
Chapter 1

Analysis on Homogeneous Groups

In this chapter we provide preliminaries for the analysis on homogeneous groups to
make the use of the monograph more self-sufficient. We make a selection of topics
which will be playing a role in the subsequent analysis. Thus, we first discuss
relevant properties of general Lie groups and algebras and then concentrate on
properties of homogeneous groups required for our further analysis. Lastly, we
introduce the notion of the Euler operator on homogeneous groups and establish
its main properties.

This chapter is not intended to be a comprehensive treatise of homogeneous
groups but rather a description of a collection of tools used throughout the book.
The theory of homogeneous groups for their use in analysis was developed by Fol-
land and Stein [FS82]. A recent rather comprehensive description of homogeneous
groups and their place among nilpotent Lie groups have appeared in [FR16]. We
refer to both books for the expositions devoted specifically to homogeneous groups.
For some related information we may also refer to Ricci’s notes [Ric].

There are many sources with rather comprehensive and deep treatments of
nilpotent Lie groups, for example the books by Goodman [Goo76] or Corwin and
Greanleaf [CG90]. There are also many books on groups or Lie groups, we can
refer for example to [RT10, Part III] for a basic introduction. Therefore, we assume
the reader to have some familiarity with the concepts of the Lie groups and Lie
algebras.

1.1 Homogeneous groups

In this section we discuss nilpotent Lie algebras and groups in the spirit of Folland
and Stein’s book [FS82] as well as introduce homogeneous (Lie) groups. For more
analysis and details in this direction we refer to the recent open access book [FR16].

Let g be a Lie algebra (always assumed real and finite-dimensional), and
let G be the corresponding connected and simply-connected Lie group. The lower
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central series of g is defined inductively by

g(1) :=g, g(j) := [g, g(j−1)].

If the lower central series of a Lie algebra g terminates at 0 in a finite number
of steps then this Lie algebra is called nilpotent. Moreover, if g(s+1) = {0} and
g(s) �= {0}, then g is said to be nilpotent of step s. A Lie group G is nilpotent
(of step s) whenever its Lie algebra is nilpotent (of step s). If exp : g → G is
the exponential map, by the Campbell–Hausdorff formula for X,Y ∈ g sufficiently
close to 0 we have

expX expY = expH(X,Y ),

where H(X,Y ), the Campbell–Hausdorff series, is an infinite linear combination
of X and Y and their iterated commutators and H is universal, i.e., independent
of g, and that

H(X,Y ) = X + Y +
1

2
[X,Y ] + · · · ,

where the dots indicate terms of order ≥ 3.

If g is nilpotent, the Campbell–Hausdorff series terminates after finitely many
terms and defines a polynomial map from V × V to V , where V is the underlying
vector space of g.

Altogether, we have the following useful properties:

Proposition 1.1.1 (Exponential mapping and Haar measure). Let G be a connected
and simply-connected nilpotent Lie group with Lie algebra g. Then:

(i) The exponential map exp is a diffeomorphism from g to G. Moreover, if G
is identified with g via exp, then the group law (x, y) 
→ xy is a polynomial
map.

(ii) If λ denotes a Lebesgue measure on g, then λ ◦ exp−1 is a bi-invariant Haar
measure on G.

Proof of Proposition 1.1.1. Part (i) is a direct consequence of the fact that G is
uniquely (up to isomorphism) determined by g, see, e.g., [FS82, Proposition 1.2],
[CG90, Section 1.2] or [FR16, Proposition 1.6.6].

Let us give an argument for Part (ii). Let us denote the lower central series
for g by

g(1), . . . , g(m), g(m+1) = {0}
and denote

n := dim g and nj := dim g(j).

Let Xn−nm+1, . . . , Xn be a basis for g(m), and we extend it to a basis

Xn−nm−1+1, . . . , Xn

for g(m−1), and so forth obtaining eventually a basisX1, . . . , Xn for g. Let ξ1, . . . , ξn
be the dual basis for g∗, and let ηk := ξk ◦ exp−1. These η1, . . . , ηn are a system
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of global coordinates on G. By using the Campbell–Hausdorff formula and the
construction of the ηk’s we obtain

ηk(xy) = ηk(x) + ηk(y) + Pk(x, y),

where Pk(x, y) depends only on the coordinates ηi(x), ηi(y) with i < k. Thus, with
respect to the coordinates ηk, the differentials of the maps x 
→ xy with fixed y and
y 
→ xy with fixed x are given by lower triangular matrices with only 1 elements
on the diagonal, and therefore, each of the determinants is equal to one. This
implies that the volume form dη1 · · · dηn on G, which corresponds to the Lebesgue
measure on g, is left and right invariant. �

Definition 1.1.2 (Dilations on a Lie algebra). A family of dilations of a Lie algebra
g is a family of linear mappings

{δr : r > 0}

from g to itself which satisfies:

• the mappings are of the form

δr = exp(A log r),

where A is a diagonalisable linear operator on g with positive eigenvalues.

• In particular, δrs = δrδs for all r, s > 0. If α > 0 and {δr} is a family of

dilations on g, then so is {δ̃r}, where

δ̃r := δrα = exp (αA log r).

By adjusting α we can always assume that the minimum eigenvalue of A is
equal to 1.

Let A be the set of eigenvalues of A and denote by Wa ⊂ g the corresponding
eigenfunction space of A, where a ∈ A. Then we have

δrX = raX for X ∈ Wa.

If X ∈ Wa and Y ∈ Wb, then

δr[X,Y ] = [δrX, δrY ] = ra+b[X,Y ]

and thus [Wa,Wb] ⊂ Wa+b. In particular, since a ≥ 1 for a ∈ A, we see that
g(j) ⊂

⊕
a≥j Wa. Since the setA is finite, it follows that g(j) = {0} for j sufficiently

large. Thus, we obtain:

Proposition 1.1.3 (Lie algebras with dilations are nilpotent). If a Lie algebra g
admits a family of dilations then it is nilpotent.
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However, not all nilpotent Lie algebras admit a dilation structure: an example
of a (nine-dimensional) nilpotent Lie algebra that does not allow any compatible
family of dilations was constructed by Dyer [Dye70].

Definition 1.1.4 (Graded Lie algebras and groups). A Lie algebra g is called graded
if it is endowed with a vector space decomposition (where all but finitely many of
the Vk’s are 0)

g = ⊕∞
j=1Vj such that [Vi, Vj ] ⊂ Vi+j .

Consequently, a Lie group is called graded if it is a connected simply-connected
Lie group whose Lie algebra is graded.

Definition 1.1.5 (Stratified Lie algebras and groups). A graded Lie algebra g is
called stratified if V1 generates g as an algebra. In this case, if g is nilpotent of step
m we have

g = ⊕m
j=1Vj , [Vj , V1] = Vj+1,

and the natural dilations of g are given by

δr

(
m∑

k=1

Xk

)
=

m∑
k=1

rkXk, (Xk ∈ Vk).

Consequently, a Lie group is called stratified if it is a connected simply-connected
Lie group whose Lie algebra is stratified.

Definition 1.1.6 (Homogeneous groups). Let δr be dilations on G. We say that a
Lie group G is a homogeneous group if:

a. It is a connected and simply-connected nilpotent Lie group G whose Lie
algebra g is endowed with a family of dilations {δr}.

b. The maps exp ◦ δr ◦ exp−1 are group automorphism of G.

Since the exponential mapping exp is a global diffeomorphism from g to G

by Proposition 1.1.1, (i), it induces the corresponding family on G which we may
still call the dilations on G and denote by δr. Thus, for x ∈ G we will write δr(x)
or abbreviate it writing simply rx.

The origin of G will be usually denoted by 0.

Now let us give some well-known examples of homogeneous groups.

Example 1.1.7 (Abelian groups). The Euclidean space Rn is a homogeneous group
with dilation given by the scalar multiplication.

Example 1.1.8 (Heisenberg groups). If n is a positive integer, the Heisenberg group
Hn is the group whose underlying manifold is Cn ×R and whose multiplication is
given by

(z1, . . . , zn, t)(z
′
1, . . . , z

′
n, t

′) =

(
z1 + z′1, . . . , zn + z′n, t+ t′ + 2Im

n∑
k=1

zkz
′
k

)
.
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The Heisenberg group Hn is a homogeneous group with dilations

δr(z1, . . . , zn, t) = (rz1, . . . , rzn, r
2t).

Example 1.1.9 (Upper triangular groups). Let G be the group of all n × n real
matrices (aij) such that aii = 1 for 1 ≤ i ≤ n and aij = 0 when i > j. Then G is
a homogeneous group with dilations

δr(aij) = rj−iaij .

These Examples 1.1.7, 1.1.8 and 1.1.9 are all examples of the stratified groups.
It is also possible to define other families of dilations on these groups. For instance,
on R

n we can define

δr(x1, . . . , xn) = (rd1x1, . . . , r
dnxn),

where 1 = d1 ≤ d2 ≤ · · · ≤ dn, and on Hn we can define

δr(x1 + iy1, . . . , xn + iyn, t) = (ra1x1 + irb1y1, . . . , r
anxn + irbnyn, r

ct),

where min {a1, . . . , an, b1, . . . , bn} = 1 and aj + bj = c for all j. In general, these
dilations do not have to be stratified. However, when we refer to Rn or Hn we shall
assume that they are equipped with the natural dilations defined in Examples
1.1.7, 1.1.8 unless we state otherwise.

Let d1, . . . , dn be the eigenvalues of A, enumerated in nondecreasing or-
der according to their multiplicity, and let d = max dk. The mappings {δr =
exp(A log r)} give the dilation structure to an n-dimensional homogeneous group
G, with

1 = d1 ≤ d2 ≤ · · · ≤ dn = d. (1.1)

Let us fix a basis {Xk}nk=1 of the Lie algebra g of the Lie group G such that

AXk = dkXk

for each k. Then one can define a standard Euclidean norm ‖ · ‖ on g by declaring
the Xk’s to be orthonormal. This norm can be also considered as a function on G

by the formula
‖x‖ = ‖ exp−1 x‖. (1.2)

The number

Q :=

n∑
k=1

dk = Tr(A) (1.3)

is called the homogeneous dimension of G. From now on Q will always denote the
homogeneous dimension of G.
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1.2 Properties of homogeneous groups

In this section we discuss properties of homogeneous groups that are important
for their understanding and that will be also useful for our further analysis. For
different further properties of homogeneous and graded groups we can refer the
reader to the open access book [FR16, Chapter 3].

1.2.1 Homogeneous quasi-norms

We start by the definition of a quasi-norm.

Definition 1.2.1 (Quasi-norms). Let us define a homogeneous quasi-norm on a
homogeneous group G to be a continuous function x 
→ |x| from G to [0,∞) that
satisfies

(a) for all x ∈ G and r > 0:

|x−1| = |x| and |rx| = r|x|.

(b) The non-degeneracy:

|x| = 0 if and only if x = 0.

Here and elsewhere we denote by rx = δrx the dilation of x induced by the
dilations on the Lie algebra through the exponential mapping.

There always exist homogeneous quasi-norms on homogeneous groups. More-
over, there always exist quasi-norms that are C∞-smooth on G\{0}. Let us give
such an example. Observe that

X =

n∑
k=1

ckXk ∈ g implies ‖δrX‖ =

(
n∑

k=1

c2kr
2dk

) 1/2

,

where ‖ · ‖ is the Euclidean norm from (1.2). We can notice that for X �= 0 the
function ‖δrX‖ is a strictly increasing function of r, and it tends to 0 and ∞ as
r → 0 and r → ∞, respectively. Now, for x = expX , we can define a homogeneous
quasi-norm on G by setting

|0| := 0 and |x| := 1/r for x �= 0,

where r = r(X) > 0 is the unique number such that

‖δr(X)X‖ = 1.

By the implicit function theorem and the fact that the Euclidean unit sphere is a
C∞ manifold we see that this function is C∞ on G\{0}.
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If x ∈ G and r > 0 we define the ball of radius r about x by

B(x, r) := {y ∈ G : |x−1y| < r}.

It can be noticed that B(x, r) is the left translate by x of B(0, r), which in turn
is the image under δr of B(0, 1).

Lemma 1.2.2 (Closed quasi-balls are compact). B(x, r) is compact for any x ∈ G

and r > 0.

Proof. Let us define

ρ(x) :=

n∑
k=1

|ck|
dk

for x = exp

(
n∑

k=1

ckXk

)
,

where dk are as in (1.1). Then ρ satisfies all the properties of a homogeneous quasi-
norm. Obviously {x : ρ(x) = 1} is compact and does not contain 0, so the function
x 
→ |x| attains a positive minimum η on it. Since |rx| = r|x| and ρ(rx) = rρ(x),
it follows that |x| ≥ ηρ(x) for all x and for some η > 0, and hence that

B(0, η) ⊂ {x : ρ(x) ≤ 1}.

Thus, B(0, η) is compact, and it follows by dilation and translation that B(x, r)
is compact for all r > 0, x ∈ G. �

We can compare the quasi-norms with each other and with the Euclidean
norm (1.2).

Proposition 1.2.3 (Quasi-norms and the Euclidean norm). We have the following
properties:

(1) Any two homogeneous quasi-norms on a homogeneous group are equivalent.

(2) There are the constants C1, C2 > 0 such that

C1‖x‖ ≤ |x| ≤ C2‖x‖1/d for all |x| ≤ 1.

Proof. Proof of Part (2). When y = exp(
∑

ckXk) we have ‖ry‖ = (
∑

c2kr
2dk)1/2

and hence
rd‖y‖ ≤ ‖ry‖ ≤ r‖y‖

for r ≤ 1. A positive maximum C−1
1 and a positive minimum C−d

2 on {y : |y| = 1}
are attained by the Euclidean norm ‖y‖ in view of the compactness in Lemma
1.2.2. Any x �= 0 can be written as x = |x|y where |y| = 1, so that for |x| ≤ 1,

‖x‖ ≤ |x|‖y‖ ≤ C−1
1 |x|, ‖x‖ ≥ |x|d‖y‖ ≥ C−d

2 |x|d,

completing the proof of Part (2).
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Proof of Part (1). Let | · |1 and | · |2 be two homogeneous quasi-norms. By a
similar argument to Part (2), we observe that since the ball B(0, 1) with respect
to | · |1 is compact by Lemma 1.2.2, and | · |2 is continuous, we have∣∣∣∣ x

|x|1

∣∣∣∣
2

≤ C < ∞

for all x �= 0. By homogeneity it follows that |x|2 ≤ C|x|1 for all x ∈ G. Switching
the roles of | · |1 and | · |2 we obtain the statement. �

The reason why the homogeneous quasi-norms have the prefix ‘quasi’ be-
comes clear from the following proposition that shows that in general the triangle
inequality is satisfied only with some constant:

Proposition 1.2.4 (Triangle inequality with constant). Let G be a homogeneous
group. Then we have the following properties:

(1) If | · | is a homogeneous quasi-norm on G, there exists C > 0 such that for
every x, y ∈ G, we have

|xy| ≤ C(|x|+ |y|).

(2) There always exists a homogeneous quasi-norm | · | on G which satisfies the
triangle inequality (with constant C = 1):

|xy| ≤ |x|+ |y| (1.4)

for all x, y ∈ G.

Proof. Let us prove Part (1). The function (x, y) 
→ |xy| attains a finite maximum
C > 0 on the set {(x, y) ∈ G × G : |x| + |y| = 1} which is compact by Lemma
1.2.2. Then, given any x, y ∈ G, set r = |x|+ |y|. It follows that

|xy| = r|r−1(xy)| = r|(r−1x)(r−1y)| ≤ Cr = C(|x| + |y|),

completing the proof.

We leave Part (2) without proof, referring to [FR16, Proposition 3.1.38 and
Theorem 3.1.39] for the complete argument. �

Proposition 1.2.5. There exists a constant C > 0 such that for every x ∈ G and
s ∈ [0, 1], we have

| exp(s log(x))| ≤ C|x|. (1.5)

Proof. Let x �= 0, otherwise (1.5) is trivial. Using the fact that | · | is homogeneous
of degree 1, we have

| exp(s log(x))|
|x| = |δ1/|x|(exp(s log(x))| = | exp(s log(δ1/|x|(x))|.
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With |δ1/|x|(x)| = 1, it follows that

| exp(s log(x))|
|x| ≤ max

ξ∈G:|ξ|=1,s∈[0,1]
ρ(exp(s log(ξ))) =: C.

Note that C is finite, since the set {ξ : |ξ| = 1} is compact (see Lemma 1.2.2) as
well as | · |, exp and log are all continuous functions. �

The bi-invariant Haar measure on G comes from the Lebesgue measure on
g by Proposition 1.1.1. Fixing the normalisation of the Haar measure on G we
require that the Haar measure of B(0, 1) is 1. (Thus, if G = Rn with the usual
Lebesgue measure, our Haar measure is Γ((n + 2)/2)/π n/2 times the Lebesgue
measure.) The measure of any measurable set E ⊂ G will be denoted by |E|, and
we shall denote the integral of a function f with respect to this measure by

∫
G
fdx

or by
∫
G
f(x)dx, or simply by

∫
f or by

∫
f(x)dx.

Recalling (1.3), the homogeneous dimension of G is

Q =

n∑
k=1

dk = Tr(A),

and we have
|δr(E)| = rQ|E|, d(rx) = rQdx. (1.6)

In particular, we have |B(x, r)| = rQ for all r > 0 and x ∈ G.

Definition 1.2.6 (Homogeneous functions and operators). A function f on G\{0}
is said to be homogeneous of degree λ if it satisfies

f ◦ δr = rλf for all r > 0.

We note that for f and g, we have the formula∫
G

f(x) (g ◦ δr)(x)dx = r−Q

∫
G

(f ◦ δ 1/r)(x)g(x)dx,

given that the integrals exist. Hence we can extend the mapping f 
→ f ◦ δr
to distributions by defining, for any distribution f and any test function φ, the
distribution f ◦ δr by

〈f ◦ δr, φ〉 = r−Q〈f, φ ◦ δ 1/r〉,
where 〈·, ·〉 denotes the usual duality between functions and distributions. The
distribution f is called homogeneous of degree λ if it satisfies

f ◦ δr = rλf for all r > 0.

Also, a linear operator D on G is called homogeneous of degree λ if it satisfies

D(f ◦ δr) = rλ(Df) ◦ δr for all r > 0,

for any f . IfD is a linear operator homogeneous of degree λ and f is a homogeneous
function of degree μ, then Df is homogeneous of degree μ−λ.
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The following extension of the reverse triangle inequality is often useful:

Proposition 1.2.7 (Reverse triangle inequality). Let f be a homogeneous function
of degree λ and of class C1 on G\{0}. Then there is a constant C > 0 such that
we have

|f(xy)− f(x)| ≤ C|y||x|λ−1 for all |y| ≤ |x|/2.

Proof. Suppose that |x| = 1 and |y| ≤ 1/2, and we use the fact that both sides
of the desired inequality are homogeneous of degree λ. In this case x and xy are
bounded, and also bounded away from zero, and the map y 
→ xy is C1, so by the
usual mean value theorem and Proposition 1.2.3, we obtain

|f(xy)− f(x)| ≤ C‖y‖ ≤ C′|y| = C′|y||x|λ−1,

using that both sides of the desired inequality are homogeneous functions of the
same degree λ. �

In particular, this proposition can be applied to C1 homogeneous quasi-
norms. Specifically, the combination of Proposition 1.2.4 and Proposition 1.2.7
leads to a constant γ > 0 such that we have

|xy| ≤ γ(|x|+ |y|) for all x, y ∈ G, (1.7)

||xy| − |x|| ≤ γ|y| for all x, y ∈ G with |y| ≤ |x|/2. (1.8)

Henceforth, γ will always be called the minimal constant satisfying (1.7) and (1.8).
Obviously, γ ≥ 1. We will be using (1.7) and (1.8) without comment in the sequel.
The following simple fact will also be useful later:

Lemma 1.2.8 (Peetre type inequality). For every x, y ∈ G and s > 0, we have

(1 + |x|)s(1 + |y|)−s ≤ γs(1 + |xy−1|)s.

Proof. Because of |x| ≤ γ(|xy−1|+ |y|) we have

1 + |x| ≤ γ(1 + |xy−1|)(1 + |y|),

and we obtain the needed inequality by raising both sides to the sth power. �

Let us now fix the notation for some common function spaces on G. Let Ω ⊂
G, and let C(Ω) (C0(Ω)) be the space of continuous functions on G (continuous
functions with compact support, respectively). If Ω is open, then C(k)(Ω) is called
the class of k times continuously differentiable functions on Ω,

C∞(Ω) =

∞⋂
k=1

C(k)(Ω) and C∞
0 (Ω) = C∞(Ω) ∩ C0(Ω).
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When Ω = G we shall usually omit mentioning it. If 0 < p ≤ ∞, then Lp will
denote the usual Lebesgue space on G. For 0 < p < ∞ we write

‖f‖p :=

(∫
G

|f(x)|pdx
) 1/p

,

despite the fact that this is not a norm for p < 1. However, the map (f, g) 
→
‖f − g‖pp is a metric on Lp for p < 1. We recall that if f is a measurable function
on G, its distribution function λf : [0,∞] → [0,∞] is defined by

λf (α) := |{x : |f(x)| > α}|, (1.9)

and its nonincreasing rearrangement f∗ : [0,∞) → [0,∞) is defined by

f∗(t) = inf{α : λf (α) ≤ t}. (1.10)

Moreover,∫
G

|f(x)|pdx = −
∫ ∞

0

αpdλf (α) = p

∫ ∞

0

αp−1λf (α)dα =

∫ ∞

0

f∗(t)pdt.

For 0 < p < ∞, the weak-Lp is the space of functions f such that

[f ]p := sup
α>0

αpλf (α) = sup
t>0

t 1/pf∗(t) < ∞.

This [·]p is not a norm but it defines a topology on the weak-Lp space. A sub-
additive operator which is bounded from Lp to weak Lq is said to be weak type
(p, q).

1.2.2 Polar coordinates

There is an analogue of polar coordinates on homogeneous groups. We start with
the following observation:

Proposition 1.2.9 (Polar decomposition: a special case). Let f be a locally integrable
function on G\{0} and assume that it is homogeneous of degree −Q. Then there is
a constant μf (the ‘average value’ of f) such that for every g ∈ L1((0,∞), r−1dr),
we have ∫

G

f(x)g(|x|)dx = μf

∫ ∞

0

g(r)r−1dr. (1.11)

Proof. Define Lf : (0,∞) → C by

Lf (r) :=

{ ∫
1≤|x|≤r f(x)dx if r ≥ 1,

− ∫
r≤|x|≤1

f(x)dx if r < 1.
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By changing the variables x 
→ sx and using the homogeneity of f , it can be
verified that

Lf (rs) = Lf(r) + Lf (s)

for all r, s > 0. From the continuity of Lf , it then follows that

Lf = Lf (e) log r,

and we set μf := Lf (e). Then equality (1.11) is obvious when g is the characteristic
function of an interval, and it follows in general by taking linear combinations and
limits of such functions. �
Proposition 1.2.10 (Polar decomposition). Let

℘ := {x ∈ G : |x| = 1} (1.12)

be the unit sphere with respect to the homogeneous quasi-norm | · |. Then there is
a unique Radon measure σ on ℘ such that for all f ∈ L1(G),∫

G

f(x)dx =

∫ ∞

0

∫
℘

f(ry)rQ−1dσ(y)dr. (1.13)

Proof. Let f̃ ∈ C(G\{0}) be the homogeneous extension of f ∈ C(℘) defined by

f̃(x) := |x|−Qf(|x|−1x).

Then f̃ satisfies the hypotheses of Proposition 1.2.9. The map f 
→ μf̃ is clearly a

positive linear functional on C(℘), so it is given by the integration against some
Radon measure σ on ℘. If g ∈ C0(0,∞) then we have∫

G

f(|x|−1x)g(|x|)dx =

∫
G

f̃(x)|x|Qg(|x|)dx = μf̃

∫ ∞

0

rQ−1g(r)dr

=

∫ ∞

0

∫
℘

f(y)g(r)rQ−1dσ(y)dr.

Since linear combination of functions of the form f(|x|−1x)g(|x|) are dense in
L1(G), this completes the existence proof, and from the decomposition it follows
that such a measure is necessarily unique. �
Corollary 1.2.11. Let C := σ(℘). Then if 0 < a < b < ∞ and α ∈ C, we have∫

a<|x|<b

|x|α−Qdx =

{
Cα−1(bα − aα) if α �= 0,

C log(b/a) if α = 0.

Corollary 1.2.12. Let f be a measurable function on G such that

f(x) = O(|x|α−Q)

for some α ∈ R. If α > 0 then f is integrable near 0, and if α < 0 then f is
integrable near ∞.

These two corollaries will be frequently used without comment in the sequel.
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1.2.3 Convolutions

Let f and g be two integrable function on G. Then their convolution f ∗ g is well
defined by

(f ∗ g)(x) :=
∫
G

f(y)g(y−1x)dy =

∫
G

f(xy−1)g(y)dy.

The basic facts about convolution of Lp and weak-Lp functions can be for-
mulated in two propositions. For other properties of convolutions on groups we
can refer to [FR16, Sections 1.5 and 3.1.10].

Proposition 1.2.13 (Young’s inequality). Suppose

1 ≤ p, q, r ≤ ∞ and
1

p
+

1

q
=

1

r
+ 1.

If f ∈ Lp and g ∈ Lq, then f ∗ g ∈ Lr and

‖f ∗ g‖Lr(G) ≤ ‖f‖Lp(G)‖g‖Lq(G).

Proof. First assuming r = ∞, in this case p and q are conjugate exponents and
the result follows from Hölder’s inequality.

Second assuming r = q, p = 1, let q′ be the conjugate exponent to q. By
Hölder’s inequality,

|f ∗ g(x)| ≤
∫
G

|f(xy−1)|(1/q)+(1/q′)|g(y)|dy

≤
(∫

G

|f(xy−1)|dy
)1/q′ (∫

G

|f(xy−1)||g(y)|qdy
)1/q

= ‖f‖1/q′1

(∫
G

|f(xy−1)||g(y)|qdy
)1/q

.

Thus, by Fubini’s theorem, we obtain∫
G

|f ∗ g(x)|qdx ≤ ‖f‖q/q′1

∫
G

∫
G

|f(xy−1)||g(y)|qdydx

= ‖f‖(q/q′)+1
1 ‖g‖qq,

so that ‖f ∗ g‖q ≤ ‖f‖1‖g‖q. The rest follows by interpolation. �
Proposition 1.2.14 (Young’s inequality for weak-Lp spaces). Suppose

q ≤ p < ∞, 1 < q, r < ∞, and
1

p
+

1

q
=

1

r
+ 1.

If f ∈ Lp and g ∈ Lq then f ∗ g ∈ weak-Lr and there exists C1 = C1(p, q) such
that

[f ∗ g]r ≤ C1‖f‖p[g]q.
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Moreover, if p > 1 then f ∗ g ∈ Lr and there exists C2 = C2(p, q) such that

‖f ∗ g‖r ≤ C2‖f‖p[g]q.
Proof. By the Marcinkiewicz interpolation theorem one can notice that the strong
result for p > 1 follows from the weak result. Suppose then that f ∈ Lp and
g ∈ Lq, and (without loss of generality) that ‖f‖p = [q]q = 1. Given α > 0 set

M := (α/2) r/q(q/r)r/qp
′
,

where p′ is the conjugate exponent to p. Define g1(x) := g(x) if |g(x)| ≤ M and
g1(x) := 0 otherwise, and set g2 := g − g1. Since

λf∗g(α) ≤ λf∗g1(α/2) + λf∗g2(α/2),

it is enough to show that each term on the right side is bounded by Cα−r, where
C depends only on p and q. On the one hand, since q−1 − (p′)−1 = r−1 > 0 we
have p′q > 0 and therefore∫

G

|g1(x)|p′
dx = p′

∫ ∞

0

αp′−1λg1(α)dα ≤ p′
∫ M

0

αp′−1λg(α)dα

≤ p′
∫ M

0

αp′−1−qdα =
p′

p′ − q
Mp′−q =

r

q
M qp′/r = (α/2)p

′
.

Thus, for every x ∈ G, by Hölder’s inequality (or by Proposition 1.2.13) we have

|f ∗ g1(x)| ≤ ‖f‖p‖g1‖p′ ≤ α/2,

which implies that λf∗g1(α/2) = 0. On the other hand, since q > 1, we have∫
G

|g2(x)|dx =

∫ ∞

0

λg2(α)dα =

∫ M

0

λg(M)dα+

∫ ∞

M

λg(α)dα

≤ M ·M−q +

∫ ∞

M

α−qdα =
q

q − 1
M1−q,

and therefore by Proposition 1.2.13,

‖f ∗ g2‖p ≤ ‖f‖p‖g2‖1 ≤ q(q − 1)−1M1−q.

But then

λf∗g2(α/2) ≤ [2‖f ∗ g2‖p/α]p

≤
(
2

α

)p (
q

q − 1

)p

M (1−q)p

= C(p, q)α−r .

This completes the proof. �
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Now let us summarize some properties of approximations to the identity in
terms of the convolution. The following notation will be used throughout this
monograph: if φ is a function on G and t > 0, we define φt by

φt := t−Qφ ◦ δ 1/t, that is, φt(x) := t−Qφ(x/t). (1.14)

We notice that if φ ∈ L1(G) then
∫
G
φt(x)dx is independent of t.

Proposition 1.2.15 (Approximation of identity). Let φ ∈ L1(G) and let a :=∫
G
φ(x)dx. Then we have the following properties:

(i) If f ∈ Lp(G) for 1 ≤ p < ∞, then ‖f ∗ φt − af‖p → 0 as t → 0.

(ii) If f is bounded and right uniformly continuous, then ‖f ∗ φt − af‖∞ → 0 as
t → 0.

(iii) If f is bounded on G and continuous on an open set Ω ⊂ G, then f ∗φt−af →
0 uniformly on compact subsets of Ω as t → 0.

Proof. For a function f on G and y ∈ G, let us define

fy(x) := f(xy−1).

If f ∈ Lp for 1 ≤ p < ∞, then it can be shown that

‖fy − f‖p → 0 as y → 0, (1.15)

for example, using the fact that C0 is dense in Lp. If p = ∞, property (1.15)
holds if and only if f is (almost everywhere equal to) a right uniformly continuous
function. We now observe that

f ∗ φt(x) − af(x) =

∫
G

f(xy−1)t−Qφ(y/t)dy − af(x)

=

∫
G

f(x(tz)−1)φ(z)dz − af(x)

=

∫
G

[f(x(tz)−1)− f(x)]φ(z)dz.

Hence by Minkowski’s inequality,

‖f ∗ φt − af‖p ≤
∫
G

‖f tz − f‖p|φ(z)|dz.

Since ‖f tz − f‖p ≤ 2‖f‖p, under the hypothesis of (i) or (ii) it follows from (1.15)
and the dominated convergence theorem that ‖f ∗ φt − af‖ → 0. The routine
modification of this argument (with p = ∞) needed to establish (iii) is left to the
reader. �
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1.2.4 Polynomials

The Lie algebra g of G can be understood from different prospectives:

• as tangent vectors at the origin,

• as left invariant (and right invariant) vector fields.

While in this book we will not make much use of the first interpretation, we will
need the second. Consequently, let us denote by gL and gR the spaces of left
invariant and right invariant vector fields on G.

Let us fix a basis X1, . . . , Xn for g consisting of eigenvectors for the dilations
δr with eigenvalues rd1 , . . . , rdn , i.e., such that

δrXk = rdkXk.

In other words, first, we consider Xk as left invariant differential operators on G

and we denote by Y1, . . . , Yn the corresponding basis for gR: that is, Yk is the
element of gR such that Yk|0 = Xk|0 and for f ∈ C1 we have

Xkf(y) =
d

dt
f(y · exp(tXk))|t=0,

Ykf(y) =
d

dt
f(exp(tXk) · y)|t=0.

Then Xk and Yk are the differential operators homogeneous of degree dk since

Xk(f ◦ δr)(y) = d

dt
f((ry) exp(rdk tXk))|t=0

= rdk
d

dt
f((ry) exp(tXk))|t=0

= rdk(Xkf ◦ δr)(y),
and similarly for Yk. For I = (i1, . . . , in) ∈ Nn, we use the notation

XI = X i1
1 X i2

2 · · ·X in
n , Y I = Y i1

1 Y i2
2 · · ·Y in

n .

According to the Poincaré–Birkhoff–Witt theorem, the operators XI give a ba-
sis for the algebra of left invariant differential operators on the Lie group G. In
addition, we also use the notations

|I| := i1 + i2 + · · ·+ in, d(I) := d1i1 + d2i2 + · · ·+ dnin. (1.16)

Here |I| is called an order of the differential operators XI and Y I , and d(I) is
their degree of homogeneity or the homogeneous degree. If we denote by Δ the set
of all numbers d(I) as I ranges over Nn then we have N ⊂ Δ as d1 = 1.

There are two useful facts. On the one hand, left translations are isometries
on L2(G), and the operators Xk and Yk are formally skew-adjoint. Therefore,∫

G

(XIf)g = (−1)|I|
∫
G

f(XIg),

∫
G

f(Y Ig) = (−1)|I|
∫
G

(Y If)g,
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for all smooth functions f and g for which the integrands decay suitably at infinity.
On the other hand, the operators XI and Y I interact with convolutions by the
formulae

XI(f ∗ g) = f ∗ (XIg), Y I(f ∗ g) = (Y If) ∗ g, (XIf) ∗ g = f ∗ (Y Ig).

Except for the last one these equalities are direct consequences of differentiating,
and the third can be obtained by integration by parts:

(XIf) ∗ g(x) =
∫
G

XIf(xy)g(y−1)dy = (−1)|I|
∫
G

f(xy)XI [g(y−1)]dy

=

∫
G

f(xy)(Y Ig)(y−1)dy = f ∗ (Y Ig)(x).

Definition 1.2.16 (Polynomials on the homogeneous group G). A function P on G

will be called a polynomial if P ◦ exp is a polynomial on g.

We can form a global coordinate system on G and generate the algebra of
polynomials on G by setting

ηk = ξk ◦ exp−1,

where η1, . . . , ηn are polynomials on G, and ξ1, . . . , ξn are the basis for the linear
forms on g dual to the basis X1, . . . , Xn for g. Therefore, each polynomial on G

can be defined uniquely in the form

P =
∑
I

aIη
I ,

where
ηI = ηi11 · · · ηinn ,

aI ∈ C, and all but finitely many of the coefficients aI vanish. Since ηI is homo-
geneous of degree d(I), the set of possible homogeneous degrees for polynomials
coincides with the set Δ. The isotropic degree of a polynomial P is

max{|I| : aI �= 0}.
And the homogeneous degree of a polynomial P is

max{d(I) : aI �= 0}.
By P iso

N , for N ∈ N, we denote the space of polynomials of isotropic degree ≤ N ,
and by Pa, for a ∈ Δ, we denote the space of polynomials of homogeneous degree
≤ a. Since 1 ≤ dk ≤ d for k = 1, . . . , n, we observe that

PN ⊂ P iso
N ⊂ PdN

for N ∈ N.
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There is a more explicit description of the group law in terms of the coordi-
nates ηk since the map

(x, y) 
→ ηk(xy)

is a polynomial on G×G. Thus, we have

ηk((rx)(ry)) = rdkηk(xy),

that is, it is jointly homogeneous of degree dk and, according to the Baker–
Campbell–Hausdorff formula, we have ηk(xy) = ηk(x) + ηk(y) modulo terms of
isotropic degree ≥ 2. It follows that

ηk(xy) = ηk(x) + ηk(y) +
∑

I 	=0,J 	=0,d(I)+d(J)=dk

CIJ
k ηI(x)ηJ (y), (1.17)

where CIJ
k are constants. It is easy to see that the monomials ηI , ηJ can only

involve coordinates with homogeneous degree less than dk, since the multi-indices
I and J in (1.17) must satisfy d(I) < dk and d(J) < dk. In particular, only the
coordinates η1, . . . , ηj−1 can be involved, for instance:

dk = 1 : ηk(xy) = ηk(x) + ηk(y),

dk = 2 : ηk(xy) = ηk(x) + ηk(y) +
∑

dj=dl=1

Cjl
k ηj(x)ηl(y).

Proposition 1.2.17 (Polynomials are translation invariant). For any a ∈ Δ, Pa is
left translation invariant.

Proof. According the formula (1.17), it is easy to see that ηk(xy) is in Pdk
(as a

function of x for each y, and also as a function of y for each x). On the other hand,
the ηk’s generate all polynomials, therefore Pa is left translation invariant for all
a ∈ Δ. �
Definition 1.2.18 (Coordinate functions on the group). For x ∈ G and k = 1, . . . , n,
we can think of

xk := ηk(x)

as the coordinates of the variable x. Thus, each xk becomes a polynomial of ho-
mogeneous degree k.

We now establish a link between left and right invariant differential operators
and derivatives with respect to coordinate functions on the group.

Proposition 1.2.19 (Formulae for invariant derivatives). We have

Xk =
∑

Pkj(∂/∂xj), Yk =
∑

Qkj(∂/∂xj), (1.18)

where Pkk = Qkk = 1, Pkj = Qkj = 0 if dj < dk or if dj = dk and j �= k, and
Pkj , Qkj are homogeneous polynomials of degree dk − dj if dj > dk.
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Proof. Let us define the operator Lx : G → G by Lx(y) := xy for x ∈ G. Then,
using the fact that Xk agrees with ∂/∂xk at 0, for each differentiable function f
on G and x ∈ G, we have

Xkf(x) = (Xkf) ◦ Lx(0) = Xk(f ◦ Lx)(0) = (∂/∂xk)(f ◦ Lx)(0).

Therefore, by the chain rule, we obtain

Xkf(x) =

n∑
k=1

∂f

∂xk
(x)

∂[xk ◦ Lx]

∂xk
(0).

But by formula (1.17) it follows that

∂[xj ◦ Lx]

∂xk
(0) = δkj +

∑
d(I)=dj−dk

C
I[k]
j ηI(x),

where [k] is the multi-index with 1 in the kth place and zeros elsewhere. The
desired result for Xk follows from this, and for Yk it can be proved in a similar
way. �

There are also similar expressions for ∂/∂xk in terms of Xj or Yj :

∂/∂xk =
∑

P ′
kjXj =

∑
Q′

kjYj ,

where P ′
kj , Q

′
kj are of the same form as Pkj , Qkj in (1.18). Above formulae can

be directly obtained from (1.18) with j = n, that is, we have

Xn = ∂/∂xn,

Xn−1 = ∂/∂xn−1 + P(n−1)n∂/∂xn,

Xn−2 = ∂/∂xn−2 + P(n−2)(n−1)∂/∂xn−1 + P(n−2)n∂/∂xn,

therefore, we obtain

∂/∂xn = Xn,

∂/∂xn−1 = Xn−1 − P(n−1)n∂/∂xn,

∂/∂xn−2 = Xn−2 − P(n−2)(n−1)∂/∂xn−1 − P(n−2)n∂/∂xn,

and so on. Similarly, one can obtain expressions for higher-order derivatives. For
instance,

XI =
∑

|J|≤|I|,d(J)≥d(I)

PIJ (∂/∂x)
J , (1.19)

where PIJ is a homogeneous polynomial of degree d(J) − d(I). Analogously, we
obtain formulae for Y I in terms of (∂/∂x)J and for (∂/∂x)I in terms of XJ or
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Y J , that is,

XI =
∑

|J|≤|I|,d(J)≤d(I)

PIJY
J ,

Y I =
∑

|J|≤|I|,d(J)≤d(I)

QIJX
J ,

where PIJ and QIJ are homogeneous polynomials of degree d(J)− d(I).

Proposition 1.2.20 (Determination of invariant differential operators). Let a ∈
Δ and let μ := dimPa. Then the following maps are linear isomorphisms from
Pa to Cμ:

(i) P → ((∂/∂x)IP (0))d(I)≤a,

(ii) P → (XIP (0))d(I)≤a,

(iii) P → (Y IP (0))d(I)≤a.

Proof. Note that Case (i) is a simple consequence of Taylor’s theorem. Also, in
view of (1.19), since PIJ is a constant function when d(I) = d(J) and PIJ(0) = 0
when d(J) > d(I), we have

XI |0 =
∑

|J|≤|I|,d(J)=d(I)

PIJ (∂/∂x)
J |0,

and similarly for the other formulae relating XI , Y I and (∂/∂η)I . Cases (ii) and
(iii) follow easily from this observation together with Case (i). �

The properties above motivate the following:

Definition 1.2.21 (Taylor polynomials). Let x ∈ G, a ∈ Δ, and let f be a function
whose (distributional) derivatives XIf (resp. Y If) are continuous functions in a
neighborhood of x for d(I) ≤ a. The left (resp. right) Taylor polynomial of f at x
of homogeneous degree a is the unique P ∈ Pa such that XIP (0) = XIf(x) (resp.
Y IP (0) = Y If(x)) for all I such that d(I) ≤ a.

Now we provide simple proofs of an explicit expression of the Taylor formula
and the Taylor inequality in the spirit of [Bon09].

Let X ∈ g be given, and suppose γ(t) is any integral curve of X , i.e.

γ̇ = X(γ(t))

for all t ∈ R. If m ∈ N ∪ {0} and u ∈ Cm+1(G) is real-valued, then since

dk

dtk
(u(γ(t))) = (Xku)(γ(t)),
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for each k ∈ N∪{0}, by applying the usual Taylor formula (with integral reminder)
to t 
→ u(γ(t)), we obtain

u(γ(t)) =

m∑
k=0

tk

k!
(Xku)(γ(0)) +

1

m!

∫ t

0

(t− s)m(Xm+1u)(γ(s))ds. (1.20)

Moreover, it is easy to see that the integral curve γ of log h starting at x is
s 
→ γ(s) = x exp(s log h). With γ(0) = x, γ(1) = xh, we get

u(xh) =

m∑
k=0

1

k!
((log h)ku)(x) +

1

m!

∫ 1

0

(1− s)m((log h)m+1u)(x exp(s log h))ds.

(1.21)

On the other hand, there always exist (polynomial) functions G � h 
→
ζi(h) ∈ R such that

log h = ζ1(h)X1 + · · ·+ ζn(h)Xn,

for all h ∈ G, where {X1, . . . , Xn} is a basis of the Lie algebra of G. Thus, we have

(log h)k =

(
n∑

i=1

ζi(h)Xi

)k

=

n∑
i1,...,ik=1

ζi1(h) · · · ζik (h)Xi1 · · ·Xik ,

for every k ∈ N.

Therefore, (1.21) implies that

u(xh) = u(x) +

m∑
k=1

∑
I=(i1,...,ik),i1,...,ik≤n

XIu(x)

k!
ζi1(h) · · · ζik (h)

+
∑

I=(i1,...,im+1),i1,...,in+1≤n

ζi1(h) · · · ζim+1(h)

×
∫ 1

0

(XIu)

⎛⎝x exp

⎛⎝∑
i≤n

sζi(h)Xi

⎞⎠⎞⎠ (1− s)m

m!
ds,

(1.22)

where XI = Xi1 · · ·Xik and I = (i1, . . . , ik) with i1, . . . , ik ∈ {1, . . . , n}.
For a multi-index α, we will be using the notations (1.16), i.e.,

|α| = α1 + · · ·+ αn, d(α) = d1α1 + · · ·+ dnαn,

where dj is the homogeneous degree of Xk; these are called the Euclidean length
and the homogeneous length of α, respectively. One also sets

G := {d(α) : α ∈ (N ∪ {0})n}.
As usual, [β] below is the integer part of the real number β. Now we are in a
position to state the Taylor formula on homogeneous groups.
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Theorem 1.2.22 (Taylor formula). Let G be a homogeneous group (identified with
Rn as a topological space). Suppose {X1, . . . , Xn} is the Jacobian basis for its Lie
algebra, m ∈ G and u ∈ C [m]+1(G). Let also x0 ∈ G be fixed. Then, for every
x ∈ G we have

u(x) = Pm(u, x0)(x) +Rm(x, x0) (1.23)

= u(x0) +

[m]∑
k=1

∑
I=(i1,...,ik),
i1,...,ik≤n,
d(I)≤m

XIu(x0)

k!
ζi1(x

−1
0 x) · · · ζik(x−1

0 x) +Rm(x, x0),

where the reminder term Rm(x, x0) is given by

Rm(x, x0) =

[m]∑
k=1

∑
I=(i1,...,ik),
i1,...,ik≤n,
d(I)>m

XIu(x0)

k!
ζi1(x

−1
0 x) · · · ζik(x−1

0 x)

+
∑

I=(i1,...,i[n]+1),
i1,...,i[m]+1≤n

ζi1(x
−1
0 x) · · · ζi[m]+1

(x−1
0 x)

×
∫ 1

0

(XIu)

⎛⎝x0 exp

⎛⎝∑
i≤n

sζi(x
−1
0 x)Xi

⎞⎠⎞⎠ (1− s)[m]

[m]!
ds.

Proof of Theorem 1.2.22. If x0 ∈ G is any fixed element, by replacing x and h in
the formula (1.22) by respectively x0 and x−1

0 x, we obtain the following:

u(x) = u(x0) +

[m]∑
k=1

∑
I=(i1,...,ik),
i1,...,ik≤n,
d(I)>m

XIu(x0)

k!
ζi1 (x

−1
0 x) · · · ζik(x−1

0 x)

+
∑

I=(i1,...,i[m]+1),
i1,...,i[m]+1≤n

ζi1 (x
−1
0 x) · · · ζi[m]+1

(x−1
0 x) (1.24)

×
∫ 1

0

(XIu)

⎛⎝x0 exp

⎛⎝∑
i≤n

sζi(x
−1
0 x)Xi

⎞⎠⎞⎠ (1− s)[m]

[m]!
ds.

Since a polynomial ζi(x) is homogeneous of degree σi, there exists C1 > 0 such
that

C−1
1 |x|σi ≤ |ζi(x)| ≤ C1|x|σi , ∀x ∈ G, i = 1, . . . , n.

As a consequence, for every k ∈ N, ζi1 · · · ζik is a homogeneous polynomial of degree
di1 + · · ·+ dik . Similarly, ζi1 · · · ζi[m]+1

is homogeneous of degree ≥ [m] + 1 (since
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the di’s are ≥ 1) and, there appear only derivatives XIu with d(I) ≥ [m] + 1 > m
in the integral summands.

We restate (1.24) emphasizing out the polynomial of degree ≤ m in the
right-hand side:

u(x) = u(x0) +

[m]∑
k=1

∑
I=(i1,...,ik),
i1,...,ik≤n,
d(I)≤m

XIu(x0)

k!
ζi1(x

−1
0 x) · · · ζik (x−1

0 x)

+

[m]∑
k=1

∑
I=(i1,...,ik),
i1,...,ik≤n,
d(I)>m

XIu(x0)

k!
ζi1(x

−1
0 x) · · · ζik (x−1

0 x)

+
∑

I=(i1,...,i[m]+1),
i1,...,i[m]+1≤n

ζi1(x
−1
0 x) · · · ζi[m]+1

(x−1
0 x)

×
∫ 1

0

(XIu)

⎛⎝x0 exp

⎛⎝∑
i≤n

sζi(x
−1
0 x)Xi

⎞⎠⎞⎠ (1 − s)[m]

[m]!
ds

=: Pm(u, x0)(x) +Rm(x, x0).

By construction, Pm(u, x0)(x) is a polynomial of homogeneous degree ≤ m. �
Theorem 1.2.23 (Taylor inequality). Assume the hypotheses of Theorem 1.2.22.
Then for every fixed homogeneous norm | · | on G and every m ∈ G, there exists
C > 0 (depending on G and | · |) such that

|Rm(x, x0)| ≤
[m]+1∑
k=1

Ck

k!

∑
I=(i1,...,ik),
i1,...,ik≤n,
d(I)>m

|x−1
0 x|d(I) sup

|y|≤C|x−1
0 x|

|XIu(x
−1
0 y)|. (1.25)

Moreover, an explicit formula for the Taylor polynomial Pm(u, x0) of degree m ∈ G
related to u about x0 is

Pm(u, x0)(x) = u(x0)

+

[m]∑
k=1

∑
I=(i1,...,ik),i1,...,ik≤n,d(I)≤m

XIu(x0)

k!
ζi1 (x

−1
0 x) · · · ζik(x−1

0 x). (1.26)

Proof of Theorem 1.2.23. Since

n∑
i=1

sζi(x)Xi = s log(x)
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by Proposition 1.2.5 we obtain∣∣∣∣∣∣(XIu)

⎛⎝exp

⎛⎝∑
i≤n

sζi(x)Xi

⎞⎠⎞⎠∣∣∣∣∣∣ ≤ sup
|y|≤C0|x|

|XIu(y)|.

This implies that

|Rm(x−1
0 x)| ≤

[m]+1∑
k=1

∑
I=(i1,...,ik),
i1,...,ik≤n,
d(I)>m

sup
|y|≤C0|x−1

0 x|
|XIu(x

−1
0 y)|ζi1(x

−1
0 x) · · · ζik(x−1

0 x)

k!

≤
[m]+1∑
k=1

Ck
1

k!

∑
I=(i1,...,ik),
i1,...,ik≤n,
d(I)>m

|x−1
0 x|σ(I) sup

|y|≤C0|x−1
0 x|

|XIu(x
−1
0 y)|.

Choosing C := max{C0, C1} we complete the proof of the Taylor inequality (1.25).

First, note that the above estimate of Rm gives Rm(x) = O(ρm+ε(x)) as
x → 0, where

ε := min
k=1,...,[m]+1

{d(I)−m : I = (i1, . . . , ik), i1, . . . , ik ≤ n, d(I) > m}. (1.27)

Thus, the Taylor formula (1.23) can be rewritten as u(x)=Pm(x)+O(|x|m+ε)
as x → 0, with ε > 0 as in (1.27).

Now let us see that there exists at most one polynomial function P on G,
with degree ≤ m, such that, for some ε > 0 (depending on P and m) it holds

u(x) = P (x) +Ox→x0(|x−1
0 x|m+ε). (1.28)

Indeed, suppose there are two such polynomials, A and B (with related ε1, ε2 > 0).
Then setting ε := min{ε1, ε2} we have

Q(x) := B −A = Ox→x0(|x−1
0 x|m+ε).

Setting Q̃(z) := Q(x0z), this is equivalent to

Q̃(z) = Oz→0(|z|m+ε). (1.29)

The fact that Q is a polynomial of degree at most m and the ith component
function of x0z is a polynomial in z of degree at most di, it follows that Q(x0z) is
a polynomial in z of degree at most m.

Therefore, (1.29) is valid if and only if Q̃ ≡ 0, that is, Q(x0z) = 0 for all
z ∈ G. This is in turn equivalent to Q ≡ 0, i.e., A ≡ B. Note that the equivalence
of all homogeneous norms (cf. Proposition 1.2.3) implies that a polynomial P as
in (1.28) is independent of | · |. Thus, Pm is the Taylor polynomial of degree m
related to u, which has the explicit formula (1.26). �
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1.3 Radial and Euler operators

An important tool for working on homogeneous groups will be an extensive use of
radial and Euler operators. We now discuss them in some detail and establish a
number of properties used throughout the book.

1.3.1 Radial derivative

First we introduce a radial derivative (acting on a differentiable function f) on a
homogeneous group G by

Rf(x) :=
df(x)

d|x| , (1.30)

where |x| is a homogeneous quasi-norm of G. Note that the homogeneous quasi-
norm |x| in the formula (1.30) can be arbitrary, that is, in general the radial
operator R depends on a chosen homogeneous quasi-norm.

Let {X1, . . . , Xn} be a basis of the Lie algebra g of G such that we have

AXk = νkXk for every k = 1, . . . , n.

Then the matrix A can be taken to be A = diag(ν1, . . . , νn) and each Xk is
homogeneous of degree νk. By decomposing the vector exp−1

G
(x) in g with respect

to the basis {X1, . . . , Xn}, we get the vector

e(x) = (e1(x), . . . , en(x))

given by the formula

exp−1
G

(x) = e(x) · ∇ ≡
n∑

j=1

ej(x)Xj ,

where
∇ = (X1, . . . , Xn)

is the full gradient. It gives the equality

x = expG (e1(x)X1 + · · ·+ en(x)Xn) . (1.31)

By homogeneity and denoting x = ry, with y ∈ ℘ being on the quasi-sphere (1.12),
we get

e(x) = e(ry) = (rν1e1(y), . . . , r
νnen(y)).

Indeed, since each Xk is homogeneous of degree νk, from (1.31) we get that

rx = expG (rν1e1(x)X1 + · · ·+ rνnen(x)Xn) ,

and hence
e(rx) = (rν1e1(x), . . . , r

νnen(x)).
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Thus, since r > 0 is arbitrary, without loss of generality taking |x| = 1, we can
write

d

d|rx|f(rx) =
d

dr
f(expG (rν1e1(x)X1 + · · ·+ rνnen(x)Xn)). (1.32)

So, summarizing, one obtains

d

d|x| (f(x)) =
d

dr
(f(ry)) =

d

dr
(f(expG (rν1e1(y)X1 + · · ·+ rνnen(y)Xn))).

(1.33)
Throughout this book we will be often abbreviate the notation by writing

R :=
d

dr
, (1.34)

meaning that the derivative is taken with respect to the radial direction with
respect to the quasi-norm | · |.

We can also observe that for any differentiable function f we have

d

d|x|f(x) =
d

d|x|f
(

x

|x| |x|
)

=
x

|x|
d

dx
f(x) =

x · ∇E

|x| f(x), (1.35)

since for x ∈ G, we have that x
|x| does not depend on |x|, and where

∇E =

(
∂

∂x1
, . . . ,

∂

∂xn

)
is an anisotropic (Euclidean) gradient on G consisting of partial derivatives with
respect to coordinate functions.

Although xj and ∂
∂xj

may have degrees of homogeneity depending on j, the
operator

R =
x · ∇E

|x| =
d

d|x| (1.36)

is homogeneous of degree −1.

1.3.2 Euler operator

Given the radial derivative operator R, we define the Euler operator on G by

E := |x|R. (1.37)

Since R is homogeneous of degree −1, the operator E is homogeneous of degree 0.

We can note the following useful property shedding some more light on the
link between the radial derivative and the Euler operators, also clarifying how to
take derivatives with respect to points that are not on the quasi-sphere ℘. Thus,
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for x ∈ G, we can write x = ry with y ∈ ℘. Then, denoting ρ := etr for t ∈ R, we
have

d

dt
(f(etx)) =

d

dt
(f(etry)) =

d

dt
(f(ρy)) = ρ

d

dρ
(f(ρy)) = Ef(ρy) = Ef(etx),

that is,
d

dt
f(etx) = Ef(etx). (1.38)

The Euler operator has the following useful properties, also justifying the
name of Euler associated to this operator.

Proposition 1.3.1 (Properties of the Euler operator). We have the following prop-
erties:

(i) Let ν ∈ R. If f : G\{0} → R is differentiable, then

E(f) = νf if and only if f(rx) = rνf(x) (∀r > 0, x �= 0).

(ii) The formal adjoint operator of E has the form

E
∗ = −QI− E, (1.39)

where I is the identity operator.

(iii) For all complex-valued functions f ∈ C∞
0 (G\{0}) we have

‖Ef‖L2(G) = ‖E∗f‖L2(G) . (1.40)

Proof. Part (i). If a function f is positively homogeneous of order ν, that is, if

f(rx) = rνf(x)

holds for all r > 0 and x := ρy �= 0, y ∈ ℘, then using (1.30) for such an f , it
follows that

Ef = νf(x).

Conversely, let us fix x �= 0 and define

g(r) := f(rx).

Using (1.30), the equality Ef(rx) = νf(rx) means that

g′(r) =
d

dr
f(rx) =

1

r
Ef(rx) =

ν

r
f(rx) =

ν

r
g(r).

Consequently, g(r) = g(1)rν , i.e., f(rx) = rνf(x) and thus f is positively homo-
geneous of order ν.



38 Chapter 1. Analysis on Homogeneous Groups

Part (ii). We can calculate the formal adjoint operator of E on C∞
0 (G\{0})

as follows:∫
G

Ef(x)g(x)dx =

∫ ∞

0

∫
℘

d

dr
f(ry)g(ry)rQdσ(y)dr

= −
∫ ∞

0

∫
℘

f(ry)

(
QrQ−1g(ry) + rQ

d

dr
g(ry)

)
dσ(y)dr

= −
∫
G

f(x)(Q + E)g(x)dx,

by the polar decomposition in Proposition 1.2.10 and the integration by parts
using formula (1.30).

Part (iii). By using the representation of E∗ in (1.39), we get

‖E∗f‖2L2(G) = ‖(−QI− E)f‖2L2(G)

= Q2 ‖f‖2L2(G) + 2QRe

∫
G

f(x)Ef(x)dx+ ‖Ef‖2L2(G) .
(1.41)

Then we have

2QRe

∫
G

f(x)Ef(x)dx = 2QRe

∫ ∞

0

∫
℘

f(ry)
d

dr
f(ry)rQdσ(y)dr

= Q

∫ ∞

0

rQ
∫
℘

d

dr
(|f(ry)|2)dσ(y)dr

= −Q2

∫ ∞

0

∫
℘

|f(ry)|2rQ−1dσ(y)dr

= −Q2 ‖f‖2L2(G) .

(1.42)

Combining this with (1.41) we obtain (1.40). �

Let us introduce the following operator that will be of importance in the
sequel,

A := EE
∗.

It is easy to see that this operator is formally self-adjoint, that is,

A = EE
∗ = E

∗
E = A

∗,

where we can use Proposition 1.3.1, Part (ii), to also write

EE
∗ = E

∗
E = −QE− E

2.

Then by replacing f by Ef in (1.40), we obtain the equality

‖Af‖L2(G) =
∥∥E2f

∥∥
L2(G)

(1.43)
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for all complex-valued functions f ∈ C∞
0 (G\{0}). Moreover, the operator A is

Komatsu-non-negative in L2(G), which means that (−∞, 0) is included in the
resolvent set ρ(A) of A and we have the property

∃M > 0, ∀λ > 0, ‖(λ+ A)−1‖L2(G)→L2(G) ≤ Mλ−1.

Indeed, and more precisely, we have the following:

Lemma 1.3.2 (A = EE∗ is Komatsu-non-negative). The operator A = EE∗ is
Komatsu-non-negative in L2(G):

‖(λ+ A)−1‖L2(G)→L2(G) ≤ λ−1 for all λ > 0. (1.44)

Proof. We start with f ∈ C∞
0 (G\{0}). Using Proposition 1.3.1, Part (ii), a direct

calculation shows that we have the equality

‖(λI+ A)f‖2L2(G) = ‖(λI− E(QI+ E))f‖2L2(G)

= λ2 ‖f‖2L2(G) + ‖E(QI+ E)f‖2L2(G) − 2λRe

∫
G

f(x)QEf + E2fdx.
(1.45)

Since

Re

∫
G

f(x)E2fdx = Re

∫ ∞

0

∫
℘

f(ry)
d

dr
(Ef(ry))rQdσ(y)dr

= −Re

∫ ∞

0

∫
℘

(Ef(ry))

(
rQ

d

dr
f(ry) +QrQ−1f(ry)

)
dσ(y)dr

= −‖Ef‖2L2(G) −QRe

∫
G

Ef(x)f(x)dx,

we have

−2λRe

∫
G

f(x)QEf(x) + E2f(x)dx

= −2λQRe

∫
G

f(x)Ef(x)dx− 2λRe

∫
G

f(x)E2f(x)dx = 2λ ‖Ef‖2L2(G) . (1.46)

Combining (1.45) with (1.46), we obtain the equality

‖(λI− E(QI+ E))f‖2L2(G) = λ2 ‖f‖2L2(G) + 2λ ‖Ef‖2L2(G) + ‖E(QI+ E)f‖2L2(G) .

By dropping positive terms, it follows that

‖(λI− E(QI+ E))f‖2L2(G) ≥ λ2 ‖f‖2L2(G) ,

which implies (1.44). �

We can refer to [FR16, Section A.3] for more details on general further prop-
erties of Komatsu-non-negative operators and their use in the theory of fractional
powers of operators.
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1.3.3 From radial to non-radial inequalities

Now we show that the Euler operator and, consequently, also the radial derivative
operator, have a very useful property that in order to prove certain inequalities
on G is may be enough to prove them only for radially symmetric functions. We
summarize it in the following proposition. Such ideas will be of use, for example,
in the analysis of remainder estimates in Theorem 2.3.1 or in Theorem 3.2.6.

As usual, we will say that a function f = f(x) on G is radial, or radially
symmetric, if it depends only on |x|; clearly, this notion depends on the seminorm
that we are using.

Proposition 1.3.3 (Radialisation of functions). Let φ1, φ2, φ3 ∈ L1
loc(G) be arbitrary

radially symmetric functions. For f ∈ Lp
loc(G), define its radial average by

f̃(|x|) :=
(

1

|℘|
∫
℘

|f(|x|y)|pdσ(y)
) 1/p

. (1.47)

Then for any f ∈ Lp
loc(G) and 1 < p < ∞ we have the equality∫
G

φ1(x)
∣∣∣f̃(|x|)∣∣∣p dx =

∫
G

φ1(x) |f(x)|p dx. (1.48)

Moreover, if φ2, φ3 ≥ 0, we have the inequalities∫
G

φ2(x)
∣∣∣Ek f̃(|x|)

∣∣∣p dx ≤
∫
G

φ2(x)
∣∣Ekf(x)

∣∣p dx (1.49)

and ∫
G

φ3(x)
∣∣∣Rkf̃(|x|)

∣∣∣p dx ≤
∫
G

φ3(x)
∣∣Rkf(x)

∣∣p dx, (1.50)

for all 1 < p < ∞, any k ∈ N and all f ∈ Lp
loc(G) such that Ekf ∈ Lp

loc(G) or
Rkf ∈ Lp

loc(G), respectively. The constants in these inequalities are sharp, and are

attained when f = f̃ .

Proof. Using definition (1.47) and the polar decomposition formula in Proposition
1.2.10, we have∫

G

|f̃(|x|)|pφ1(x)dx = |℘|
∫ ∞

0

|f̃(r)|pφ1(r)r
Q−1dr

= |℘|
∫ ∞

0

1

|℘|
∫
℘

|f(ry)|pdσ(y)φ1(r)r
Q−1dr =

∫
G

|f(x)|pφ1(x)dx,

(1.51)

which proves the identity (1.48).

To prove (1.49) let us show first that

|Ekf̃ | ≤
(

1

|℘|
∫
℘

∣∣Ekf(ry)
∣∣p dσ(y)) 1

p

, r = |x|, (1.52)
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holds for any k ∈ N. We use the induction. For k = 1, by the Hölder inequality we
obtain

|Ef̃ | = r

(
1

|℘|
∫
℘

|f(ry)|pdσ(y)
) 1

p−1
1

|℘|
∣∣∣∣∫

℘

|f(ry)|p−2f(ry)
d

dr
f(ry)dσ(y)

∣∣∣∣
≤

(
1

|℘|
∫
℘

|f(ry)|pdσ(y)
) 1−p

p 1

|℘|
∫
℘

|f(ry)|p−1

∣∣∣∣r d

dr
f(ry)

∣∣∣∣ dσ(y)
≤

(
1

|℘|
∫
℘

|f(ry)|pdσ(y)
)1−p

p 1

|℘|
(∫

℘

∣∣∣∣r d

dr
f(ry)

∣∣∣∣p dσ(y))
1
p
(∫

℘

|f(ry)|pdσ(y)
)p−1

p

=

(
1

|℘|
∫
℘

|Ef(ry)|p dσ(y)
) 1

p

.

For the induction step, we assume that for some � ∈ N we have

|E�f̃ | ≤
(

1

|℘|
∫
℘

∣∣E�f(ry)
∣∣p dσ(y)) 1/p

, (1.53)

and we want to prove that it then follows that

|E�+1f̃ | ≤
(

1

|℘|
∫
℘

∣∣E�+1f(ry)
∣∣p dσ(y)) 1/p

.

So, using (1.53), similarly to the case � = 1 above, we calculate

|E�+1f̃(r)| ≤
∣∣∣∣∣E

((
1

|℘|
∫
℘

∣∣E�f(ry)
∣∣p dσ(y)) 1

p

)∣∣∣∣∣
= r

(
1

|℘|
∫
℘

∣∣E�f(ry)
∣∣p dσ(y))1

p−1 ∣∣∣∣ 1

|℘|
∫
℘

∣∣E�f(ry)
∣∣p−2

Ef(ry)
d

dr
(E�f(ry))dσ(y)

∣∣∣∣
≤

(
1

|℘|
∫
℘

∣∣E�f(ry)
∣∣p dσ(y)) 1

p−1 (
1

|℘|
∫
℘

∣∣E�f(ry)
∣∣p−1 ∣∣E�+1f(ry)

∣∣ dσ(y))

≤
(

1

|℘|
∫
℘

|E�f(ry)|pdσ(y)
) 1

p−1
1

|℘|
(∫

℘

∣∣E�+1f(ry)
∣∣p dσ(y)) 1

p

×
(∫

℘

|E�f(ry)|pdσ(y)
) p−1

p

=

(
1

|℘|
∫
℘

∣∣E�+1f(ry)
∣∣p dσ(y)) 1

p

.

Here in the last line we have used Hölder’s inequality. It proves (1.52).
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Now (1.52) yields∫
G

∣∣∣Ekf̃(x)
∣∣∣p φ2(x)dx = |℘|

∫ ∞

0

∣∣∣Ekf̃(r)
∣∣∣p φ2(r)r

Q−1dr

≤ |℘|
∫ ∞

0

1

|℘|
∫
℘

∣∣Ekf(ry)
∣∣p φ2(r)r

Q−1dσ(y)dr

=

∫
G

∣∣Ekf(x)
∣∣p φ2(x)dx.

This completes the proof of (1.49). The proof of (1.50) is similar. �

1.3.4 Euler semigroup e−tE∗E

Here we will describe the operator semigroup {e−tE∗
E}t>0 associated with the

Euler operator on homogeneous groups.

Theorem 1.3.4 (Euler semigroup). Let G be a homogeneous group of homogeneous
dimension Q. Let x ∈ G, x �= 0, and let y := x

|x| , and t > 0. Then the semigroup

e−tE∗
E is given by

(e−tE∗
Ef)(x) =

e−tQ2/4

√
4πt

|x|−Q/2

∫ ∞

0

e−
(ln |x|−ln s)2

4t s−Q/2f(sy)sQ−1ds. (1.54)

Before we prove formula (1.54), let us introduce some notation that will be
useful in the sequel. Thus, let us define the map F : L2(G) → L2(R × ℘) by the
formula

(Ff)(s, y) := esQ/2f(esy), (1.55)

for y ∈ ℘ and s ∈ R. Its inverse map F−1 : L2(R × ℘) → L2(G) can be given by
the formula

(F−1g)(x) := r−Q/2g(ln r, y), (1.56)

and one can readily check that F preserves the L2 norm. The map F can be also
described as

(Ff)(s, y) = (U(s)f)(y)

for all y ∈ ℘ and s ∈ R, with the dilation mapping U(t) defined by

U(t)f(x) := etQ/2f(etx). (1.57)

We then immediately have

(F (U(t)f))(s, y) = (U(s)(U(t)f))(y) = (U(s+ t)f)(y) = (Ff)(s+ t, y). (1.58)

The dilations U(t) can be linked to the Euler operator through the relation

d

dt
f(etx) = Ef(etx), x ∈ G,
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see (1.38). It then follows that these dilations can be also seen as a group of unitary
operators U(t) = eiAt with the generator

Af =
1

i

d

dt
U(t)f |t=0=

1

i

(
E+

Q

2

)
f = −iEf − i

Q

2
f. (1.59)

Since E
∗ = −QI − E by Proposition 1.3.1, Part (ii), the formula (1.59) implies

that

A = A∗ = −iE− i
Q

2
, (1.60)

which yields the relation

A = E
∗
E =

(
−iA− Q

2

)(
iA− Q

2

)
= A2 +

Q2

4
. (1.61)

The family U(t) is mapped to the multiplication by exponents eitτ through the
Mellin transformation M : L2(G) → L2(R×℘) defined by the formula M = F ◦F ,
where F is the Fourier transform on R, that is,

(Mf)(τ, y) :=
1√
2π

∫
R

e−isτ (Ff)(s, y)ds. (1.62)

Indeed, using (1.58) and changing variables, we have

(MU(t)f)(τ, y) =
1√
2π

∫
R

e−isτ (Ff)(s+ t, y)ds

=
eitτ√
2π

∫
R

e−isτ (Ff)(s, y)ds = eitτ (Mf)(τ, y).

(1.63)

Before finally proving Theorem 1.3.4, let us point out that it implies the
following representation of the semigroup e−tA2

.

Corollary 1.3.5 (Semigroup e−tA2

). Let F and F−1 be mappings as in (1.55) and
(1.56), respectively. Then we have

Fe−tA2

F−1f(r, y) =
1√
4πt

∫
R

exp

(
− (r − s)2

4t

)
f(sy)ds. (1.64)

Proof of Corollary 1.3.5. Setting e−tA2

= etQ
2/4e−tE∗

E as well as combining (1.55)
and (1.56), and using (1.54) we get

Fe−tA2

F−1f(r, y)

= F

(
etQ

2/4 e
−tQ2/4r−Q/2

√
4πt

∫ ∞

0

e−
(ln r−ln s)2

4t sQ/2−1(s−Q/2f(ln s, y))ds

)

= erQ/2 e
−rQ/2

√
4πt

∫ ∞

0

e−
(r−ln s)2

4t
f(ln s, y)

s
ds =

1√
4πt

∫ ∞

−∞
e−

(r−s1)2

4t f(s1y)ds1,

which is (1.64), where we have used the new variable s = es1 in the last line. �
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Let us finally prove Theorem 1.3.4.

Proof of Theorem 1.3.4. Noting that from the definition we have iAeitA = ∂tU(t),
we can calculate

(MiAeiAtf)(τ, y) = (M∂tU(t)f)(τ, y) = ∂t(MU(t)f)(τ, y).

Now using (1.63) we get from above that

(MiAeiAtf)(τ, y) = ∂te
itτ (Mf)(τ, y) = iτeitτ (Mf)(τ, y),

which (after setting t = 0) implies

(MAf)(τ, y) = τ(Mf)(τ, y) (1.65)

for f in the domain D(A). It follows that the condition f ∈ D(A) can be described
by the property that the function (τ, y) 
→ τ(Mf)(τ, y) ∈ L2(R× ℘).

So, first we prove that

(Me−tA2

f)(τ, y) = e−tτ2

(Mf)(τ, y). (1.66)

We have

(Me−tA2

f)(τ, y) =

∞∑
k=0

(−t)k

k!
(MA2kf)(τ, y). (1.67)

Moreover, by iterating (1.65), it follows that

(MA2kf)(τ, y) = τ2k(Mf)(τ, y), k = 0, 1, 2, . . . .

Combining this with (1.67), we get

(Me−tA2

f)(τ, y) =
∞∑
k=0

(−t)k

k!
τ2k(Mf)(τ, y) = e−tτ2

(Mf)(τ, y).

That is, we have showed that (1.66) holds. Thus, it follows that

e−tA2

= M−1e−tτ2

M.

Here by using that M = F ◦ F , we have

e−tA2

= F−1 ◦ F−1(e−tτ2F ◦ F ). (1.68)

Furthermore, we calculate

F−1(e−tτ2

Mf)(λ, y) = F−1(e−tτ2F ◦ F )(λ, y)

=
1

2π

∫
R

∫
R

eiλτe−tτ2

e−isτ (Ff)(s, y)dsdτ

=
1

2π

∫
R

(∫
R

e−tτ2+i(λ−s)τdτ

)
(Ff)(s, y)ds

=
1√
4πt

∫
R

e−
(λ−s)2

4t (Ff)(s, y)ds =: ϕt(λ, y),
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since ∫
R

e−tτ2+i(λ−s)τdτ =

√
π

t
e−

(λ−s)2

4t .

From this and (1.68), using (1.55), (1.56) and M = F ◦ F with x = |x|y, we
compute

(e−tA2

f)(|x|y) = (F−1ϕt)(|x|y) = r−Q/2ϕt(ln |x|, y)
=

1√
4πt

|x|−Q/2

∫
R

e−
(ln |x|−s)2

4t (Ff)(s, y)ds

=
1√
4πt

|x|−Q/2

∫ ∞

0

e−
(ln |x|−ln z)2

4t z
Q
2 −1f(zy)dz,

where we have used the change of variables z = es in the last line.

Since we have e−tE∗
E = e−tQ2/4e−tA2

by (1.61), we arrive at

(e−tE∗
Ef)(|x|y) = e−tQ2/4(e−tA2

f)(|x|y)
=

1√
4πt

|x|−Q/2e−tQ2/4

∫ ∞

0

e−
(ln |x|−ln z)2

4t z
Q
2 −1f(zy)dz

=
1√
4πt

|x|−Q/2e−tQ2/4

∫ ∞

0

e−
(ln |x|−ln z)2

4t z−
Q
2 f(zy)zQ−1dz,

completing the proof of (1.54). �
Remark 1.3.6.

1. The representation of the Euler semigroup in Theorem 1.3.4 becomes in-
strumental in deriving several forms of the Hardy–Sobolev and Gagliardo–
Nirenberg type inequalities for the Euler operator, as we will show in the
sequel, see, e.g., Section 10.4.

2. In the Euclidean case R
n, the results of this section have been obtained in

[BEHL08]. For general homogeneous groups, our presentation followed the
results obtained in [RSY18a].
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1.4 Stratified groups

An important special case of homogeneous groups is that of stratified groups
introduced in Definition 1.1.5. Because this is an important class that will be
analysed in Chapter 6 from the point of view of Hardy and other inequalities, here
we will provide more details on it and fix the corresponding notation.

1.4.1 Stratified Lie groups

We recall the definition of stratified groups.

Definition 1.4.1 (Stratified groups). A Lie group G = (Rn, ◦) is called a stratified
group (or a homogeneous Carnot group) if it satisfies the following conditions:

(a) For some natural numbers N + N2 + · · · + Nr = n, that is N = N1, the
decomposition Rn = RN ×· · ·×RNr is valid, and for every λ > 0 the dilation
δλ : Rn → Rn given by

δλ(x) ≡ δλ(x
′, x(2), . . . , x(r)) := (λx′, λ2x(2), . . . , λrx(r))

is an automorphism of the group G. Here x′ ≡ x(1) ∈ RN and x(k) ∈ RNk for
k = 2, . . . , r.

(b) Let N be as in (a) and let X1, . . . , XN be the left invariant vector fields on
G such that Xk(0) =

∂
∂xk

|0 for k = 1, . . . , N. Then

rank(Lie{X1, . . . , XN}) = n,

for every x ∈ Rn, i.e., the iterated commutators of X1, . . . , XN span the Lie
algebra of G.

The number r is called the step of G and the left invariant vector fields
X1, . . . , XN are called the (Jacobian) generators ofG. The homogeneous dimension
of a stratified Lie group G is given by

Q =

r∑
k=1

kNk, N1 = N.

The second-order differential operator

L =

N∑
k=1

X2
k (1.69)

is called the (canonical) sub-Laplacian onG. The sub-Laplacian L is a left invariant
homogeneous hypoelliptic differential operator and it is elliptic if and only if the
step of G is equal to 1.
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The hypoellipticity of L means that for a distribution f ∈ D′(Ω) in any open
set Ω, if Lf ∈ C∞(Ω) then f ∈ C∞(Ω). It is a special case of Hörmander’s sum
of squares theorem [Hör67].

The left invariant vector field Xk has an explicit form given in Proposition
1.2.19, namely,

Xk =
∂

∂x′
k

+

r∑
l=2

Nl∑
m=1

a
(l)
k,m(x′, . . . , x(l−1))

∂

∂x
(l)
m

, (1.70)

where a
(l)
k,m is a homogeneous (with respect to δλ) polynomial function of degree

l− 1. We will also use the following notation for the horizontal gradient

∇H := (X1, . . . , XN ),

for the horizontal divergence

divHv := ∇H · v,
and for the horizontal p-Laplacian (or p-sub-Laplacian)

Lpf := divH(|∇Hf |p−2∇Hf), 1 < p < ∞. (1.71)

Denoting the Euclidean distance by

|x′| =
√
x′2
1 + · · ·+ x′2

N

for the Euclidean norm on RN , the representation (1.70) for derivatives leads to
the identities

|∇H |x′|γ | = γ|x′|γ−1, (1.72)

and

divH

(
x′

|x′|γ
)

=

∑N
j=1 |x′|γXjx

′
j −

∑N
j=1 x

′
jγ|x′|γ−1Xj |x′|

|x′|2γ =
N − γ

|x′|γ (1.73)

for all γ ∈ R, |x′| �= 0.

It was shown by Folland [Fol75] that the sub-Laplacian L in (1.69) on a
general stratified group G has a unique fundamental solution ε, that is,

Lε = δ, (1.74)

where δ is the delta-distribution at the unit element of G. Moreover, the function
ε is homogeneous of degree 2−Q.

The function

d(x) :=

{
ε(x)

1
2−Q , for x �= 0,

0, for x = 0,
(1.75)
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is called the L-gauge on G. It is a homogeneous quasi-norm on G, that is, it is a
continuous function d : G → [0,∞), smooth away from the origin, which satisfies
the conditions

d(λx) = λd(x), d(x−1) = d(x) and d(x) = 0 if only if x = 0. (1.76)

We refer to the original paper [Fol75] by Folland as well as to a recent pre-
sentation in [FR16, Section 3.2.7] for further details and properties of these fun-
damental solutions.

For future use, we record the action of L on d and its powers. Since Ld2−Q = 0
in G\{0}, a straightforward calculation shows that for Q ≥ 3 we have

Ld = (Q− 1)
|∇Hd|2

d
in G\{0}, (1.77)

as well as, consequently, for all α ∈ R,

Ldα = α(α +Q− 2)dα−2|∇Hd|2 in G\{0}. (1.78)

1.4.2 Extended sub-Laplacians

In general, most of the results described in this book in the setting of stratified
groups can be extended to any second-order hypoelliptic differential operators
which are “equivalent” to the sub-Laplacian L. Let us very briefly discuss this
matter in the sprit of [BLU07].

Let A = (ak,j)1≤k,j≤N1 be a positive-definite symmetric matrix. Consider
the following second-order hypoelliptic differential operator based on the matrix
A and the vector fields {X1, . . . , XN1} from the first stratum, given by

LA =

N1∑
k,j=1

ak,jXkXj . (1.79)

For instance, in the Euclidean case, that is, for G = (RN ,+) and N1 = N , the
constant coefficients second-order elliptic operator

ΔA =

N∑
k,j=1

ak,j
∂2

∂xk∂xj

is transformed into the Laplacian

Δ =

N∑
k=1

∂2

∂x2
k

under a linear change of coordinates in RN . Thus, the operator ΔA is “equivalent”
to the operator Δ by a linear change of the coordinate system.
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In general, to apply the above argument to transformLA to the sub-Laplacian
L it is not enough to change the basis by a linear transformation. However, it is
enough in the setting of free stratified groups. We say that a stratified group G is
a free stratified group if its Lie algebra is (isomorphic to) a free Lie algebra. For
instance, the Heisenberg group H1 is a free stratified group. In this case we have
the following result.

Theorem 1.4.2 ([BLU07]). Let G be a free stratified group and let A be a given
positive-definite symmetric matrix. Let X = {X1, . . . , XN1} be left invariant vector
fields in the first stratum of the Lie algebra of G. Let

Yk :=

N1∑
j=1

(
A

1
2

)
k,j

Xj , k = 1, . . . , N1.

Consider the related second-order differential operator

LA =

N1∑
k=1

Y 2
k =

N1∑
k,j=1

ak,jXkXj .

Then there exists a Lie group automorphism TA of G such that

Yk(u ◦ TA) = (Xku) ◦ TA, k = 1, . . . , N1,

LA(u ◦ TA) = (Lu) ◦ TA,

for every smooth function u : G → R. Moreover, TA has polynomial component
functions and commutes with the dilations of G.

Remark 1.4.3. The automorphism TA may not exist when G is not a free stratified
group. However, for any stratified group G one can find a different stratified group
G∗ = (RN , ∗, δλ), that is, the stratified group with the same underlying manifold
RN and the same group of dilations δλ as G, and a Lie-group isomorphism from
G to G∗ turning the extended sub-Laplacian LA on G into the sub-Laplacian L
on G∗, see [BLU07, Chapter 16.3].

1.4.3 Divergence theorem

Here we discuss the divergence theorem on stratified Lie groups that will be useful
for our analysis at different places of the book.

Let dν denote the volume element on G corresponding to the first stratum
on G:

dν := dν(x) =

N∧
j=1

dxj . (1.80)

However, for simplicity of the exposition, we will mainly use the notation dx :=
dν(x). Regarding it as a differential form, let 〈Xk, dν〉 denote the natural pairing
between vector fields and differential forms. As it will follow from the proof of The-
orem 1.4.5, using formula (1.70) for the left invariant operatorsXk expressing them
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in terms of the Euclidean derivatives, the pairing 〈Xk, dν〉 can be also expressed
in terms of the differential forms corresponding to the Euclidean coordinates in
the form

〈Xk, dν(x)〉 =
N1∧

j=1,j 	=k

dx
(1)
j

r∧
l=2

Nl∧
m=1

θl,m, (1.81)

with

θl,m = −
N1∑
k=1

a
(l)
k,m(x(1), . . . , x(l−1))dx

(1)
k + dx(l)

m , (1.82)

for l = 2, . . . , r and m = 1, . . . , Nl, where a
(l)
k,m is a homogeneous polynomial of

degree l − 1 from (1.70).

Definition 1.4.4 (Admissible domains). A bounded open set Ω ⊂ G will be called
an admissible domain if its boundary ∂Ω is piecewise smooth and simple, that is,
it has no self-intersections. The condition for the boundary to be simple amounts
to ∂Ω being orientable.

The following divergence theorem can be regarded as a consequence of the
abstract Stokes formula. However, we give a detailed local proof which will also
lead to the explicit representation formula (1.82) that will be of use in the sequel.

Theorem 1.4.5 (Divergence formula). Let Ω ⊂ G be an admissible domain. Let
fk ∈ C1(Ω)

⋂
C(Ω), k = 1, . . . , N1. Then for each k = 1, . . . , N1, we have∫

Ω

Xkfkdν =

∫
∂Ω

fk〈Xk, dν〉. (1.83)

Consequently, we also have∫
Ω

N1∑
k=1

Xkfkdν =

∫
∂Ω

N1∑
k=1

fk〈Xk, dν〉. (1.84)

Proof of Theorem 1.4.5. Using (1.70), for any function f we obtain the following
differentiation formula

df =

N1∑
k=1

∂f

∂x
(1)
k

dx
(1)
k +

r∑
l=2

Nl∑
m=1

∂f

∂x
(l)
m

dx(l)
m

=

N1∑
k=1

Xkfdx
(1)
k −

N1∑
k=1

r∑
l=2

Nl∑
m=1

a
(l)
k,m(x(1), . . . , x(l−1))

∂f

∂x
(l)
m

dx
(l)
k

r∑
l=2

Nl∑
m=1

∂f

∂x
(l)
m

dx(l)
m

=

N1∑
k=1

Xkfdx
(1)
k +

r∑
l=2

Nl∑
m=1

∂f

∂x
(l)
m

(
−

N1∑
k=1

a
(l)
k,m(x(1), . . . , x(l−1))dx

(1)
k + dx(l)

m

)

=

N1∑
k=1

Xkfdx
(1)
k +

r∑
l=2

Nl∑
m=1

∂f

∂x
(l)
m

θl,m,
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where for each l = 2, . . . , r and m = 1, . . . , Nl,

θl,m = −
N1∑
k=1

a
(l)
k,m(x(1), . . . , x(l−1))dx

(1)
k + dx(l)

m .

That is, we can write

df =

N1∑
k=1

Xkfdx
(1)
k +

r∑
l=2

Nl∑
m=1

∂f

∂x
(l)
m

θl,m. (1.85)

It is simple to see that

〈Xs, dx
(1)
j 〉 = ∂

∂x
(1)
s

dx
(1)
j = δsj ,

where δsj is the Kronecker delta. Moreover, we have

〈Xs, θl,m〉

=

(
∂

∂x
(1)
s

+

r∑
h=2

Nh∑
g=1

a(h)s,g (x
(1), . . . , x(h−1))

∂

∂x
(h)
g

)

×
(
−

N1∑
k=1

a
(l)
k,m(x(1), . . . , x(l−1))dx

(1)
k + dx(l)

m

)

= −
N1∑
k=1

(
∂

∂x
(1)
s

a
(l)
k,m(x(1), . . . , x(l−1))

)
dx

(1)
k

−
N1∑
k=1

a
(l)
k,m(x(1), . . . , x(l−1))

∂

∂x
(1)
s

dx
(1)
k +

∂

∂x
(1)
s

dx(l)
m

−
N1∑
k=1

r∑
h=2

Nh∑
g=1

a(h)s,g (x
(1), . . . , x(h−1))

(
∂

∂x
(h)
g

a
(l)
k,m(x(1), . . . , x(l−1))

)
dx

(1)
k

−
N1∑
k=1

r∑
h=2

Nh∑
g=1

a(h)s,g (x
(1), . . . , x(h−1))a

(l)
k,m(x(1), . . . , x(l−1))

∂

∂x
(h)
g

dx
(1)
k

+
r∑

h=2

Nh∑
g=1

a(h)s,g (x
(1), . . . , x(h−1))

∂

∂x
(h)
g

dx(l)
m

= −
N1∑
k=1

(
∂

∂x
(1)
s

a
(l)
k,m(x(1), . . . , x(l−1))

)
dx

(1)
k −

N1∑
k=1

a
(l)
k,m(x(1), . . . , x(l−1))δsk

−
N1∑
k=1

r∑
h=2

Nh∑
g=1

a(h)s,g (x
(1), . . . , x(h−1))

(
∂

∂x
(h)
g

a
(l)
k,m(x(1), . . . , x(l−1))

)
dx

(1)
k
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+

r∑
h=2

Nh∑
g=1

a(h)s,g (x
(1), . . . , x(h−1))δgmδhl

= −
N1∑
k=1

r∑
h=2

Nh∑
g=1

a(h)s,g (x
(1), . . . , x(h−1))

(
∂

∂x
(h)
g

a
(l)
k,m(x(1), . . . , x(l−1))

)
dx

(1)
k

−
N1∑
k=1

(
∂

∂x
(1)
s

a
(l)
k,m(x(1), . . . , x(l−1))

)
dx

(1)
k

= −
N1∑
k=1

[ r∑
h=2

Nl∑
g=1

a(h)s,g (x
(1), . . . , x(h−1))

(
∂

∂x
(h)
g

a
(l)
k,m(x(1), . . . , x(l−1))

)

+
∂

∂x
(1)
s

a
(l)
k,m(x(1), . . . , x(l−1))

]
dx

(1)
k .

That is, we have

〈Xs, dx
(1)
j 〉 = δsj ,

for s, j = 1, . . . , N1, and

〈Xs, θl,m〉 =
N1∑
k=1

Ckdx(1)
k ,

for s = 1, . . . , N1, l = 2, . . . , r, m = 1, . . . , Nl. Here we used the notation

Ck = −
r∑

h=2

Nl∑
g=1

a(h)s,g (x
(1), . . . , x(h−1))

∂

∂x
(h)
g

a
(l)
k,m(x(1), . . . , x(l−1))

− ∂

∂x
(1)
s

a
(l)
k,m(x(1), . . . , x(l−1)).

By (1.80) we have

dν = dν(x) =
N∧
j=1

dxj =

N1∧
j=1

dx
(1)
j

r∧
l=2

Nl∧
m=1

dx(l)
m =

N1∧
j=1

dx
(1)
j

r∧
l=2

Nl∧
m=1

θl,m,

so that we obtain

〈Xk, dν(x)〉 =
N1∧

j=1,j 	=k

dx
(1)
j

r∧
l=2

Nl∧
m=1

θl,m.

Therefore, using (1.85) we get

d(fs〈Xs, dν(x)〉) = dfs ∧ 〈Xs, dν(x)〉

=

N1∑
k=1

Xkfsdx
(1)
k ∧ 〈Xs, dν(x)〉 +

r∑
l=2

Nl∑
m=1

∂fs

∂x
(l)
m

θl,m ∧ 〈Xs, dν(x)〉

= Xsfsdν(x),
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that is, we have

d(〈fkXk, dν(x)〉) = Xkfkdν(x), k = 1, . . . , N1.

Now using the classical Stokes theorem (see, e.g., [DFN84, Theorem 26.3.1]) we
obtain (1.83). Taking a sum over k we also obtain (1.84). �

1.4.4 Green’s identities for sub-Laplacians

In this section we prove Green’s first and second formulae for the sub-Laplacian
on stratified groups. These formulae will be useful throughout the book when we
will be dealing with inequalities and with the potential theory on stratified groups.
We will formulate them in admissible domains in the sense of Definition 1.4.4.

Theorem 1.4.6 (Green’s first and second identities). Let G be a stratified group
and let Ω ⊂ G be an admissible domain.

(1) Green’s first identity: Let v ∈ C1(Ω)
⋂

C(Ω) and u ∈ C2(Ω)
⋂
C1(Ω). Then∫

Ω

(
(∇̃v)u+ vLu

)
dν =

∫
∂Ω

v〈∇̃u, dν〉, (1.86)

where L is the sub-Laplacian on G and where the vector field ∇̃u is defined by

∇̃u :=

N1∑
k=1

(Xku)Xk. (1.87)

(2) Green’s second identity: Let u, v ∈ C2(Ω)
⋂
C1(Ω). Then∫

Ω

(uLv − vLu)dν =

∫
∂Ω

(u〈∇̃v, dν〉 − v〈∇̃u, dν〉). (1.88)

Remark 1.4.7.

1. The definition (1.87) means that ∇̃u is a vector field. Consequently, the

expression (∇̃v)u is a scalar, given by

(
∇̃v

)
u = ∇̃vu =

N1∑
k=1

(Xkv) (Xku) =

N1∑
k=1

XkvXku.

At the same time the expression ∇̃(vu) is a vector field, also understood as
an operator.

2. Although we formulate Green’s identities in bounded domains, they are still
applicable in unbounded domains for functions with necessary decay rates at
infinity. It can be readily shown by the standard argument using quasi-balls
with radii R → ∞.
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3. The version (1.86) of Green’s first identity was proved for the ball in [Gav77]
and for any smooth domain of the complex Heisenberg group in [Rom91].
Other analogues have been also obtained in [BLU07] and [CGN08] but using
different terminologies. Also, the group structure is not needed for it, see
Proposition 12.2.1, with other versions also known, see, e.g., [CGL93]. The
version given in Theorem 1.4.6 was obtained in [RS17c].

Proof of Theorem 1.4.6. Part (1). Let fk := vXku, so that

N1∑
k=1

Xkfk = (∇̃v)u + vLu.

By using the divergence formula in Theorem 1.4.5 we obtain∫
Ω

(
∇̃vu+ vLu

)
dν =

∫
Ω

N1∑
k=1

Xkfkdν =

∫
∂Ω

N1∑
k=1

〈fkXk, dν〉

=

∫
∂Ω

N1∑
k=1

〈vXkuXk, dν〉 =
∫
∂Ω

v〈∇̃u, dν〉,

yielding (1.86).

Part (2). Rewriting (1.86) we have∫
Ω

(
(∇̃u)v + uLv

)
dν =

∫
∂Ω

u〈∇̃v, dν〉,
∫
Ω

(
(∇̃v)u + vLu

)
dν =

∫
∂Ω

v〈∇̃u, dν〉.

By subtracting the second identity from the first one and using

(∇̃u)v = (∇̃v)u,

we obtain (1.88). �

Taking v = 1 in Theorem 1.4.6 we obtain the following analogue of Gauss’
mean value formula for harmonic functions:

Corollary 1.4.8 (Gauss’ mean value formula). If Lu = 0 in an admissible domain
Ω ⊂ G, then ∫

∂Ω

〈∇̃u, dν〉 = 0.

As in the classical theory, we can approximate functions with (weak) singu-
larities such as smooth functions because the Green formulae are still valid for
them. In this sense, without further justification and using these Green formulae,
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in particular, we apply them to the fundamental solution ε of the sub-Laplacian
L as in (1.74). We define the function

ε(x, y) := ε(x−1y). (1.89)

The properties of the L-gauge imply that ε(x, y) = ε(y, x).

Thus, for x ∈ Ω, taking v = 1 and u(y) = ε(x, y) we can record the following
consequence of Theorem 1.4.6, (1):

Corollary 1.4.9. If Ω ⊂ G is an admissible domain, and x ∈ Ω, then∫
∂Ω

〈∇̃ε(x, y), dν(y)〉 = 1,

where ε is the fundamental solution of the sub-Laplacian L.

Putting the fundamental solution ε instead of v in (1.88) we obtain the
following representation formulae.

Corollary 1.4.10 (Representation formulae for functions on stratified groups). Let
G be a stratified group and let Ω ⊂ G be an admissible domain.

(1) Let u ∈ C2(Ω)
⋂

C1(Ω). Then for x ∈ Ω we have

u(x) =

∫
Ω

ε(x, y)Lu(y)dν(y)

+

∫
∂Ω

u(y)〈∇̃ε(x, y), dν(y)〉 −
∫
∂Ω

ε(x, y)〈∇̃u(y), dν(y)〉.

(2) Let u ∈ C2(Ω)
⋂

C1(Ω) and Lu = 0 on Ω, then for x ∈ Ω we have

u(x) =

∫
∂Ω

u(y)〈∇̃ε(x, y), dν(y)〉 −
∫
∂Ω

ε(x, y)〈∇̃u(y), dν(y)〉.

(3) Let u ∈ C2(Ω)
⋂

C1(Ω) and u(x) = 0, x ∈ ∂Ω, then

u(x) =

∫
Ω

ε(x, y)Lu(y)dν(y) −
∫
∂Ω

ε(x, y)〈∇̃u(y), dν(y)〉.

(4) Let u ∈ C2(Ω)
⋂

C1(Ω) and
∑N1

j=1 Xju〈Xj , dν〉 = 0 on ∂Ω, then

u(x) =

∫
Ω

ε(x, y)Lu(y)dν(y) +
∫
∂Ω

u(y)〈∇̃ε(x, y), dν(y)〉.
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1.4.5 Green’s identities for p-sub-Laplacians

In this section we show how Green’s first and second formulae for the sub-Laplacian
from Section 1.4.4 on stratified groups can be extended to the p-sub-Laplacian for
all 1 < p < ∞. As before, we will formulate them in admissible domains in
the sense of Definition 1.4.4. We recall the definition of the p-sub-Laplacian from
(1.71) as

Lpf := divH(|∇Hf |p−2∇Hf), 1 < p < ∞.

Theorem 1.4.11 (Green’s first and second identities for p-sub-Laplacian). Let G
be a stratified group and let Ω ⊂ G be an admissible domain. Let 1 < p < ∞.

(1) Green’s first identity: Let v ∈ C1(Ω)
⋂

C(Ω) and u ∈ C2(Ω)
⋂
C1(Ω). Then∫

Ω

(
(|∇Gu|p−2∇̃v)u + vLpu

)
dν =

∫
∂Ω

|∇Gu|p−2v〈∇̃u, dν〉, (1.90)

where

∇̃u =

N1∑
k=1

(Xku)Xk.

(2) Green’s second identity: Let u, v ∈ C2(Ω)
⋂
C1(Ω). Then∫

Ω

(
uLpv − vLpu+ (|∇Gv|p−2 − |∇Gu|p−2)(∇̃v)u

)
dν

=

∫
∂Ω

(|∇Gv|p−2u〈∇̃v, dν〉 − |∇Gu|p−2v〈∇̃u, dν〉).
(1.91)

Proof of Theorem 1.4.11. Part (1). Let fk := v|∇Gu|p−2Xku, then

N1∑
k=1

Xkfk = (|∇Gu|p−2∇̃v)u+ vLpu.

By integrating both sides of this equality over Ω and using Proposition 1.4.5 we
obtain∫

Ω

(
(|∇Gu|p−2∇̃v)u + vLpu

)
dν =

∫
Ω

N1∑
k=1

Xkfkdν =

∫
∂Ω

N1∑
k=1

〈fkXk, dν〉

=

∫
∂Ω

N1∑
k=1

〈v|∇Gu|p−2XkuXk, dν〉 =
∫
∂Ω

|∇Gu|p−2v〈∇̃u, dν〉,

showing (1.90).
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Part (2). Using (1.90) we have∫
Ω

(
(|∇Gv|p−2∇̃u)v + uLpv

)
dν =

∫
∂Ω

|∇Gv|p−2u〈∇̃v, dν〉,∫
Ω

(
(|∇Gu|p−2∇̃v)u+ vLpu

)
dν =

∫
∂Ω

|∇Gu|p−2v〈∇̃u, dν〉.

By subtracting the second identity from the first one, the equality

(∇̃u)v = (∇̃v)u

implies (1.91). �

Taking v = 1 in Theorem 1.4.11 we get the following analogue of Gauss’
mean value formula for p-harmonic functions:

Corollary 1.4.12 (Gauss’ mean value formula for p-harmonic functions). If 1 <
p < ∞ and Lpu = 0 in an admissible domain Ω ⊂ G, then∫

∂Ω

|∇Gu|p−2〈∇̃u, dν〉 = 0.

1.4.6 Sub-Laplacians with drift

In this section we briefly describe the so-called sub-Laplacians with drift. While
such operators can be analysed on more general groups, we restrict our presen-
tation to stratified groups G only since this will be the setting where we will be
using these operators.

Definition 1.4.13 (Sub-Laplacian with drift). The (extended) positive sub-La-
placian with drift is defined on C∞

0 (G) as the operator

LX := −
N∑

i,j=1

ai,jXiXj − γX, (1.92)

where γ ∈ R, the matrix (ai,j)
N
i,j=1 is real, symmetric, positive definite, and X ∈ g

is a left invariant vector field on G.

Similar to Section 1.4.2 the operator (1.92) can be transformed to the (posi-
tive) sub-Laplacian with drift of the form

LX = −
N∑
j=1

X2
j − γX := L0 − γX, (1.93)

where L0 is the positive sub-Laplacian on G defined by

L0 = −
N∑
j=1

X2
j . (1.94)

The details of such a transformation can be found in [HMM05] or [MOV17].
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If X =
∑N

j=1 ajXj , then we denote ‖X‖ :=
(∑N

j=1 a
2
j

)1/2

and

bX :=
‖X‖
2

, (1.95)

where aj ∈ R for j = 1, . . . , N .

Let us collect the following spectral properties of (positive) sub-Laplacians
with drift (1.93) which are true on more general groups than the stratified ones. In
the case γ = 1 this was shown in [HMM05, Proposition 3.1] while here we follow
[RY18b] for general γ ∈ R:

Proposition 1.4.14 (Spectral properties of sub-Laplacians with drift). Let G be
a connected Lie group with unit e, X1, . . . , XN an algebraic basis of g and let
X ∈ g\{0}. Let γ ∈ R. Then we have for the operator LX , with domain C∞

0 (G),
the following properties:

(i) the operator LX is symmetric on L2(G, μ) for some positive measure μ on
G if and only if there exists a positive character χ of G and a constant C
such that μ = CμX and ∇Hχ|e = γX |e, where μX is the measure absolutely
continuous with respect to the Haar measure μ with density χ;

(ii) assume that ∇Hχ|e = γX |e for some positive character χ of G. Then the
operator LX is essentially self-adjoint on L2(G, μX) and its spectrum is con-
tained in the interval [γ2b2X ,∞).

Proof of Proposition 1.4.14. Let μ be a positive measure on G. Then for all test
functions φ, ψ ∈ C∞

0 (G) we can calculate

∫
G

(LXφ)ψdμ = −
N∑
j=1

(∫
G

(X2
j φ)ψdμ

)
− γ

∫
G

ψXφdμ

=

N∑
j=1

(∫
G

XjφXjψdμ+

∫
G

ψXjφXjμ

)
+ γ

∫
G

φXψdμ+ γ

∫
G

φψXμ

=
N∑
j=1

(
−
∫
G

φX2
j ψdμ− 2

∫
G

φXjψXjμ−
∫
G

φψX2
j μ

)
+ γ

∫
G

φXψdμ+ γ

∫
G

φψXμ

=

∫
G

φ(LXψ)dμ+ 2γ

∫
G

φXψdμ− 2

∫
G

φ∇Hψ∇Hμ+

∫
G

φψ(L0 + γX)μ

=

∫
G

φ(LXψ)dμ+ 〈φ, 2γ(Xψ)μ− 2∇Hψ∇Hμ+ ψ(L0 + γX)μ〉

=:

∫
G

φ(LXψ)dμ+ I(φ, ψ, μ), (1.96)
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where L0 is defined in (1.94), ∇H = (X1, . . . , XN ) and 〈·, ·〉 is the pairing between
distributions and test functions on G. From this we see that LX is symmetric on
L2(G, μ) if and only if I(φ, ψ, μ) = 0 for all functions φ and ψ, that is,

(L0 + γX)μ = 0, γ(Xψ)μ−∇Hψ∇Hμ = 0, ∀ψ ∈ C∞
0 (G). (1.97)

The vector fields X1, . . . , XN satisfy Hörmander’s condition, so that L0 + γX
is hypoelliptic, which implies with the condition (L0 + γX)μ = 0 that μ has a
smooth density ω with respect to the Haar measure. Then, as in [HMM05, Proof
of Proposition 3.1], we show that

X =

N∑
j=1

ajXj , (1.98)

for some coefficients a1, . . . , aN . Using the fact that X1, . . . , XN are linearly inde-
pendent and the second equation of (1.97), we obtain that

Xkω = γakω, (1.99)

where k = 1, . . . , N . The solution of (1.99) is given by

ω(x) = ω(e) exp

(
γ

∫ 1

0

N∑
k=1

akϑk(t)dt

)
,

which is a positive and uniquely determined by its value at the identity, where
ϑk(t) is the piecewise C1 path. By normalizing ω, we get that ω(e) = 1, and that
it is a character of G. Then, we see that the function x 
→ ω(xy)/ω(y) is a solution
of (1.99) for any y in G. Since the value of this function at the identity is 1, we
have ω(xy) = ω(x)ω(y) for any x, y ∈ G, and ω is a character of G. From (1.98)
and (1.99), we get ∇Hχ|e = γX |e with χ = ω. This proves Part (i) of Proposition
1.4.14.

As in the case γ = 1 (see [HMM05, Proposition 3.1]), by considering the
isometry U2f = χ−1/2f of L2(G, μ) onto L2(G, μX), we have

χ
1
2LX(χ− 1

2 f) = (L0 + γ2b2X)f, (1.100)

which is an essentially self-adjoint operator on L2(G, μ), where bX is defined in
(1.95). Since the spectrum of this operator is contained in [γ2b2X ,∞), we obtain
that LX is essentially self-adjoint on L2(G, μX) and its spectrum is contained in
[γ2b2X ,∞).

This completes the proof of Proposition 1.4.14. �

As a corollary of Proposition 1.4.14 let us collect the properties that will be
important for us in the sequel.
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Corollary 1.4.15 (Transformation of sub-Laplacian with drift). Let G be a stratified
group and assume conditions of Proposition 1.4.14. Assume that there exists a
positive character χ of G such that

∇Hχ|e = γX |e.
Then the operator LX is formally self-adjoint with respect to the positive measure
μX = χμ, where μ is the Haar measure of G. The operator LX is self-adjoint on
L2(G, μX) and the mapping

L2(G, μ) � f 
→ χ−1/2f ∈ L2(G, μX) (1.101)

is an isometric isomorphism.

For a detailed discussion about more properties of the sub-Laplacians with
drift we refer to [HMM04], [HMM05] and [MOV17].

1.4.7 Polarizable Carnot groups

In (1.74) we recalled the result of Folland that the sub-Laplacian L on general
stratified groups always has a unique fundamental solution ε. The explicit formula
(1.75) relating the fundamental solution to the L-gauge turns out to be useful in
many explicit calculations.

In applications to nonlinear partial differential equations, a natural question
arises to express the fundamental solution of the p-sub-Laplacian (1.71) in terms of
the fundamental solution of the sub-Laplacian or, equivalently, in terms of the L-
gauge. One of the largest classes of stratified Lie groups, for which the fundamental
solution of the p-sub-Laplacian is known to be expressed explicitly in terms of the
L-gauge are the so-called polarizable Carnot groups which we now briefly discuss.

A Lie group G is called a polarizable Carnot group if the L-gauge d satisfies
the following ∞-sub-Laplacian equality

L∞d :=
1

2
〈∇H(|∇Hd|2),∇Hd〉 = 0 in G\{0}. (1.102)

It is known that the Euclidean space, the Heisenberg group Hn and Kaplan’s
H-type groups are polarizable Carnot groups.

It was shown by Balogh and Tyson in [BT02b] that if G is a polarizable
Carnot group, then the fundamental solutions of the p-sub-Laplacian (1.71) are
given by the explicit formulae

εp :=

{
cpd

p−Q
p−1 , if p �= Q,

−cQ log d, if p = Q.
(1.103)

This class of groups also admits an advantageous version of the polar coor-
dinates decomposition. In particular, it can be shown (see [BT02b, Proposition
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2.20]) that (1.103) implies a useful identity

L∞u =
Q− 1

Q− 2

|∇Hu|4
u

,

which can be also written as

N∑
j=1

uXjuXj|∇Hu|
|∇Hu|3 =

Q− 1

Q− 2
. (1.104)

It can be shown that the L-gauge d on polarizable Carnot groups satisfies a num-
ber of further useful relations. For example, the following formula established in
[BT02b] will be useful for some calculations in the sequel:

∇H

(
d

|∇Hd|2∇Hd

)
= Q in G\Z, (1.105)

where the set
Z := {0}

⋃
{x ∈ G\{0} : ∇Hd = 0}

has Haar measure zero, and we have ∇Hd �= 0 for a.e. x ∈ G.

As usual, the Green identities are still valid for functions with (weak) singu-
larities provided we can approximate them by smooth functions. Thus, for exam-
ple, for x ∈ Ω in a polarizable Carnot group, taking v = 1 and u(y) = εp(x, y) we
have the following corollary of Theorem 1.4.11 as an extension of Corollary 1.4.9:

Corollary 1.4.16. Let Ω be an admissible domain in a polarizable Carnot group G

and let x ∈ Ω. Then we have∫
∂Ω

|∇Gεp|p−2〈∇̃εp(x, y), dν(y)〉 = 1.

Note that there are stratified Lie groups other than polarizable Carnot groups
where the fundamental solution of the sub-Laplacian can be expressed explicitly
(see, e.g., [BT02b, Section 6]).

In particular, since on the polarizable Carnot groups we have the fundamental
solution εp, putting it instead of v in (1.91) we get the following representation
type formulae extending those for p = 2 from Corollary 1.4.10:

Corollary 1.4.17 (Representation formulae for functions on polarizable Carnot
groups). Let Ω be an admissible domain in a polarizable Carnot group G.

1. Let u ∈ C2(Ω)
⋂

C1(Ω). Then for x ∈ Ω we have

u(x) =

∫
Ω

εpLpu− (|∇Gεp|p−2 − |∇Gu|p−2)(∇̃εp)udν

+

∫
∂Ω

(|∇Gεp|p−2u〈∇̃εp, dν〉 − |∇Gu|p−2εp〈∇̃u, dν〉).
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2. Let u ∈ C2(Ω)
⋂

C1(Ω) and Lpu = 0 on Ω, then for x ∈ Ω we have

u(x) =

∫
Ω

(|∇Gu|p−2 − |∇Gεp|p−2)(∇̃εp)udν

+

∫
∂Ω

(|∇Gεp|p−2u〈∇̃εp, dν〉 − |∇Gu|p−2εp〈∇̃u, dν〉).

3. Let u ∈ C2(Ω)
⋂

C1(Ω) and

u(x) = 0, x ∈ ∂Ω,

then

u(x) =

∫
Ω

εpLpu− (|∇Gεp|p−2 − |∇Gu|p−2)(∇̃εp)udν

−
∫
∂Ω

|∇Gu|p−2εp〈∇̃u, dν〉.

4. Let u ∈ C2(Ω)
⋂

C1(Ω) and
∑N1

j=1 Xju〈Xj , dν〉 = 0 on ∂Ω, then

u(x) =

∫
Ω

εpLpu− (|∇Gεp|p−2 − |∇Gu|p−2)(∇̃εp)udν

+

∫
∂Ω

|∇Gεp|p−2u〈∇̃εp, dν〉.

1.4.8 Heisenberg group

One of the important examples of the stratified groups is the Heisenberg group that
was introduced in Example 1.1.8. Here we collect several of its basic properties that
will be of use later in the book. We will give both real and complex descriptions
of the Heisenberg group as both will be of use to us in the sequel.

Real description of the Heisenberg group. The Heisenberg group Hn is the man-
ifold R2n+1 but with the group law given by

(x(1), y(1), t(1))(x(2), y(2), t(2))

:=

(
x(1) + x(2), y(1) + y(2), t(1) + t(2) +

1

2
(x(1) · y(2) − x(2) · y(1))

)
,

(1.106)

for (x(1), y(1), t(1)), (x(2), y(2), t(2)) ∈ Rn × Rn × R ∼ Hn, where x(1) · y(2) and
x(2) · y(1) are the usual scalar products on Rn. The canonical basis of the Lie
algebra hn of the Heisenberg group H

n is given by the left invariant vector fields

Xj = ∂xj −
yj
2
∂t, Yj = ∂yj +

xj

2
∂t, j = 1, . . . , n, T = ∂t. (1.107)
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It follows that the basis elements Xj, Yj , T , j = 1, . . . , n, have the following com-
mutator relations,

[Xj , Yj ] = T, j = 1, . . . , n,

with all the other commutators being zero. The Heisenberg (Lie) algebra hn is
stratified via the decomposition

hn = V1 ⊕ V2,

where V1 is linearly spanned by the Xj ’s and Yj ’s, and V2 = RT . Therefore, the
natural dilations on hn are given by

δr(Xj) = rXj , δr(Yj) = rYj , δr(T ) = r2T.

On the level of the Heisenberg group Hn this can be expressed as

δr(x, y, t) = r(x, y, t) = (rx, ry, r2t), (x, y, t) ∈ H
n, r > 0.

Consequently, Q = 2n+2 is the homogeneous dimension of the Heisenberg group
Hn. The (negative) sub-Laplacian on Hn is given by

L :=

n∑
j=1

(X2
j + Y 2

j ) =

n∑
j=1

(
∂xj −

yj
2
∂t

)2

+
(
∂yj +

xj

2
∂t

)2

,

corresponding to the horizontal gradient

∇H := (X1, . . . , Xn, Y1, . . . , Yn).

We can also write

L = Δx,y +
|x|2 + |y|2

4
∂2
t + Z∂t, with Z =

n∑
j=1

(xj∂yj − yj∂xj ),

where Δx,y is the Euclidean Laplacian with respect to x, y, and Z is the tangential
derivative in the (x, y)-variables.

Complex description of the Heisenberg group. There is an alternative description
of the Heisenberg group using complex rather than real variables. It is easy to see
that both descriptions are equivalent.

The Heisenberg group Hn is the space Cn × R with the group operation
given by

(ζ, t) ◦ (η, τ) = (ζ + η, t+ τ + 2 Im ζη), (1.108)

for (ζ, t), (η, τ) ∈ Cn × R.

Comparing (1.106) with (1.108) we can note the change of the constant from
1
2 to 2. As a result, we are getting different constants in the group law and in the
formulae for the left invariant vector fields. We chose to give two descriptions with
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different constants since the adaptation of such constants in real and complex de-
scriptions of the Heisenberg group seems to be happening in most of the literature.
As a result, it will make it more convenient to refer to the relevant literature when
needed. This should lead to no confusion since we will never be using these two
descriptions at the same time. We note that in general, one can put any constant
instead of 1

2 or 2, the appearing objects are all isomorphic. We can refer the reader
to [FR16, Section 6.1.1] for a detailed discussion on the choice of constants in the
descriptions of the Heisenberg group.

Writing ζ = x+ iy with xj , yj , j = 1, . . . , n, the real coordinates on Hn, the
left invariant vector fields

X̃j =
∂

∂xj
+ 2yj

∂

∂t
, j = 1, . . . , n,

Ỹj =
∂

∂yj
− 2xj

∂

∂t
, j = 1, . . . , n,

T =
∂

∂t
,

form a basis for the Lie algebra hn of Hn; again, this can be compared to (1.107).

At the same time, Hn can be seen as the boundary of the Siegel upper half-
space in Cn+1,

H
n = {(ζ, zn+1) ∈ C

n+1 : Im zn+1 = |ζ|2, ζ = (z1, . . . , zn)}.

Again, we can refer the reader, e.g., to [FR16, Section 6.1.1] for more details on
different descriptions of the Heisenberg group.

Parametrising Hn by z = (ζ, t) where t = Re zn+1, a basis for the complex
tangent space of Hn at the point z is given by the left invariant vector fields

Xj =
∂

∂zj
+ iz

∂

∂t
, j = 1, . . . , n.

We denote their conjugates by

Xj ≡ Xj =
∂

∂zj
− iz

∂

∂t
, j = 1, . . . , n.

The operator

La,b =

n∑
j=1

(aXjXj + bXjXj), a+ b = n, (1.109)

is a left invariant, rotation invariant differential operator that is homogeneous
of degree two. We can refer to the book of Folland and Kohn [FK72] for fur-
ther properties of such operators. However, we can note that this operator is a
slight generalization of the standard sub-Laplacian or Kohn-Laplacian Lb on the
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Heisenberg group Hn which, when acting on the coefficients of a (0, q)-form can
be written as

Lb = − 1

n

n∑
j=1

(
(n− q)XjXj + qXjXj

)
.

Folland and Stein [FS74] obtained the fundamental solution of the operator
La,b as a constant multiple of the function

εa,b(z) = ε(z) = ε(ζ, t) =
1

(t+ i|ζ|2)a(t− i|ζ|2)b . (1.110)

More precisely, the distribution 1
ca,b

ε is the fundamental solution of La,b since ε

from (1.110) satisfies the equation

La,bε = ca,bδ. (1.111)

The constant ca,b is zero if a and b = −1,−2, . . . , n, n+1, . . . , and ca,b �= 0 if a or
b �= −1,−2, . . . , n, n+ 1, . . . . In fact, then we can take

ca,b =
2(a2 + b2)Vol(B1)

(2i)n+1

n!

a(a− 1) · · · (a− n)
(1− exp(−2iaπ)) (1.112)

for a �∈ Z, see Romero [Rom91, Proof of Theorem 1.6]. We will use the above
description of the Heisenberg group and of the (rescaled) fundamental solution
(1.110) to La,b in Section 11.3.3.

1.4.9 Quaternionic Heisenberg group

In this section we describe the basics of the quaternionic version of the Heisenberg
group. We start by recalling the notion of quaternions and summarizing their
main properties. As the space of quaternions is usually denoted by H, we keep this
notation here as well. There should be no notational confusion with the Heisenberg
group since the quaternionic notation will be mostly localized to this section only.

Let H be the set of quaternions

x := x0 + x1i1 + x2i2 + x3i3,

where (x0, x1, x2, x3) ∈ R4, and 1, i1, i2, i3 are the basis elements of H with the
following rules of multiplication:

i21 = i22 = i23 = i1i2i3 = −1,

i1i2 = −i2i1 = i3, i2i3 = −i3i2 = i1, i3i1 = −i1i3 = i2.

The usual convention is that the real part of x ∈ H is the real number x0 and
its imaginary part is the point (x1, x2, x3) ∈ R

3. And so, the real and imaginary
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parts of x can be denoted by �x and �x, respectively. In addition, we use more
precise notations for the imaginary parts as

�1x := x1, �2x := x2, �3x := x3.

The conjugate of x is denoted by

x := x0 − x1i1 − x2i2 − x3i3,

and the modulus |x| is defined by

|x|2 := xx =

3∑
j=0

x2
j .

The Grassmanian product (or the quaternion product) of x and y is defined by

xy := (x0y0 −�x · �y) + (x0�y + y0�x+ �x×�y),
where

�x×�y := det

⎛⎝ i1 i2 i3
x1 x2 x3

y1 y2 y3

⎞⎠ .

Let us denote Hq := H × R3, it is called the quaternion Heisenberg group. Then
Hq becomes a non-commutative group with the group law

(x, t1, t2, t3) ◦ (y, τ1, τ2, τ3)
:= (x+ y, t1 + τ1 − 2�1(yx), t2 + y2 − 2�2(yx), t3 + τ3 − 2�3(yx)),

for all (x, t), (y, τ) ∈ Hq. We note that e = (0, 0, 0, 0) is the identity element of Hq

and the inverse of every element (x, t1, t2, t3) ∈ Hq is (−x,−t1,−t2,−t3).

The Haar measure on Hq coincides with the Lebesgue measure on H × R3

which is denoted by dν = dxdt. Let hq be the Lie algebra of left invariant vector
fields on Hq. A basis of hq is given by {X0, X1, X2, X3} and {T1, T2, T3}, where

X0 =
∂

∂x0
− 2x1

∂

∂t1
− 2x2

∂

∂t2
− 2x3

∂

∂t3
,

X1 =
∂

∂x1
+ 2x0

∂

∂t1
− 2x3

∂

∂t2
+ 2x2

∂

∂t3
,

X2 =
∂

∂x2
+ 2x3

∂

∂t1
+ 2x0

∂

∂t2
− 2x1

∂

∂t3
,

X3 =
∂

∂x3
− 2x2

∂

∂t1
+ 2x1

∂

∂t2
+ 2x0

∂

∂t3
,

and

Tk =
∂

∂tk
, k = 1, 2, 3.
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The Lie brackets of these vector fields are given by

[X0, X1] = [X3, X2] = 4T1,

[X0, X2] = [X1, X3] = 4T2,

[X0, X3] = [X2, X1] = 4T3.

Thus, the sub-Laplacian on Hq is given by

L =

3∑
j=0

X2
j = Δx − 4|x|2Δt − 4

3∑
k=1

(ikx · ∇x)
∂

∂tk
, (1.113)

where

Δx =

3∑
k=0

∂2

∂x2
k

, and Δt =

3∑
k=1

∂2

∂t2k
.

Note that the fundamental solution of the sub-Laplacian L on Hq was found by
Tie and Wong in [TW09]. We restate their results in the following theorem.

Theorem 1.4.18 (Fundamental solutions for sub-Laplacian on quaternion Heisen-
berg groups). The fundamental solution Γ(ξ) of the sub-Laplacian L on the quater-
nion Heisenberg group Hq is given by

Γ(ξ) := Γ(|x|, t) = 2

(2π)7/2|x|2
∫
S2

1

(|x|2 − i(t · n))3 dσ, (1.114)

where ξ = (x, t) ∈ Hq, n = (n1, n2, n3) is a point on the unit sphere S2 in R3 with
centre at the origin, and dσ is the surface measure on S2. That is,

LΓζ = −δζ, (1.115)

where Γζ(ξ) = Γ(ζ−1 ◦ ξ) and δζ is the Dirac distribution at ζ ≡ (y, τ) ∈ Hq.

The quaternion Heisenberg group is a special case of the model step two
nilpotent Lie group. It is a homogeneous group with respect to the dilation

δλ : R7 → R
7, δλ = (λx, λ2t).

Thus,

d(ξ) =
1

Γ 1/8(ξ)
, ξ = (x, t) ∈ Hq, (1.116)

is a homogeneous quasi-norm on Hq with respect to the dilation δλ (see, e.g.,
[Cyg81]).
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1.4.10 H-type groups

The H-type groups are a special family of stratified groups with a similar struc-
ture to that of the Heisenberg group; one of their important features is that the
fundamental solutions to the sub-Laplacian are known explicitly.

We briefly recall the main notions related to this family of groups adopting
the notation from [BLU07]; we refer to it for further details.

Definition 1.4.19 (Prototype H-type groups). The space Rm+n equipped with the
group law

(x, t) ◦ (y, τ) =
(

xk + yk, k = 1, . . . ,m
tk + τk + 1

2 〈A(k)x, y〉, k = 1, . . . , n

)
(1.117)

and with the dilations
δλ(x, t) = (λx, λ2t)

is called a prototype H-type group. Here A(k) is an m×m skew-symmetric orthog-
onal matrix, such that,

A(k)A(l) +A(l)A(k) = 0

for all k, l ∈ {1, . . . , n} with k �= l.

Clearly, the Euclidean (Abelian) group and the Heisenberg group are exam-
ples of prototype H-type groups.

We leave aside the general H-type groups since it can be shown that any (ab-
stract) H-type group is naturally isomorphic to a prototypeH-group (see [BLU07,
Theorem 18.2.1]).

It can be directly checked that prototype H-groups are two step nilpotent
Lie groups in which the identity of the group is the origin (0, 0) and the inverse of
(x, t) is

(x, t)−1 = (−x,−t).

It can be also verified that the vector field in the Lie algebra g of G that agrees
at the origin with ∂

∂xj
, j = 1, . . . ,m, is given by

Xj =
∂

∂xj
+

1

2

n∑
k=1

(
m∑
i=1

akj,ixi

)
∂

∂tk
, (1.118)

where akj,i is the (j, i)th element of the matrix A(k).

The prototype H-type groups are stratified with a basis of the first stratum
given by these vector fields X1, . . . , Xm. Thus, the (negative) sub-Laplacian on a
prototype H-type group G is given by

L =

m∑
j=1

X2
j = Δx +

1

4
|x|2Δt +

n∑
k=1

〈A(k)x,∇x〉 ∂

∂tk
, (1.119)
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where Δ and ∇ are the Euclidean Laplacian and the Euclidean gradient, respec-
tively. There is no restriction to suppose that, if � is the centre of the Lie algebra
g of G, �⊥ is the orthogonal complement of � and

m = dim(�⊥), n = dim(�).

So, the R
n-component of the prototype H-type group G � R

m+n can be thought
of as of its centre.

We have that the homogeneous dimension of the group is

Q = m+ 2n.

We note that since for H-type groups we have m ≥ 2 and n ≥ 1, we actually
always have Q ≥ 4.

Now using a generic coordinate ξ ≡ (x, t), x ∈ R
m, t ∈ Rn, let us introduce

the following functions on G:

v : G → �⊥, v(ξ) :=

m∑
j=1

〈exp−1
G

(ξ), Xj〉Xj ,

where {X1, . . . , Xm} is an orthogonal basis of �⊥,

z : G → �, z(ξ) :=

n∑
j=1

〈exp−1
G

(ξ), Zj〉Zj ,

where {Z1, . . . , Zn} is an orthogonal basis of �. Thus, by the definition of v and
z, for any ξ ∈ G, one has

ξ = exp(v(ξ) + z(ξ)), v(ξ) ∈ �⊥, z(ξ) ∈ �,

and by a direct calculation we have (see, e.g., [BLU07, Proof of Remark 18.3.3])
that

|v(ξ)| = |x|, |z(ξ)| = |t|.
The fundamental solutions for the sub-Laplacian on abstract H-type groups were
found by A. Kaplan in [Kap80]. Such results boil down to the following statement.

Theorem 1.4.20 (Fundamental solutions for sub-Laplacian on H-type groups).
There exists a positive constant c such that

Γ(ξ) := c
(|x|4 + 16|t|2)(2−Q)/4

is the fundamental solution of the sub-Laplacian L, that is,
LΓζ = −δζ, (1.120)

where Γζ(ξ) = Γ(ζ−1 ◦ ξ) and δζ is the Dirac distribution at ζ ≡ (y, τ) ∈ G.
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For future use in Section 11.5, we will prefer to have the appearing function
Γ positive, which leads to the appearance of the minus sign in (1.120).

For further details and analysis on H-type and related groups we may refer
the reader to Kohn–Nirenberg [KN65], Folland [Fol75], Kaplan [Kap80], as well as
to a more detailed exposition in [BLU07].
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