥∥∥∥∥
1−δ

Lp(G)

, 1 < p < ∞. (3.124)

Moreover, we have∥∥∥∥∥ f

|x|Q−p
p +δ

∥∥∥∥∥
Lp(G)

≤
∥∥∥∥∥ Rf

|x|Q−2p
p

∥∥∥∥∥
1−δ

Lp(G)

∥∥∥∥∥ f

|x|Qp

∥∥∥∥∥
δ

Lp(G)

, 1 < p < ∞. (3.125)

Remark 3.3.10. In the Abelian case G = (Rn,+) and Q = n, (3.124) implies a
new type of the Caffarelli–Kohn–Nirenberg inequality for any quasi-norm on Rn:
For any function f ∈ C∞

0 (Rn\{0}) and any 1 < p < ∞ we have∥∥∥∥∥ f

|x|n−p
p +δ

∥∥∥∥∥
Lp(Rn)

≤ pδ

∥∥∥∥∥ log |x||x|n−p
p

(
x

|x| · ∇f

)∥∥∥∥∥
δ

Lp(Rn)

∥∥∥∥∥ f

|x|n−p
p

∥∥∥∥∥
1−δ

Lp(Rn)

. (3.126)

By the Schwarz inequality with the standard Euclidean distance given by |x|E =√
x2
1 + x2

2 + · · ·+ x2
n, we obtain the Euclidean form of the Caffarelli–Kohn–Niren-

berg type inequality for any quasi-norm on Rn, for 1 < p < ∞, and for all functions
f ∈ C∞

0 (Rn\{0}):∥∥∥∥∥∥ f

|x|
n−p

p +δ

E

∥∥∥∥∥∥
Lp(Rn)

≤ pδ

∥∥∥∥∥∥ log |x|E|x|
n−p
p

E

∇f

∥∥∥∥∥∥
δ

Lp(Rn)

∥∥∥∥∥∥ f

|x|
n−p
p

E

∥∥∥∥∥∥
1−δ

Lp(Rn)

, (3.127)

where ∇ is the standard gradient in Rn. Similarly, we can write the inequality
(3.125) in the Euclidean case as∥∥∥∥∥∥ f

|x|
n−p
p +δ

E

∥∥∥∥∥∥
Lp(Rn)

≤
∥∥∥∥∥∥ ∇f

|x|
n−2p

p

E

∥∥∥∥∥∥
1−δ

Lp(Rn)

∥∥∥∥∥ f

|x|
n
p

E

∥∥∥∥∥
δ

Lp(Rn)

, 1 < p < ∞. (3.128)

Note that since 1
p + (−n

p )
1
n = 0, the inequality (3.128) does not follow from the

Caffarelli–Kohn–Nirenberg inequality in Theorem 3.3.3, thus providing an exten-
sion of (3.107) in terms of indices but also in terms of a possibility of choosing
any homogeneous quasi-norm on Rn.
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Proof of Theorem 3.3.9. A direct calculation shows that we have∥∥∥∥∥ f

|x|Q−p
p +δ

∥∥∥∥∥
p

Lp(G)

=

∫
G

|f(x)|p
|x|Q−p+δp

dx =

∫
G

|f(x)|δp
|x|δQ · |f(x)|p(1−δ)

|x|(Q−p)(1−δ)
dx.

Using Hölder’s inequality it follows that∥∥∥∥∥ f

|x|Q−p
p +δ

∥∥∥∥∥
p

Lp(G)

≤
(∫

G

|f(x)|p
|x|Q dx

)δ (∫
G

|f(x)|p
|x|Q−p

dx

)1−δ

. (3.129)

By Theorem 3.2.3, we have∫
G

|f(x)|p
|x|Q dx ≤ pp

∫
G

(log |x|)p
|x|Q |Ef(x)|pdx, 1 < p < ∞,

where E = |x|R is the Euler operator. It implies that∫
G

|f(x)|p
|x|Q dx ≤ pp

∫
G

(log |x|)p
|x|Q−p

|Rf(x)|pdx, 1 < p < ∞.

Using this in (3.129), one obtains∥∥∥∥∥ f

|x|Q−p
p +δ

∥∥∥∥∥
p

Lp(G)

≤ ppδ
(∫

G

(log |x|)p
|x|Q−p

|Rf(x)|pdx
)δ (∫

G

|f(x)|p
|x|Q−p

dx

)1−δ

,

which implies (3.124).

Now let us prove (3.125). Using Theorem 3.2.3, one has∫
G

|f(x)|p
|x|Q−p

dx ≤
∫
G

|Ef(x)|p
|x|Q−p

dx, 1 < p < ∞.

Then, using this in (3.130), we obtain∥∥∥∥∥ f

|x|Q−p
p +δ

∥∥∥∥∥
p

Lp(G)

≤
(∫

G

|f(x)|p
|x|Q dx

)δ (∫
G

|Ef(x)|p
|x|Q−p

dx

)1−δ

=

(∫
G

|f(x)|p
|x|Q dx

)δ (∫
G

|Rf(x)|p
|x|Q−2p

dx

)1−δ

,

which gives (3.125), completing the proof. �

3.3.4 Extended Caffarelli–Kohn–Nirenberg inequalities

In this section, we extend the range of indices for Theorem 3.3.1. Again, we work
in the setting of general homogeneous groups: G is a homogeneous group of ho-
mogeneous dimension Q ≥ 1 and | · | is a homogeneous quasi-norm on G.
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Theorem 3.3.11 (Extended Caffarelli–Kohn–Nirenberg inequalities). Let 1 < p,
q < ∞, 0 < r < ∞, with p + q ≥ r. Let δ ∈ [0, 1] ∩ [ r−q

r , p
r

]
and a, b, c ∈ R.

Assume that

δr

p
+

(1 − δ)r

q
= 1 and c = δ(a− 1) + b(1− δ).

Then for all f ∈ C∞
0 (G\{0}) we have the following inequalities:

(i) If Q �= p(1− a), then we have

‖|x|cf‖Lr(G) ≤
∣∣∣∣ p

Q− p(1− a)

∣∣∣∣δ ‖|x|aRf‖δLp(G)

∥∥|x|bf∥∥1−δ

Lq(G)
. (3.130)

(ii) If Q = p(1− a), then we have

‖|x|cf‖Lr(G) ≤ pδ ‖|x|a log |x|Rf‖δLp(G)

∥∥|x|bf∥∥1−δ

Lq(G)
. (3.131)

The constant in the inequality (3.130) is sharp for p = q with a − b = 1 or p �= q
with p(1− a) + bq �= 0. Moreover, the constants in (3.130) and (3.131) are sharp
for δ = 0 or δ = 1.

To compare these inequalities with those in Theorem 3.3.1 let us first for-
mulate the isotropic version of Theorem 3.3.11 in the usual setting of Rn, and its
further implication in the case of the Euclidean norm.

Corollary 3.3.12. Let | · | be a homogeneous quasi-norm on Rn, n ∈ N. Let 1 <
p, q < ∞, 0 < r < ∞, with p+ q ≥ r, δ ∈ [0, 1]∩ [ r−q

r , p
r

]
and a, b, c ∈ R. Assume

that
δr

p
+

(1 − δ)r

q
= 1 and c = δ(a− 1) + b(1− δ).

Then we have the following estimates:

(i) If n �= p(1− a), then for any function f ∈ C∞
0 (Rn\{0}) we have

‖|x|cf‖Lr(Rn) ≤
∣∣∣∣ p

n− p(1− a)

∣∣∣∣δ ∥∥∥∥|x|a( x

|x| · ∇f

)∥∥∥∥δ
Lp(Rn)

∥∥|x|bf∥∥1−δ

Lq(Rn)
.

(3.132)

(ii) In the critical case n = p(1− a) for any function f ∈ C∞
0 (Rn\{0}) we have

‖|x|cf‖Lr(Rn) ≤ pδ
∥∥∥∥|x|a log |x|( x

|x| · ∇f

)∥∥∥∥δ
Lp(Rn)

∥∥|x|bf∥∥1−δ

Lq(Rn)
. (3.133)

(iii) If | · |E is the Euclidean norm on Rn, inequalities (3.132) and (3.133) imply,
respectively,

‖|x|cEf‖Lr(Rn) ≤
∣∣∣∣ p

n− p(1− a)

∣∣∣∣δ ‖|x|aE∇f‖δLp(Rn)

∥∥|x|bEf∥∥1−δ

Lq(Rn)
(3.134)



3.3. Caffarelli–Kohn–Nirenberg inequalities 187

for n �= p(1− a), and

‖|x|cEf‖Lr(Rn) ≤ pδ ‖|x|aE log |x|∇f‖δLp(Rn)

∥∥|x|bEf∥∥1−δ

Lq(Rn)
, (3.135)

for n = p(1− a).

The inequality (3.132) holds for any homogeneous quasi-norm |·|, and the constant∣∣∣ p
n−p(1−a)

∣∣∣δ is sharp for p = q with a− b = 1, or for p �= q with p(1− a) + bq �= 0.

Furthermore, the constants
∣∣∣ p
n−p(1−a)

∣∣∣δ and pδ are sharp for δ = 0, 1.

Remark 3.3.13.

1. If the conditions (3.99) on the parameters hold, then the inequality (3.134)
is contained in the inequalities in Theorem 3.3.1. However, already in this
case, if we require p = q with a − b = 1 or p �= q with p(1 − a) + bq �= 0,
then (3.134) yields the inequality (3.100) with sharp constant. Moreover, the

constants
∣∣∣ p
n−p(1−a)

∣∣∣δ and pδ are sharp for δ = 0 or δ = 1. The conditions

δr

p
+

(1 − δ)r

q
= 1 and c = δ(a− 1) + b(1− δ)

imply the condition (3.101) of Theorem 3.3.1, as well as conditions (3.102)–
(3.103) which are all necessary for having estimates of this type, at least
under the conditions (3.99).

2. If the conditions (3.99) are not satisfied, then the inequality (3.134) is not
covered by Theorem 3.3.1. So, this gives an extension of Theorem 3.3.1 with
respect to the range of parameters. Indeed, let us take, for example,

1 < p = q = r < ∞, a = −n− 2p

p
, b = −n

p
, c = −n− δp

p
.

Then by (3.134), for all f ∈ C∞
0 (Rn\{0}) we have the inequalities∥∥∥∥∥∥ f

|x|
n−δp

p

E

∥∥∥∥∥∥
Lp(Rn)

≤
∥∥∥∥∥∥ ∇f

|x|
n−2p

p

E

∥∥∥∥∥∥
δ

Lp(Rn)

∥∥∥∥∥ f

|x|
n
p

E

∥∥∥∥∥
1−δ

Lp(Rn)

, (3.136)

for all 1 < p < ∞ and 0 ≤ δ ≤ 1, where ∇ is the standard gradient in Rn.
Since we have

1

q
+

b

n
=

1

p
+

1

n

(
−n

p

)
= 0,

we see that conditions (3.99) fail, so that the inequality (3.136) is not covered
by Theorem 3.3.1.
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Proof of Theorem 3.3.11. Case δ = 0. In this case we have q = r and b = c by
δr
p + (1−δ)r

q = 1 and c = δ(a − 1) + b(1 − δ), respectively. Then, the inequalities

(3.130) and (3.131) are equivalent to the trivial estimate

‖|x|bf‖Lq(G) ≤
∥∥|x|bf∥∥

Lq(G)
,

with clearly a sharp constant.

Case δ = 1. In this case we have p = r and a− 1 = c. By Theorem 3.2.3, we
have for Q+ pc = Q + p(a− 1) �= 0 the inequality

‖|x|cf‖Lr(G) ≤
∣∣∣∣ p

Q+ pc

∣∣∣∣ ‖|x|cEf‖Lr(G),

where E = |x|R is the Euler operator. Using this estimate we get

‖|x|cf‖Lr(G) ≤
∣∣∣∣ p

Q+ pc

∣∣∣∣ ‖|x|c+1Rf‖Lr(G) =

∣∣∣∣ p

Q− p(1− a)

∣∣∣∣ ‖|x|aRf‖Lp(G),

which implies (3.130). For Q+ pc = Q+ p(a− 1) = 0 by Theorem 3.2.3 we obtain

‖|x|cf‖Lr(G) ≤ p‖|x|c log |x|Ef‖Lr(G)

= p‖|x|c+1 log |x|Rf‖Lr(G)

= p‖|x|a log |x|Rf‖Lp(G),

which gives (3.131). In this case, the constants in (3.130) and (3.131) are sharp,
since the constants in Theorem 3.2.3 are sharp.

Case δ ∈ (0, 1) ∩ [ r−q
r , p

r

]
. Using c = δ(a− 1) + b(1− δ), a direct calculation

gives

‖|x|cf‖Lr(G) =

(∫
G

|x|cr|f(x)|rdx
) 1/r

=

(∫
G

|f(x)|δr
|x|δr(1−a)

|f(x)|(1−δ)r

|x|−br(1−δ)
dx

)1/r

.

Since we have δ ∈ (0, 1)∩[ r−q
r , p

r

]
and p+q ≥ r, then by using Hölder’s inequality

for δr
p + (1−δ)r

q = 1, we obtain

‖|x|cf‖Lr(G) ≤
(∫

G

|f(x)|p
|x|p(1−a)

dx

) δ/p(∫
G

|f(x)|q
|x|−bq

dx

) (1−δ)/q

=

∥∥∥∥ f

|x|1−a

∥∥∥∥δ
Lp(G)

∥∥∥∥ f

|x|−b

∥∥∥∥1−δ

Lq(G)

.

(3.137)

Here we note that when p = q and a − b = 1, the equality in Hölder’s inequality
holds for any function. We also note that in the case p �= q the function

h(x) = |x| 1
(p−q)

(p(1−a)+bq) (3.138)

satisfies Hölder’s equality condition

|h|p
|x|p(1−a)

=
|h|q
|x|−bq

.
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If Q �= p(1− a), then by Theorem 3.2.3 we have∥∥∥∥ f

|x|1−a

∥∥∥∥δ
Lp(G)

≤
∣∣∣∣ p

Q− p(1− a)

∣∣∣∣δ ∥∥∥∥ Ef

|x|1−a

∥∥∥∥δ
Lp(G)

=

∣∣∣∣ p

Q− p(1− a)

∣∣∣∣δ ∥∥∥∥ Rf

|x|−a

∥∥∥∥δ
Lp(G)

, 1 < p < ∞.

(3.139)

Putting this in (3.125), one has

‖|x|cf‖Lr(G) ≤
∣∣∣∣ p

Q− p(1− a)

∣∣∣∣δ ∥∥∥∥ Rf

|x|−a

∥∥∥∥δ
Lp(G)

∥∥∥∥ f

|x|−b

∥∥∥∥1−δ

Lq(G)

.

We note that in the case of p = q and a − b = 1, Hölder’s equality condition
of the inequalities (3.137) and (3.139) holds true for functions 1

|x|c , c ∈ R\{0}.
Moreover, in the case of p �= q and p(1− a) + bq �= 0, Hölder’s equality condition
of the inequalities (3.137) and (3.139) holds true for the function h(x) in (3.138).
Therefore, the constant in (3.130) is sharp when p = q and a − b = 1, or when
p �= q and p(1− a) + bq �= 0.

Now let us consider the case Q = p(1− a). Using Theorem 3.2.3, one has∥∥∥∥ f

|x|1−a

∥∥∥∥δ
Lp(G)

≤ pδ
∥∥∥∥ log |x||x|1−a

Ef

∥∥∥∥δ
Lp(G)

, 1 < p < ∞.

Then, putting this in (3.137), we obtain

‖|x|cf‖Lr(G) ≤ pδ
∥∥∥∥ log |x||x|1−a

Ef

∥∥∥∥δ
Lp(G)

∥∥∥∥ f

|x|−b

∥∥∥∥1−δ

Lq(G)

= pδ
∥∥∥∥ log |x||x|−a

Rf

∥∥∥∥δ
Lp(G)

∥∥∥∥ f

|x|−b

∥∥∥∥1−δ

Lq(G)

,

completing the proof. �
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