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Function Spaces on Homogeneous Groups

In this chapter, we describe several function spaces on homogeneous groups. The
origins of the extensive use of homogeneous groups in analysis go back to the book
[FS82] of Folland and Stein where Hardy spaces on homogeneous groups have been
thoroughly analysed. It turns out that several other function spaces can be defined
on homogeneous groups since their main structural properties essentially depend
only on the group and dilation structures. Thus, in this chapter we carry out
such a construction for Morrey and Campanato spaces and analyse their main
properties. Moreover, we describe a version of Sobolev spaces associated to the
Euler operator. We call such spaces the Euler—Hilbert—Sobolev spaces.

The constructions of this chapter are based on the analysis in [RSY18d] and
[RSY18c|. Since on general homogeneous groups we may not have a (hypoelliptic)
differential operator to start with for the usual construction of Sobolev spaces,
we develop a version of Sobolev spaces associated to the Euler operator. The
development of such spaces is linked to relevant Hardy and Sobolev inequalities
from Chapter 2 and Chapter 3. Consequently, we can also analyse properties of
maximal operators and fractional integral operators in the constructed Morrey
and Campanato spaces on homogeneous groups.

In Definition 6.5.4 and the subsequent analysis we have already considered a
collection of (horizontal) weighted Sobolev type on stratified groups, but here we
will concentrate on general homogeneous groups. Since horizontal gradients are
not available in such a setting, its action will be replaced by that of the radial
derivative combined with the corresponding Euler operator.

Thus, throughout this chapter G will denote a general homogeneous group
of homogeneous dimension denoted by Q.

10.1 Euler—Hilbert—Sobolev spaces

In this section, we introduce an Euler—Hilbert—Sobolev space on a homogeneous
group G of homogeneous dimension ). We start with more general Euler—Sobolev
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function spaces. The definitions and further analysis are based on the Euler oper-
ator E discussed in Section 1.3.

Definition 10.1.1 (Euler-Sobolev function spaces). We define the Fuler—Sobolev
function space on G by

gbr(G) = cgo(G\{op) 1= ke z, (10.1)
i.e., as the completion of C§°(G\{0}) with respect to the semi-norm

I fllerr@) = IE* fllLecs)-

Let us recall a special case of inequality (3.87) with o = 0, that is,

k
p
@) < (5 ) 18 Fluscey 1 << o0, k€N (102)
From the definition of the Euler-Sobolev space it follows that this inequality ex-
tends to all functions f € £¥7(G):

Corollary 10.1.2 (Embeddings of Euler—Sobolev spaces). The semi-normed spaces
(5P || - lgrw), k € Z, are complete spaces for any 1 < p < oo. The norm of the
embedding operator v : (%P, || - ||gks) < (LP, || - ||L») satisfies

k
||L||£k,pws(g) , keN, 1<p<oo, (10.3)

where the embedding v is an embedding of a semi-normed subspace of LP.

Based on Lemma 1.3.2 we can use the general theory of fractional powers
of operators as in [MS01, Chapter 5], to define fractional powers of the operator
A = EE*, and we denote

E|® := A5, BeC.

For a brief and specific account of the relevant theory of fractional powers that is
required for this construction we can refer the reader to the open access presen-
tation in [FR16, Appendix A]. Consequently, we obtain the following fractional
Hardy inequalities in L?(G).

Theorem 10.1.3 (Fractional Hardy inequalities in L?(G)). Let G be a homogeneous
group of homogeneous dimension Q@ > 1. Let B € C and let k > Rgﬁ be a positive
integer. Then for all complez-valued functions f € C5°(G\{0}) we have

3 o\ Rep )
Il < €= 5.0 () IBPs] o (10.0
where
c@ k= Lk 2 (10.5)

IT(B)T(k — B)| Rep(k — Ref)”
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Proof of Theorem 10.1.3. By using [MS01, Proposition 7.2.1, p. 176] we have the
interpolation inequality

=177

By the equality (1.43) and (3.119) with o = 0 it follows that

B
( - 27k) HfHLZ(G) HA kaL2((G) (10'6)

LZ(G)

RefB
A AN
Clk— k) ||f||L2(G) A~ kaLZ(G) Clk— 9’ k) ||f||L2( 02 ||f||L2(<G,) )
RefB
—ct-Lm () Il
== 5 (g e
which combined with (10.6) implies (10.4). O

Definition 10.1.4 (Euler—Hilbert—Sobolev function spaces). For 8 € C, we define
the Euler—Hilbert—Sobolev function space on G by

B (G) == Cg°(G\{op) ", (10.7)
that is, as the completion of C§°(G\{0}) with respect to the semi-norm
171l = [1EI° £l p2(e)-
HA (G) L*(G)

In view of this definition we have inequality (10.4) for all f € H?(G):

B Ref 5
Il < =50 (5) [ (105)
where § € Cy, k > RSB, k € N, and C(k — 7kz) is given by (10.5). We can

summarize these facts as follows:

Proposition 10.1.5 (Embeddings of Euler—Hilbert—Sobolev spaces). Let G be a
homogeneous group of homogeneous dimension @Q > 1. For any § € C the semi-
normed space (HP,|| - |us) is a complete space. Moreover, the norm of the embed-
ding operator v : (HP, || - ||ms) < (L2, || - ||12) satisfies

2\ e R.
||L||Ha%zsc(k§,k><Q) Csec k> ken (109)

where we understand the embedding v as an embedding of a semi-normed sub-
space of L?.
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10.1.1 Poincaré type inequality

Let © C G be an open set and let Eé’p(Q) be the completion of C§°(Q\{0}) with
respect to

||f||§1,p(gg) = fllze@) + IEfl e, 1<p<oo.
Then we have the following completion of Hardy inequalities:

Theorem 10.1.6 (Poincaré type inequality on homogeneous groups). Let Q be a
bounded open subset of a homogeneous group G of homogeneous dimension Q. If

l<p<oo, fe E(l)’p(Q) and Rf = IilEf € LP(Q), then we have

: (10.10)

Rp Rp| 1
f P S 72f P - H Ef
£l e () 0 IR fllLe (o) Q 1™ 0

where R = sup|z|.
zeQ

In order to prove Theorem 10.1.6, we first show the following Hardy inequality
on open sets.

Lemma 10.1.7 (Hardy inequality on open sets). Let Q@ C G be an open set. If
1<p<oo, fe &P (Q) and Ef € LP(Q), then we have

p
o) < B Nlze ). (10.11)

Proof of Lemma 10.1.7. Let ( : R — R be an even smooth function satisfying

e 0<(¢<1,
e ((r)y=11if |r|<1
e ((r)y=0if [r| >2.

For A > 0, we set
(@) := (A=)
By (3.70) we already have inequality (10.11) for f € C§°(G\{0}). There exists

some {fi}52, € C5°(Q\{0}) such that f; — f in £57(€) as £ — oo. Let A > 0.
From (3.70) we obtain

I fellr) < g (IEC) fell o) + I E L) Lo (o))

for all £ > 1. Tt is easy to see that
Hm Cafe=Gaf,

A (EG) fo = (EQ) S,

Jm G(Efe) = G(ES)
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in LP(€2). These properties imply that

1O F Il ey < g {IEO) fllr) + IGEN Lo } -

Since
sup |EC|, if A1 < |z <2A71L,
|(EC) (@) < .
0, otherwise,
we obtain (10.11) in the limit as A — 0. O

Proof of Theorem 10.1.6. Since R = sup|x| using Proposition 10.1.7 we obtain
e

)

p Rp fip ) 1
Herey < G IEflr) < 7 IRFllirie) = H o
£ ]l e QH () 0 RSl Q 2™ | ooy

which gives (10.10). O

10.2 Sobolev-Lorentz—Zygmund spaces

In this section, we define several families of Lorentz type spaces and analyse their
basic properties.

Definition 10.2.1 (Lorentz, Lorentz—Zygmund, and Sobolev—Lorentz—Zygmund
spaces). Let G be a homogeneous group of homogeneous dimension @ with a
homogeneous quasi-norm | - |. We define the Lorentz type spaces on G by

L|'|1Q1P,Q(G) = {f € Llloc(G) : ||f||L|,|1Q,p,q(G) < 00}7 0<p,qg< o0,
where

. 1/q
12 i = [ el 1 gae)

In the sequel, if the quasi-norm |- | on G is fixed we will often abbreviate the
notation by writing

Ly o(G) := Li,0,p,q(G).

Moreover, we define the Lorentz—Zygmund spaces on G by

Lpga(G) :={f € Li,.(G) : | fllz, ,rc) <0}, 0<p,g<oo,AeR,

A q 1 1/q
f(:v)> J;de> .

where

R
|z]

log

Q
I fllz, , A = sup (/ (13 P
r>0 \Je
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Furthermore, we define the Sobolev—Lorentz—Zygmund spaces by

1
WL, A (G) == {f €Ly qA(G): m]Ef € Lp,q,)\(G)},

endowed with the norm

1
E.
|z

I llwiz, @ =I"lz,, @ +

Lp,q,A(G)

We also define y
Wi Lpa(G) i= Cg2(G) "V Eran®

as the completion of C§°(G) with respect to || - w1z, , (@)
In addition, for A1, A2 € R we introduce the Lorentz—Zygmund spaces involv-
ing the double logarithmic weights by

Lpgxine (G) i={f € Lioo(G) : || fllL, yr, 2, (6) < 0),
where

Q A2 T da e
e Ak @) oo )

Remark 10.2.2. The space L, 41, », (G) extends the scale of the spaces L, 41 (G)
and Ly, 4(G) in the sense that L, ¢ ,0(G) = Ly ¢ A(G) and Ly 4.0,0(G) = L, 4(G).

A1

log log (log

|| ||

Similarly, we define the Sobolev-Lorentz-Zygmund spaces WL, ; 1, x, (G) by
1
WlLP,q,M,)\?, (G) = {f € Lpgain (G) : |I|Ef € Lp.gaine (G)} ) (10'12)
endowed with the norm

b

Lpﬂq,MAz(G)

1
|| ' ”WILP«‘I:)\LM(G) = ” ’ HLP:%M«M(G) + H |I|]E
wnd II-1
WeLpguna(G) = Cgo(6) W irans 22©), (10.13)

Taking into account the special behaviour of functions

Ir(z) :—f(R ! )

|z
we introduce the Lorentz—Zygmund type spaces £, 4, by

21’7‘17/\(@) = {f € Llloc(G) : ||f||2p,q,>\((G) < 00}7 AER,
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where

R

]

R T\
|f_fR|> $Q> .

]

A q dr 1/q

Q
17025, 1= sup ( / (|x| :
R>0 G

For p = oo we define

= su
175 on@) = 50D ( / (

Moreover, we define the Lorentz-Zygmund type spaces £5 42,2, (G) by

log

21’7%/\17/\2(@) = {f € Llloc(G) : Hf”}:p,q,xl,xrz(G) < 00}7 (10'14)

where

£ 12y 00,00 (@)

Q
= sup </ (|| »
R>0\JG

d 1/‘1
x (XBo.ery(@|f = fr| + XBe.er) @) f — ferl))" IZ) :

eR|M eR ||
log

log 2]

log

]

1, = € B(0,eR);

XB(0,er)(T) = {07 x ¢ B(0,eR).

For p = oo we define

[F 1l gry 00 (6) = Sup</(
R>0 G
C >1/q

X (XB(O,eR)(I)\f*fR\ JFXBC(O,eR)(I)‘f erR|)) |z|@

A1 A2

log

log ¢ log

||

||

We now show several embeddings between the Sobolev-Lorentz—Zygmund
spaces.

Theorem 10.2.3 (Embeddings of Sobolev—Lorentz—Zygmund spaces). For all 1 <
v < 0o and max{1l,y — 1} < ¢ < oo we have the continuous embedding

L (G).

q

WoLg a1 0 (G) = £

1
00,4~ 41—
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In particular, for all f € W(}LQQ -1 o~ (G) and for any R > 0 the following
T,
imequality holds

1/q
/ XB(0,er) ()| f = fRIT+ XBe(0,er) (¥)|f — fe2r|? dx
v
G eR eR |z|@
tog flog 1| o £ (10.15)
q—1 a— q a
1
< ¢ / |29~ 9 |log cht log loge dx ,
v—1\UJe |z || ||

where the embedding constant _?, is sharp and where we denote fr(z) == f(R |z|)

1
Remark 10.2.4.

1. The function spaces extend with respect to indices some known results for
spaces in the Abelian case R™ analysed in [MOW15b]. Embeddings of such
Euclidean spaces for some indices were considered in [Wadl4], and loga-
rithmic type Hardy inequalities in Euclidean Sobolev—Zygmund spaces were
investigated in [MOW13a].

2. Despite the fact that the integrand on the right-hand side of (10.15) has
singularities for |z| = R, || = eR and |z| = R as it will be clear from the
proof we do not need to subtract the boundary value of functions on |z| = eR
on the left-hand side.

In order to prove Theorem 10.2.3, let us first establish the following estimate.

Proposition 10.2.5. Let Q € N, 1 < v < 00, and assume that max{1l,v—1} < ¢ <
00. Then for all f € C3°(G) and any R > 0 we have the inequality

1/q
5 .
B(0.cR) ‘log’log lle log Tﬁ‘ 2|9
_ _ 1/q
R 1 RITY 1 q
d / 2779 |log N log |log ¢ dx .
v—1 B(0,eR) || |z| |z|

Proof of Proposition 10.2.5. Using the polar coordinates as in Proposition 1.2.10
and integrating by parts in a quasi-ball B(0, R) we have

/ |f = fr|? dx
¥
B(0,R) ‘log ‘log IeﬁH ‘log ef" |z|9

/ Fry) — F(Ry)|tdo(y)dr

R
/0 r(log )(log (log “#
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~ i 1 /OR <1og (log ef»_wl CZ~ /P |/ (ry) — f(Ry)q;lJ(y)dr
= *73 1 /OR (log (log 67{%))7“ Re/P |f(ry) — f(Ry)|*?
™) 4o () dr-

x (fry) = f(Ry)) =

In the above calculation, since ¢ —v+1 > 0, the boundary term at » = R vanishes
due to inequalities

eR log " gt log 1 logh
log ( log . )= ; > R = .
1

1 /r dt - 1 -1  R-r
_logef 1t _logef" If _RlogeTR
and
|f(ry) = f(Ry)| < C(R — ),
for 0 < r < R. It follows that

R 1 q
/0 r(log €, )(log(log R))y /‘Of(ry) — f(Ry)|%do(y)dr

4 R qg—1 df(ry)
S ¥ — 1 /0 (log(log eﬁ))’y_l /‘O |f('l"y) - f(Ry)| dr ’da(y)d’f’
q

v—1

y /R 1 1
ra (log )" =" (log )~ "4 (log(log “R)) " (log(log 7)) e
d
/\f ry) — f(Ry)|?~! f(gry

)
do(y)dr.
. |do(y)dr
By the Hoélder inequality, we get
" 1
— f(Ry)|%do(y)d
/0 r(log eR)(lOg(log eR))y/f(ry) f(Ry)|do(y)dr

(¢=1)/q
L ry — f(Ry)|
—1 (/ / (log “/*)(log(log <))~ da(y)dr)

(/ / (log . )ql <log (10g 6:?))“ df (ry)

q

q 1/q
dr do(y)dr) .
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This gives
1/q
|f — frl? dx
/ eR v eR |$|Q (1017)
B(0,R) ’log ‘log 2l H ‘log | ’
_ _ 1/q
R4 1 =7 1 q
a / 2779 |log ¢ log |log ¢ dx .
v =1 \Us.r) |z |z |z

Now we calculate the integrals in (10.16) restricted on B(0,eR)\B(0, R):

/ |f — fr|? dx
B(0,eR)\B(0.R) ‘1og’10g va log %] 171

:/1:R r(log ! )(log (log “F)~1) / | (ry) — f(Ry)|%do(y)dr
1 er) N\
= 1 (log ((log . ) >> /@|f(ry) — f(Ry)|%do(y)
eR ZIv )y L r=h
+ W’i 1 /R <log <<IOg €f> >> ;A|f(ry) — f(Ry)|%do(y)dr
q eR eR\ L —v+1
— o 1/R <log <<log . > )) Re/@ |f(ry) — f(Ry)‘q—2

< (f(ry) — F(Ry) Y flj}/) do(y)dr.

r=eR

Again, in the calculation above, since ¢ — vy + 1 > 0, the boundary term at r = R
vanishes due to inequalities

log ((1og 6:%>1> _ /1(1°g ) it
> <log ef) ((log 6:%) o 1)

1 logeR>rfR
T r — R

and

|f(ry) — f(Ry)| < C(R—1),
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for R < r < eR. This implies

eR 1
/R r(log “7)(log((log °% /@ £ (ry) — f(Ry)|"do(y)dr
eR —1
q 1/ <log< log . ))
/\f ) - 5= | [ par =1

1
X _ _ _1 _
/R qul(log ef)qqlriqq (log ef)iqql
1

—1)~y Y—aq

(tog (g F)=1)) " (1og ((log =)=1)) "
< 1500 = s | V00 dta

©

X

.

By using the Holder inequality, we get
eR 1
; ; [f(ry) = f(Ry)|"do(y)dr
/R r(log <) (log((log ) ~1))” /p

(a=1)/q
oSN
</ J. o on(og -y W)

</ e (o) () )

1/q
d q
x‘ f((;;y) da(y)dr) .
Thus, we arrive at
1/q
/ |f = frl? dx
B(0,R\B(0,R) ’log ’log on ‘ ‘7 ‘log Tﬁ‘ |9
_ _ 1/q
R 1 =71 q
< ¢ / |7~ @ loge log loge Ef| dx .
v-1 B(0,eR)\B(0,R) |z| || ||
This and (10.17) imply (10.16). O

By a similar argument one can prove a dual inequality to (10.16), that is, we
have
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Proposition 10.2.6. Let 1 < v < oo and max{l,y — 1} < ¢ < oo. Then for all
1€ C§(G) and for any R > 0 we have

1/q
|f — ferl? dx
/ PR (10.18)
Be(0,R) ‘log ‘log Iz ‘ ‘log iz ‘

q—1 q— q 4

1
< ¢ / |2|7~? |log log |log i Ef| dx .

¥ =1 \JBeo,R) || || ||

Now we are ready to prove Theorem 10.2.3.

Proof of Theorem 10.2.3. By using (10.18) with R replaced by eR we have

1/q
‘f _ fe2R|q dx
/ rl|” R| |z]% o
Be(0,eR) ’10g ’10g o] ‘log Jo] ‘
/ B 1/q
e RIITY 1 a

< 1 / 2|99 loge log IOge B do '

¥ =1 \Be(o,er) 2 . y

Then from (10.16) and (10.19) we get (10.15) for functions f € C§°(G).
Let us now show (10.15) for general functions f € WOILQ g.-1 o= (G). First
a0 g

let us verify that (10.16) holds for f € WolLQ g-1 = (G). Let {fm} C C5°(G)
a7
be a sequence such that f,, — f in WolLQ g.0-1 o= (G) as m — oo and almost
a7
everywhere by the definition (10.13). If we define

m(x) — fm (R *
fam(@) Sm(x) = fm (R 7)) N
eR |1

Ed

= v
’10g ’log Tfl ‘ ‘ ! ’log

then {fr,m }men is a Cauchy sequence in LY(G; |§|IQ ), which is a weighted Lebesgue
space, since the inequality (10.16) holds for f,, — fx € C3°(G). Consequently, there
exists gr € L(G; I;‘flf;,) such that fr,, — gr in LY(G; I;‘flf;,) as m — oo. From the

inclusion {x € G\{0}: (R|i|> - f (R|i|>}

cUfecor@:tn(r?)»1(r])} = oGO} fula) = @)

r>0

it follows that f,, (R|i|> = f (R|i|>, that is, we obtain the equality
f(z) — f(R|;L;|)

v/q 1/q = 9r(2)
‘log ’10g Iefl” H ’10g Iefl”

almost everywhere.
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That is, inequality (10.16) holds for all f € WOILQ7q7q;17q;’y (G). In the same
way we establish the inequality (10.19) for any f € WolLqunglyq;'y (G). Since in-
equalities (10.16) and (10.19) hold for any f € W&LQ7q7q717q77 (G), we get (10.15)
for f € Wilg, it 0 (). s

Now it remains to show the sharpness of the constant _?, in (10.15). By
(10.15) for each f € W[}LQ,q,q;I,q;w (B(0, R)), we have

1/q
|f ()] dx

/ AL o] fof (10.20)
B(O,R) ’log ‘log o H ‘log o ’

_ _ 1/q

RI? 1 R 1 q
< a / |79 loge log loge Ef| dx .
y—1 B(0,R) || || ||

Therefore, it is sufficient to show the sharpness of the constant 731 in (10.20). As

in the Abelian case (see [MOW15b, Section 3]), we consider a sequence of functions
{fe} for large ¢ € N defined by

(log(log(EeR))z
felw) = { (log(log ¢)) "+, when | <lz| < §

~

(log(log(2¢))) "« 2(R— |z]), when & <|a|<R.

7;1, when |z] < J,
1

It is clear that f, € WolLQ g.0-1 o= (B(0, R)). Letting fo(r) = fo(z) with r =
T,
|z| > 0, we get

J 0, when r < ;,
Jer) = =7 log(log <F)) " M (log )71 when } << f,
T —1

—;(log(log(%)))wq , when ¥ <r<R.

Denoting by |p| the @ — 1-dimensional surface measure of the unit sphere with
respect to the quasi-norm | - |, by a direct calculation we have

q—1

7| q q
/ |29~ 9 [log cht log |log © Ef| dx
B(0,R) || || ||
R eR q—1 eRINTY | d ~ q
= |p|/ r4~1 llog log |log fe(r)| dr
0 r r dr
R

— ol (7 ; 1>q/; . <log ef>1 (log (log 6:%»1 dr
+ (log(log(2e))) (;)q o] /RR pa=t (log ef)q_l <log <log ef>>q_7 dr
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(L )
+ (log(log(2¢)))" ! (Z)q 9] ﬁ R pa-1 (log ef)q_l (log (log ef»q_v dr

—1o1 (7, Gotos(ionter) ~ os(logtlon2)) + loiCse. (1020

(log(log(2e))) .
g = (2¢)7(log(log(2¢)))7 ! / a7 ga(s—e®) g,
0

The assumption ¢ — v + 1 > 0 implies that C , < 4+-00. Moreover, we have
/ |f ()| \@\/ | fo(r)? dr
B(0,R) ‘log‘log Iz IH ‘log eR |x|Q |10g|10g €R|| |10g e§| r

1 —
= |p|(log(log(¢eR)))" ™ /e T (log eR) (log (log eR>) dr
0 r T
B -1 -1
+ |p| / rt (log eR) (log (log eR)) dr
1 T T
4

+ || (log(log(2¢)))"™" (1255)[1

R -1 —
X / r YR —r)? <log eR) (log (log 6R>> dr
n r r

= 7p1 + [p|(log(log(log(¢eR)) — log(log(log(2e))) + |0|Cr,y,q,  (10.22)

where

CR.q = (log(log(2e))) <]2{>q

R —1 —
X / r (R —r)4 (log eR) (log (log eR)) dr.
R r r

The inequality log(log ef”) > Rgr for all » < R and the assumption ¢ — vy > —1
imply Cg,y,q < 4+00. Then, by (10.21) and (10.22), we arrive at

q—l

q—" 1
/ |9~ @ log log |log cht
B(0,R) |2 \ || || =
a d -1\
/ (@) ARG
B(0,R) llogllog H ‘log er| || q

as £ — oo, which implies that the constant _?, in (10.20) is sharp. O
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10.3 Generalized Morrey spaces

In the next sections, we develop the theory of Morrey and Campanato spaces
on general homogeneous groups. Moreover, we analyse properties of Bessel-Riesz
operators, maximal operators, and fractional integral operators on these spaces.

A brief discussion of the general theory of Morrey and Campanato spaces
was given in the introduction, and we can refer there also for references.

10.3.1 Bessel-Riesz kernels on homogeneous groups

The classical Bessel-Riesz operators on the Euclidean space R™ are the operators
of the form

fand@) = [ Kenle—nfeiay= [ 17 a0

R™ rr (14 |z —y[)
where y > 0 and 0 < o < n. Here, I, 4 and K, , are called a Bessel-Riesz operator
and a Bessel-Riesz kernel, respectively. The original works on these operators go

back to Hardy and Littlewood in [HL27, HL32] and Sobolev in [Sob38]. We refer
to Section 5.3 for the appearance of the related operators.

Definition 10.3.1 (Bessel-Riesz kernels). A natural analogue of the operators
(10.23) in the setting of homogeneous groups are operators of the form

Lot @)= [ Kooy iy = [ V10 syt 02y
with the Bessel-Riesz kernels defined by
|22~
Kaa2) = (4 oy (10.25)
where | - | is a homogeneous quasi-norm on a homogeneous group G.

First we calculate the LP-norms of the Bessel-Riesz kernels.

Theorem 10.3.2 (LP-norms of Bessel-Riesz kernels). Let G be a homogeneous group
of homogeneous dimension Q) with a homogeneous quasi-norm |-|. If 0 < o < Q

and v > 0 then K, € LP*(G) and

(2t R)(@-Qri+Q\ 7
(1+2kR)vP1 ’

1K a0 () ~ (Z

kEZ

Q Q
for Otr—a <P1< g%,

We will use the following result in some proofs.
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Lemma 10.3.3 ([IGLE15]). If b > a > 0 then for every u > 1 and R > 0 we have

(u*R)® -
E : k)b :
keZ(l + uFR)

Proof of Theorem 10.3.2. By using the polar coordinates decomposition from Pro-
position 1.2.10, for any R > 0 we have

|| (@ = @)p1
/\Ka,y(;v)\pldx:/ dx
G (1+|$|)””
Q)p1+Q—1
/ / |4 7)m do(y)dr

—-Q)p1+Q—1
— > /

P "
e J2FR<r<2++1R (+T) !

where |p| is the @ — 1-dimensional surface measure of the unit sphere. This implies

1
Ko@) d < [0 3 / Ha-Qm+Q-1g,
/(G, ! 2= (14 25R)™1 Jorpeycoriip

(2FR)(e—Q@p1+Q
(14 2kR)vP1

- |p|(2(e=@P1+Q _q)
- (a-Qp+Q Z

keZ

Moreover, we have

ll / - -
Ko (z)|Prd rla=Q)p1+Q—-1,
/ | ol dr 2 2P Z 1+ 2kR TPL Jok R<r<oktiR g

|p|(2(@—@m+Q _ 1) (2FR)(a=@p1+Q
27171(( Q)p1 + Q) Z (1+ 2kR)vm

ke
Combining these two inequalities, for each R > 0 we have

JALEIETERDS

kEZ

(QkR)(a—Q)Pl +Q
(1+ 2FR)vP1

For p; € (QJF(‘%?O(, Q?a) using Lemma 10.3.3 with u = 2, a = (o — Q)p1 + Q and
b = vp1, we arrive at

(2FR)(e-Q)P1+Q
Z ( + 2kR)'yp1 < 00,

keZ

which also implies that K, , € LP'(G). O
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Since
Ia,'yf = Koz,’y * f7
the Young inequality in Proposition 1.2.13 immediately implies

Corollary 10.3.4 (LP-L9 boundedness of Bessel-Riesz operators). Let 0 < a < @
1 _ 1,1 Q Q
and v > 0. Assume that 1 < p,q,p1 < 00, q+1 =T and Oty—a <P1< %,
Then we have
Mo fllzeo@) < 1KanllLe @l fllzre)

for all f € LP(G).

This means that I, , is bounded from LP(G) to L(G) and that its operator
norm can be estimated as

I aryllLr@)—re@) < 1Kaqyllie @)

10.3.2 Hardy-Littlewood maximal operator in Morrey spaces

We now define Morrey and generalized Morrey spaces on homogeneous groups and
show the boundedness of the Hardy—Littlewood maximal operator in these spaces.

As usual throughout this section G is a homogeneous group of homogeneous
dimension Q.

Definition 10.3.5 (Local Morrey spaces). Let us define the local Morrey spaces
LMP(G) by

LMPYG) :={f € L} (G) : [| fllLmra@) < oo}, 1<p<gq, (10.26)

loc
1/p
£l Lasveaccy := sup r@/a=1/p) (/ |f(33)|pd33> .
>0 B(

Sometimes these spaces are called central Morrey spaces in the literature.
Definition 10.3.6 (Generalized local Morrey spaces). Let ¢ : RT — RT and 1 <
p < 00. We define the generalized local Morrey space LMP?(G) by

LMP?(G) := {f € L},.(G) : | fl| Larwo(e) < o0}, (10.27)

loc

where

0,r)

where

1/p
1 1
fllLareo(g) := sup / flx)|Pdx .
L T o LG

Let us first formulate the assumptions for the function ¢ in the above defi-
nition.
Assumptions on ¢

From now on we will assume that ¢ is nonincreasing and ¢t 9/ P (t) is nondecreasing,
so that ¢ satisfies the doubling condition, i.e., there exists a constant C7 > 0 such
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that we have

1 r 1 o(r)
<, S2= < o) Ch. (10.28)

Definition 10.3.7 (Hardy—Littlewood maximal operator). For every f € LV (G)
we define the Hardy-Littlewood maximal operator .#Z by

1

A f (@) 5= sup [ It (10.29)
>0 [B(@,7)| /B2

where |B(z, )| denotes the Haar measure of the quasi-ball B(z, 7).

Using the definition (10.26) of local Morrey spaces one can readily obtain the
following estimate:

Lemma 10.3.8. For any 1 < py < p1 and Q+C'37a <p1 < Q(Ea we have

”KOéW”LMPz:Pl (G) < ||Ka,'y||LMP1«P1(G) = ||Ka,'v||LP1(G)~ (1O~30)
We now prove the boundedness of the Hardy-Littlewood maximal operator

on generalized local Morrey spaces.

Theorem 10.3.9 (Hardy—Littlewood maximal operator on generalized local Morrey
spaces). Let 1 < p < oco. Then there exists some C,, > 0 such that for all f €
LMP?(G) we have

|4 fll Lot ) < Cpll fll Lagro(c)- (10.31)
Remark 10.3.10. In the Euclidean space R™ this was shown by Nakai in [Nak94].
On stratified groups (or homogeneous Carnot groups) it was shown in [GAM13,
Corollary 3.2]. For general homogeneous groups this and other results of this sec-
tion were shown in [RSY18c].

Proof of Theorem 10.3.9. From the definition of the norm of the generalized local
Morrey space (10.27) it follows that

1/p
Q
(/ f(x)”dfv> < o(r)r e | fllLars(c), (10.32)
B(0,r)
for all » > 0.

On the other hand, using Corollary 2.5 (b) from Folland and Stein [FS82] we
have the general property of the maximal function

1/p 1/p
(/ ///f(x)|pdx> <Cp (/ |f(x)|pdx> . (10.33)
B(0,r) B(0,r)

Combining (10.32) and (10.33) we arrive at

1/p
1 1
é(r) (TQ /B(O ) //f(x”pdx) < Cp”f”LMp,d:(G),

for all » > 0. But this is exactly (10.31). O



10.3. Generalized Morrey spaces 423

10.3.3 Bessel-Riesz operators in Morrey spaces

In this section, we show the boundedness of the Bessel-Riesz operators on the gen-
eralized local Morrey space from Definition 10.3.6. In the Abelian case G = (R, +)
and Q = n with the standard Euclidean distance |z|g = \/2? + 23 + - -- + 22 the
results of this section have been obtained in [[GE16]. The exposition of this section
follows the results obtained in [RSY18c]|.

Theorem 10.3.11 (Boundedness of Bessel-Riesz operators on Morrey spaces, I).
Let G be a homogeneous group of homogeneous dimension ) with a homogeneous
quasi-norm | - |. Let v > 0 and 0 < o < Q. Let f < —a, 1 < p < o0, and
Otr—a <P1 < an. Assume that 0 < ¢(r) < Cr? for all v > 0. Then for all

f € LMP?(G) we have
oy fll Laraw @) < Cpo,@ | KaqyllLo @l fllLarr o) (10.34)

where q = ﬁ’ffo and P(r) = (Qs(r))p/q-

Proof of Theorem 10.3.11. For every f € LMP%(G), let us write I, - f(z) in the
form
Inof(z) = Ii(x) + I2(z),

_ 2y~ f(y)
Ii(x) = /B(Q77R) (1+|xy‘1\)W dy

where

and
T —1la—Q
() ::/ E7 _if(y)d%
Be(,r) (L4 |zy=t)7

for some R > 0.
By using the dyadic decomposition for I; we obtain

—1 —1la—Q
L@< / lzy ™| _|1f(y)\dy
W S Rgjayrj<onng (L [zy )Y
—1 kpya—Q
< Z (2"R)

|f(y)|dy
(1+2kR) /sz<|a:y1|<2k+1R

k=—o0
—1

<CMf(x) Y

k=—o0

(2k R)—Q+Q/p1(2k R)Q/Py
(1+2FR)Y

1

From this using Holder’s inequality for on T pl, =1 we get
1

“1 ok pya-Qmie\ /P [ =L L/
fl(“")SC///f(“’)< > (2(1R+)2k3)w1 ) (Z (sz)Q> :

k=— k=—o00
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Since

-1 a— 1/p1 a 1/p1
Z (QkR)( Q)p1+Q _ Z (QkR)( Q)p1+Q
e (14 2kR)vP1 - = (14 2FR)vP1 (10.35)

~ | KanllLei (@),

we arrive at

|2 ()] < Ol s ) () ROV (10.36)
For the second term I, by using Holder’s inequality for 11) + ;, = 1 we obtain that

(2*R)*=@
IAE )\_22 i~
— (L+2"R)" Jokpejoy—1|<orir

1 1
s (2kR)a7Q / p’ / P
< dy |f(y)[Pdy
kZ:O (L+28R)7 \ Jorr<|ay—1|<2++1R 2k R< |y~ 1| <2k 1R

|f(y)|dy

1
oo 2kR a—Q /2k+lR/ »
= Q- Ydo(y / f)Pdy
< ( 1+2kR <2 e rioy-tj<orrin ) !

k=

o0

1
(2FR)~ / !
2 R)Q/P / rq )
Z 1—|—2’“R ) ( 2’*‘R§|zy*1|<2k+1R‘f(y)| Y

k=0

| /\

This implies that

x (2FR)e-@+Q/p ,
Q/
@) < Clf o k§:0j 1 r gy ORI

Since ¢(r) < Cr? by assumption, we can estimate

B Yo Q+Q/p1

< »
112()| < Ol oo 2 e

kR)BJFQ/p/l.

Applying Holder’s inequality again we get
o] 1/171 00 l/p1
(QkR)(a*Q)P1+Q ,
(@) < Cllfllzare) (Z (1+ 2kR) Y (@' R)rte :
k=0 k=0

From the conditions p; < Q?a and 8 < —a we have p} + @ < 0. By Theorem
10.3.2, we also have

1/p1 1/p1
Z (QkR)( Q)p1+Q - Z (QkR)( Q)p1+Q N ||K ”
(14 2kR)vp = (1+ 2kR)7pr a|lLP1(G)-

k=0 kEZ



10.3. Generalized Morrey spaces 425

Using these, we arrive at

\L(2)| < Cl|Kaqllze @) fll pares @y RYPH. (10.37)

Combining estimates (10.36) and (10.37) we get

o f (@)] < CllKanllio @) (A () R+ || f || Lagos ) ROPHP).

Assuming that f is not identically 0 and that . f is finite everywhere, we can
choose R > 0 such that Rf = /@ that is,
£l agp. (G)
Q

) .
L F@)] < CllK Lo @) 11l ook ) Fla)

for every x € G. Setting ¢ = ﬁf)ﬁ-pQ’ for any r > 0 we get
1

1/q 1/q
</| | la,yf(fv)qu> < OlKanlln @105 6 </| | ///ﬂx)v’dx) .
x| <r x| <r

Then we divide both sides by (¢(r))?/ 9@/ to get

(flw|<r ‘[awf(x”qu) 1/q

1/q

Jpajer 1 £ ()P da

< C|\Kanllim @ 115200 ( ol )
W(ryr@/e e

LMP-*(G) ((r))P/arQ/a ’
where 9 (r) = (¢(r))?/9. Now by taking the supremum over 7 > 0 we obtain that

1—
e lloatos@ < Clan o @ 1153 1 F12 5 0
which gives (10.34) after applying estimate (10.31). O

Lemma 10.3.8 states, in particular, that the Bessel-Riesz kernel belongs to
local Morrey spaces. This fact will be used in the following statement refining
estimate (10.34) in Theorem 10.3.11.

Theorem 10.3.12 (Boundedness of Bessel-Riesz operators on Morrey spaces, II).
Let G be a homogeneous group of homogeneous dimension QQ with a homogeneous
quasi-norm | - |. Let v > 0,0 < a < Q and 1 < p < co. Let § < —a, 0o <
p2 < p1 < an and py > 1. Assume that 0 < ¢(r) < Crf for all > 0. Then for
all f € LMP?(G) we have

o fllLrraw @) < Cpo.@l KaqyllLarar @)l fll Laree @) (10.38)

where q = Bf;;/irpQ and P(r) = (ﬁb(”))p/q-
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Indeed, this refines Theorem 10.3.11 since by Lemma 10.3.8 we can estimate

Loy fllLaraw @) < CllEanyllarrzri )| fllLarre(c)
< Ol Kanlles @l fllLazrs)-

Proof of Theorem 10.3.12. Similarly to the proof of Theorem 10.3.11 we write
I, f(x) in the form

Inof(z) = Li(x) + I(z),

. 2y 9 f ()
Il(l’) = /B(Q:,R) (1+ zy=1|)7 dy

—1lja—Q
Be(z,r) (L+[zy= )7

where
and

for some R > 0 to be chosen later.
As before, we estimate the first term /; by using the dyadic decomposition:

-1
lzy= > f ()
ol = EJQ (1 -+ a1

kR< oy —t|<2k+1R

-1

(2 R)*@ /
< d
= Z (1 + 2kR)ry QkRS|Iy*1|<2k+1R |f(y)‘ Y

-1

<CMf(z) Yy

k=—o00

k=—o00
(2% R)o—@+Q/p2(2k R)Q/P
(1+2FR)Y '

where 1 < py < p;. From this using Holder’s inequality for

+ 5, =1, we get

1 1
P2 P’z

-1 Up: , 1/ph
2k R)(@=Q)p2+Q
[1(z)| < CA f(z) ( > ( 1 _~)_ 9% Ry > (@2FR)? .
k=—oc0 k=—oc0
In view of (10.35) we have

1/p2
|I(z)| < Col f(x) (/0 Kg?,y(;v)dz> RQ/P:

< CllKanqllLarpze (G)///f(x)RQ/pll- (10.39)

<|z|<R

Now for Iy by using Hoélder’s inequality for 11) + pl, = 1 we have

0o 1/p
(QkR)OL*Q k Q/p /
L(z)| < g 2°R)%/P fly)Pdy ,
) pas (1+2kR)7( ) QkRSIIy*1|<2k+1R‘ i
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that is,
f d 1/P2
oo QkR QkR) ( 2k R<|zy—1|<2k+1 R y)
[2(2)| < C|fllLarre () ];) +2kR (2% R)Q/r:
1/P2
- / (fsz<|wyfl|<2k+1RKg?w(myil)dlo
< Ol laarmee) 2 O RGBT o 0 7

k=0

where we have used the inequality

1/p2
( / Kgf;(xy-l)dy)
2FR<|zy—t|<2kFt1R

(2FR)(a=Q)+Q/p >C( R) / p e
(L+28R) = 7 (1 +2FR)Y \ Jarpejay—1|<arin Y .

Since we have ¢(r) < Cr? by assumption and since

1 1/p2
(f2kR§|zy*1|<2k+1RKg?'y(xy )dy> -
(2% R)Q/p2—Q/p: S 1Kayll Loz @)

(10.40)

for every £k =0,1,2,..., we get
11(2)| < ClKanllpamam @l amec) D (2FR)PH/L
k=0

Using that 5+ Q/p} < 0 we obtain

[I2(2)] < C||KanllLarrz o @) fllLaze.o@ R7T/P. (10.41)
Combining estimates (10.39) and (10.41) we get

o f (@)] < CllKay || Latwe o o) (A f(@)RYPY 4 || fl| Lagoo ey R7TOP).
Assuming that f is not identically 0 and that . f is finite everywhere, we can
choose R > 0 such that R = /@ which yields
”fHLMp ¢((‘)

Q
— ’ 1+ Q/
[an f(@)] < CllEanllLamen )| agio ) (A f@) 774

Now by using that ¢ = 5ffo, for every r > 0 we obtain
1

1/q
( / |Ia,wf<x>|‘Jdm>
|z|<r

1/q
1—
< ClKap s @1 3ok ) </| | I///f(m)”d:v> :
x|<r
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Then we divide both sides by (¢(r))?/ 9 ?/4 to get

(flw|<r ‘Ia,yf(m)‘qdaj) 1/q
P(r)r@/a )
(S 12 F () Pz

1—
< CllKaollismem @I ihe  (ygyparara’

where ¢(r) = (¢(r)) /9. Taking the supremum over 7 > 0 and then using (10.31),
we obtain the desired result

1—
Marfllzaras @) < ClEanllzarra o @)l |y 14 1L o
< Cp . KanllLarz e @)l fllLar o),
proving (10.38). O

To refine and extend the obtained boundedness statements we first show
that the Bessel Riesz kernel K, , belongs to the generalized local Morrey space
LMP2#(G) for some po > 1 and some function w.

Lemma 10.3.13 (Bessel-Riesz kernel in generalized local Morrey space). Let G
be a homogeneous group of homogeneous dimension Q. Let v > 0, po > 1 and

Q — 1?2 <a< Q. Ifw:RT = R satisfies w(r) > Cro=9 for all ¥ > 0, then

Ko~ € LMP4(G).

Proof of Lemma 10.3.13. It is sufficient to evaluate the following integral around
zero, and using polar decomposition from Proposition 1.2.10, we have

(a—Q)p2
/ K (z)dx :/ 21 dx
lz|<R lzj<r (1 + [z])7P2

< gl / rl@=Qp2+Q=1q < CwP2 (R)RC.
<r<R

By dividing both sides of this inequality by w”?(R)R? and taking psth-root, we

obtain Y
D2
(f|a:|<R ( )dx) < CL/pe
smpem SO
Then, we take the supremum over R > 0 to get
1/p2
(f|:c|<R % (@ )dx)
sup < 00,

R>0 w(R) RQ/Pz
which implies that K, , € LMP>“(G). O
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Theorem 10.3.14 (Boundedness of Bessel-Riesz operators on Morrey spaces, I1I).
Let G be a homogeneous group of homogeneous dimension ) with a homogeneous
quasi-norm |-|. Let 0 < a < Q, v > 0 and 1 < p < co. Let w : RT — RT satisfy the
doubling condition (10.28) and assume that 0 < w(r) < Cr=* for allr > 0, so that
Ko € LMP24(G) for Q+3*O< <p2 < an and pa > 1. Let B < —a < —Q — f
and assume that 0 < ¢(r) < CrP for all v > 0. Then for all f € LMP%(G) we
have

Han fllLmas @) < Cpo.oll KanllLare @l fllLarms @), (10.42)
where q= ﬁ-}-%]—a and ’l,[)(’l") = ((]S(T’))p/q

Proof of Theorem 10.3.14. As in the proof of Theorem 10.3.11, we write
Inof(z) == 1i(x) + I2(z),

where

o) 2y 9 f (y)
Ii(z) := /B(a:,R) (1 + |zy—t|) dy

—1lja—Q
() ::/ E7 f(y)dy’
Be(,r) (L4 |zy=t)7

for some R > 0 to be chosen later.
First, we estimate I; by using the dyadic decomposition

-1
2y~ > f(y)|
[L(2)] < d

KR<|zy-1|<ovtig (14 |zy=t)7

and

o (PR
= Z (1+2FR)Y

k=—o0

[ (y)ldy

/sz<|xy1|<2k+lR

-1 ’
(2FR)—Q+Q/p2(2k R)Q/P:
<CAMf(@) 3 (1+2*R)Y

k=—o00

1
P2

1 ok pye-@pet@\ P [ -1 L/ps
Il(m)SC///f(r)<Z (2(1Rj2kR)W> (kaR)Q) .

k=— k=—oc0

From this using Holder’s inequality for = + pl, =1 we get
2

By (10.35) we have

1/p2
IL(2)] < Ct f(z) ( / ngoc)dx) RO/7:

< C|| Koyl Lasrae @) f(x)w(R)RY,

<|z|<R
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and using that w(r) < Cr~® by assumption, we arrive at
IL(2)] < Cll Kl pars ey f () RO (10.43)
Now let us estimate the second term I as follows

(2R)*~@

L) <
‘ 2( )‘ - 1—|—2kR)'Y /ZkR<|zy1|<2k+1R

( |f(y)|dy

o0

1/p
2kR) o QP
5 2R)%/P Pd

| /\

(I d 1/p2
o0 2k R<|zy—1|<2k+1R y)
S Clflemre@ Z 2I~cR (2+R)Q/p> ’

k=0
1/p2
where we have used that (f2,cR<|wy,1|<2k+1Rdy> ~ (2¥R)Q/P2. Using (10.40)

we obtain

1

= (2FR)> QkR <f2kR§|zy*1|<2k+1RKg?'y(xy_l)dy) ”
[2()] < CllflLaree 1; 2’€R (2 R)2/ps

Taking into account that ¢(r) < Cr? and w(r) < Cr~ for all r > 0 we have

1

(kaR§|Iy*1|<2k+lR Kg?’y(‘ryil)dy> "

k p\Q—a+p
‘12(1:)‘ < C||f||LMPr¢((G) 2(2 R) W(QkR)(QkR>Q/p2

k=0

Since we have
1/p2
(f2kR§|a:y*1|<2k+lR Kgfy(my_l)dy> K
w(2k‘R)(2kR)Q/p2 ~ H a,WHLMPW(G)
for every kK =0,1,2,..., it follows that

I2(2)] < Cl|KayllLar <@l fllame@) P (2FR)STFE.
k=0

Since @ — a + [ < 0, it implies that
|12(2)| < Cll Ka | a1 f | Lagwe ) ROTH. (10.44)
Combining estimates (10.43) and (10.44) we get

o f(2)| < ClKanllLarrew () (A f(x)RC™™ + ||f||LMP«¢(G)RQ7a+B)'
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Assuming that f is not identically 0 and that . f is finite everywhere, we can

choose R > 0 such that R? = 4/ , that is
”fHLMP ¢(G)

o P @) < ClKanllnarmae @)l 1S do (A f () Q5.

Bp
+Q-a’

1/q
( / |Ia,wf<x>|‘de>
|z <r

1/q
< ClKarllzamae @b e </|| ///f(w)l”dw> :
x|<r

Since ¢ = 5 for all r > 0 we get

Then we divide both sides by (¢(r))?/ 4 @/4 to get

(szgllaﬂj(x”qdm>l/q
WP(r)r?@/a )
(fw|<r | A f(x )|pdx)

1
< C||Ka;y||LMP2 w ||f||L1\/Z[]z{({i> (p(r ))p/qu/‘I ’

where 1(r) = (¢(r))?/9. Finally, taking the supremum over r > 0 and using
(10.31), we obtain the desired result

1—
o Flzares(@) < ClEanllaree @) | Fll xreb o) 1M Il Ad s
< Cp.o. QI KanllLaaraw @)l fllLaro @)
which gives (10.42). O

Remark 10.3.15. We can make the following comparison between the obtained
estimates, similarly to the Euclidean case [IGE16, Section 3], namely, that also in
the case of general homogeneous groups, Theorem 10.3.14 gives the best estimate
among the three. Indeed, if we take

w(R) == (1+ RQ/ql)RfQ/Pl
for some ¢; > p1, then
[ KanllLarre«@) < [ KayllLyre i (c)-
By Theorem 10.3.14 and Lemma 10.3.8 we then obtain

Her fllLarev @) < CliKan Loz @ | fllLaeo @)
< CHKa;y”LM”?’pl (G) ||f||LMP:¢((G)
< ClKanlle @1 f | Larr o )-
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10.3.4 Generalized Bessel-Riesz operators

In this section we investigate properties of some generalizations of Bessel-Riesz
operators.

Definition 10.3.16 (Generalized Bessel-Riesz operators). We define the generalized
Bessel-Riesz operator I~ by

pllzy~)
Iz f(x ::/ f(y)dy, 10.45
PO o fay i I o)
where v > 0, p : RT — RT, p satisfies the doubling condition (10.28) and the
condition L (
0
/0 g dt < 0. (10.46)
We denote its kernel by
p(|z)
Ky (2) = .
Py’Y(Z) (1 + |Z|)7

We recover the usual Bessel-Riesz kernels from Definition 10.3.1 by taking
p(t) =t~ @ for 0 < @ < Q, in which case we have

|2[*7€

Kf~717(z) = Ka,’Y(Z) = (1 + ‘ZD’Y.

Theorem 10.3.17 (Boundedness of generalized Bessel-Riesz operators on Morrey
spaces). Let G be a homogeneous group of homogeneous dimension @ with a ho-
mogeneous quasi-norm | - |. Let v > 0. Let p and ¢ satisfy the doubling condition
(10.28). Assume that ¢ is surjective and for some 1 < p < g < 0o satisfies

/ h (qﬁ(;f))p dt < C1(p(r))P, (10.47)
and
¢(r) /O tji %)Hdw / ’;S?gff dt < Ca(g(r))?/9, (10.48)

for all ¥ > 0. Then we have
s paguerincey < Coaoall fliatmoe. (10.49)
Proof of Theorem 10.3.17. For every R > 0, let us write I, f(x) in the form
I f(2) = I 5(2) + 2 5(2),

where

e )
Be) = [y o e 0
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and A 71|)
I 5(x) = PAY dy.
2”0(1:) /BC(:E,R) (1 + ‘xy_lD’yf(y) Y

For I 3(x), we have

e / PUzY D) |y dy

~1j<r (L4 |zy=H)7

1)
<y yen g VO

PUSY D) )1y

k__oo/2kR§|wy1|<2k+1R lzy =1
In view of (10.28) we can estimate

@) <C Z e 7 )ldy

|zy—t|<2k+IR

—  A(2*R
<CMf(x) Y (ka(R)V)Q
k=—

2k+ip A
<CMf(x 2/2 - Qﬂdt

R ~
= OMf() /0 tﬁ(élldt

where we have used the fact that

kIR~ & L
P p(2FR) 5(2"R)
/QkR t’Y*Q+1 C(QkR) 012 R > C(2kR)7 o (10.50)

Now, using (10.48) we obtain
[Bp()] < OM [ ()(@(R) P9/, (10.51)
For I, 5(x) can estimate

) oy )
Bl [ Sy

T 1
[ rwia

zy~'|>R ‘Iy

/2 PUzy" D) () ay

~1
FR<|oy—|<2tt1r |TYH[Y

IN

qu
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Applying (10.28), we get

0 ok
o) <O (e [ Gl

From this using the Holder inequality, we obtain

0 ~ 1-1/p 1/p
p(2"R) / /
L) <C dy f)ldy
| I2.5()] @ R)7 \ Jioytjconiin |wy—l|<2k+1R| ()]

1/p
© =ik
<oy AER / F@)ldy
im0 (2FR) 9T Y \Jjay—1|<2v1R

2k+1 R)¢(2k+1 R)

o P
< ClfllLarree) Y | (2kR)7-Q
k=0

o0 ok+lp
A
<Clflase Y [ o
k=072 R

% S (t
:CHf”LMP«d’(G)/R tg,)Q(H)dt

where we have used the fact that

2ktlR ~ ~rok+1 k+1 ~rok+1 k+1
/ OO 4y o (PRRIGREIR) )y PRMRIGRETR)
ok R tr—Q+1 (2k+1R)7 Q+1 (QkR)’Y Q

Now, using (10.48) we obtain
|2 5(2)] < Cllf llarm o) (6(R) /1. (10.52)
Combining estimates (10.51) and (10.52) we get

I f (@) < COMf(@)((R) =+ || £l Lasroo ) (S(R) /).

Assuming that f is not identically 0 and that .# f is finite everywhere and then
using the fact that ¢ is surjective, we can choose R > 0 such that

O(R) = A f(x)- ||f||211up,¢>(¢})'

Thus, for every = € G, we have

L ()] < CAF @)oo

It follows that

1/q 1/q i
( / lmf(x)lq> <c ( / ///f(x)l”> 11 e -
B(0,r) B(0,r)
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Now dividing both sides by (¢(r))?/9r 9/ we get

1/q
1 1 q
(gb(r))P/q (TQ /B(O,r) ‘[577f(x)| >

1/q
1 1 qa—P
< C(qs(r))p/q (rQ /B(o,r) |///f(£l:)p> 1N 2w ()

Taking the supremum over » > 0 and using the boundedness of the maximal
operator .# on LMP*(G) from (10.31), we obtain

Mo £l pgacorro ) < Coaon I lammocey.
This gives (10.49). O

10.3.5 Olsen type inequalities for Bessel-Riesz operator

In this section, we show the Olsen type inequalities for the generalized Bessel-
Riesz operator I, .. Another type of this inequality will be shown in Theorem
10.3.22.

Theorem 10.3.18 (Olsen type inequalities for generalized Bessel-Riesz operators).
Let G be a homogeneous group of homogeneous dimension ) with a homogeneous
quasi-norm | - |. Let v > 0. Let p and ¢ satisfy the doubling condition (10.28).
Assume that ¢ is surjective and satisfies (10.47) and (10.48). Then we have

HWIFN’YfHL]\/I”"z’(G) < CP7¢7Q||W||L]\/[172,¢1’/P2 (G)HfHLMPr(b(G% (1053)

provided that 1 < p < py < 0o and W € LM P20 "2 (G).

Proof of Theorem 10.3.18. By using Hdélder’s inequality, we have
1
o [ W@,

/P2 (p2—p)/p2
<(! / W ()P da ! / Lo f ()| d
~\? Json 9 Jpon 7

Now let us take the pth roots and then divide both sides by ¢(r), so that
1/p
oo [ W@ @
)15~ f(2)|Pdx
o(r) \ % Jpo,m -

1/172
1 1
w P2q
= ()i <rQ /Bw,r)' @)l )

1 1 (p2—p)/pp2
ppP2

x <Q / fmf(x)'“”dl’> -

(665" \19 Joo)
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By taking the supremum over r > 0 and using the inequality (10.49), we get

IW T fllasr o) < Cos Wl gy arron o) Mo Il 2o
Lr2-»? (G)

Taking into account that 1 <p < 2 < oo and putting ¢ = "” 'in (10.49), we
obtain (10.53). 0

10.3.6 Fractional integral operators in Morrey spaces

In this section we extend the previous results to more general fractional inte-
gral operators, in particular establishing their boundedness and the Olsen type
inequality on generalized Morrey spaces on homogeneous groups.

Definition 10.3.19 (Generalized fractional integral operator). We define the gen-
eralized fractional integral operator T, by

11w)= [ D rwan (1054)

where p: RT — R™ satisfies the doubling condition (10.28) and the condition
1
t
/ pi it < oo, (10.55)
0

As in the standard Euclidean case, taking p(t) = t* with 0 < o < @, we have
the classical Riesz transform

10w = Lof@) = [ |

G ‘xy_l |Q_a f(y)dy

Theorem 10.3.20 (Fractional integral operators on Morrey spaces). Let G be a
homogeneous group of homogeneous dimension @ with a homogeneous quasi-norm
|-]. Let p and ¢ satisfy the doubling condition (10.28). Assume that ¢ is surjective
and for some 1 < p < q < 0o satisfies the inequalities

/°° ¢(?p dt < Cr(6(r))", (10.56)

and

o /Or pit) g /00 p(t)j?(t) dt < Co(6(r)) 7/, (10.57)

for all ¥ > 0. Then we have

1Tl pagasrio gy < Craslfliarso). (10.58)
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Proof of Theorem 10.3.20. For every R > 0, let us write T}, f(z) in the form
T, f(x) = Th(z) + Ta(x),
where
—1
p(|zy
niw= [y
B(z,R)

(Jey=1))@
and

- p(lzy =)
Tala) = /B%,m (-1 W

For Ty (x), we have

syl
mi< | &l

zy <R ‘ij
—1

-3 Py D piay.

—1
he oo J 2F R< |y~ <2F 1R lzy 1

By view of (10.28) we can estimate

) — P(2"R)
L@ <C T o [y TN

-1

<CAf(x) Y p2"R)

k=—o00
1 ok+lp
p(t)
<CAHf(x dt
( )k;w e
R
= C’///f(m)/ ) .
0 t
Here we have used the fact that
2k+1R (t) 2kt R
/ Pt > C’p(QkR)/ dt = Cp(2¥R) In2. (10.59)
2k R t okp t
Now, using (10.57), we obtain
I T1(2)| < CA f () ($(R)) P~/ (10.60)

For Ty(x) we estimate it as

—1
i< [

> &l

= 2R ey <r e m |2y
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Applying (10.28) we get

o k
) <Y i | Fw)ldy.
k=0 |

oy~ 1|<2k+1R

From this using Holder’s inequality we obtain

o 1-1/p 1/p
p(2"R)
|T2(z)| < CZ (2FR)Q </|xy1|<2k+1R dy) </|a;y1|<2k+1R f(y)|dy>

1/p
p(2"R)
C d
<Y fiman ( /||R ()| y>

< Clflars) ZP(QkHR)qi)(?kHR)
k=0

oo noktlR
H)o(t
< Clflars) Z/ A )t ()
o /2R

> o(t)o(t
= C|fllLmr () /R ol )tgb( )7

where we have used the fact that

2R (g (t)
t

2R

2k TR
dt > Cp(2FT 1 R)p(2F T R) / dt
= Cp(2" ' R)p(2" I R) 111221.%
Now, in view of (10.57) we obtain
[Lale)| < Clllarme(c) SR, (10.61)
Combining estimates (10.60) and (10.61) we get
T, 4(2)] < CAF@)GR) PV 4 £ asonsiey (G(R) /).

Assuming that f is not identically 0 and that .# f is finite everywhere and then
using the fact that ¢ is surjective, we can choose R > 0 such that

O(R) = A f(z)- ||f||;11\4p,¢(<c,)'

Thus, for every x € G we have

T, f @) < CCHF@) I, o
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It follows that

1/q 1/q o
( /| o ITpf<x>q> <c ( /| o IJ//f(m)P> Ty,

Dividing both sides by (¢(r))?/9r@/% we obtain

1/q
1 1 q
(¢(T))p/q (T’Q /B(O,r) ‘Tpf(l’)| >

1/q
1 1 q—p
<€ (i (rQ Jua 5 (m)p> Mlihonscey

Taking the supremum over r > 0 and using the boundedness of the maximal
operator .# on LMP?(G) shown in (10.31), we obtain

||Tpf||LMq,¢P/q (G) < Cp7q7¢7Q||f||LMP«¢(G)~

This gives (10.58). O

10.3.7 Olsen type inequalities for fractional integral operators

We now show Olsen type inequalities for the generalized fractional integral op-
erator T, and the Bessel-Riesz operator I, . This continues the analysis from
Section 10.3.5.

Theorem 10.3.21 (Olsen type inequalities for fractional integral operators). Let G
be a homogeneous group of homogeneous dimension Q) with a homogeneous quasi-
norm | - |. Let p and ¢ satisfy the doubling condition (10.28). Assume that ¢ is
surjective and satisfies (10.56) and (10.57). Then we have

IWT, fllLarro@y < Cp.QIUWI Ly srre2 oy 1l asro () (10.62)

provided that 1 < p < py < oo and W € LMP20" " (G).

Proof of Theorem 10.3.21. By using Hélder’s inequality, we have

o [ W@

1 p/p2 1 (p2—p)/p2
ppP2

< W (@) P da [ @) s .

(rQ /B(O,r) re B(0,r) !
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Now let us take the pth roots and then divide both sides by ¢(r) to obtain

1/p
1 1 P
o(r) (rQ /B(o,r) W)L, f ()l )
1 1 1/p2
= (o)l (TQ /B o W(:l:)”zdx)

1 1 (p2—p)/pp2
prp2
X P2 —P Q/ ‘Tpf($>|p2’pd$ .
(p(r)) »2 ™ JB(0,r)

By taking the supremum over r > 0 and using the inequality (10.58) we get

W T lloats () < Coo@l Wl gy srira o Tofl s
Lra-2* (@)

Taking into account that 1 < p < p’;p_zp < oo and putting ¢ = p’;p_zp in (10.58)
we obtain (10.62). O

Theorem 10.3.22 (Olsen type inequalities for Bessel-Riesz operators). Let G be a
homogeneous group of homogeneous dimension @ with a homogeneous quasi-norm
| |. Let1 <p < oo, 0<a<@Qandy > 0. Letw: R — R satisfy the
doubling condition and assume that 0 < w(r) < Cr=% for every r > 0, so that
Ko, € LMP>*(G) for Q+C’3_a < p2 < Q?a and ps > 1, where q = 5"!‘%)—06'
Assume that 0 < ¢(r) < CrP for all v > 0, where B < —a < —Q — 3. Then we
have

IWlar fllLaee@) < Cog@IWH | yppa.svre2 gy |l Lareo() (10.63)

provided that W € LMP2¢" " (G), where plQ = 11, - (11-

Proof of Theorem 10.3.22. As in Theorem 10.3.21, by using Hoélder’s inequality

for 1712 + ; = 11)7 we have

1/
W(x) o f(x)Pdx
@ oo W d@)

1 p/p2 1 p/q
< |W (x)|P?dax / [To~f(x)|?dx .
(TQ /B(O,r) re B(0,r) !
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Now we take the pth roots and then divide both sides by ¢(r) to get

1/p
1 1 .
4(r) (rQ L, W@ ) )
1 1 pa gy P2

1/q
1 1
< ooyl (rQ /B . za,wfqux) |

By taking the supremum over r» > 0 we have

||WIa,'yf||LJMPv¢(G) < CHW”LMM,M/PZ (G)||Ia77f||LMq,¢P/q (G)

Putting ¢(r) = (¢(r))?/? and using Theorem 10.3.14 we obtain (10.63). O

10.3.8 Summary of results

Let us now briefly summarize and collect the main results shown in this section,
for a clearer overview of the statements.

Corollary 10.3.23. Let G be a homogeneous group of homogeneous dimension Q)

with a homogeneous quasi-norm | - |. Then we have the following properties:
1. Let Ko ~(2) := (Ilﬁ(l):l; If0<a< @ and~y >0, then K, € LP*(G) for

Q Q
Otq—a <P1< g%, and

IIKa,wllecv)N( k Py
% 2Ry

$ (2kR)(aQ)p1+Q> 1P
for any R > 0.

2. For any f € LMP?(G) and 1 < p < oo, we have

-2 fll Lagr-s ey < CollfllLaree(c)s

where generalized local Morrey space LMP*(G) and the Hardy-Littlewood
maximal operator # are defined in (10.27) and (10.29), respectively.

3. Let 1, be a Bessel-Riesz operator on a homogeneous group defined in
(10.24). Let v > 0 and 0 < a < Q. If 0 < ¢(r) < CrP for every r > 0,
< —a,l<p<oo, and Q+C’3_a <p1 < Qc_)a} then for all f € LMP?(G)
we have

oy fllLarew @) < Cpg,@ Kaqylloe @l fllLare o)

where q = ﬁf,f/fQ and p(r) = (¢(7"))p/q-
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Lety>0,1<p<ocand0<a<Q. If0< é(r) <COrf foralr >0,

B < —a Qﬁ_a <p2<p1 < Q?a and py > 1, then for all f € LMP?(G)
we have

Har fll Laraw @) < Cpo.l KaqyllLarez 21 @)l fllLarr o)

where q = 557&_’)@ and (r) = (¢(r))?/4.

. Let 1 <p<oo. Let w:RT — RT satisfy the doubling condition and assume

that 0 < w(r) < Cr=® for allv > 0, so that K. € LMP>*(G) for Qfgia <
P2 < QQ and py > 1, where 0 < a < Q and v > 0. If 0 < ¢(r) < CrP for

—

all 7 > 0, where B < —a < —Q — B, then for all f € LMP*(G) we have
o fllzarav @) < Cpo,@l KanllLarzw @) fll Lo @)

where q = 5"!‘%)—04 and () = (p(r))P/9.

Let I, ., be the generalized Bessel-Riesz operator defined in (10.45). Let v > 0
and let p and ¢ satisfy the doubling condition (10.28). Let 1 < p < q < o0.
Assume that ¢ is surjective and satisfies

[ <o,

and
"op(t = p(t)o(t
o) [ e [T < catoryr
for all r > 0. Then we have

||[p,'vf||LMq,¢P/Q(G) < Cp,q,d?,Q”f”LMPvd)(Gy

Let p and ¢ satisfy the doubling condition (10.28). Let v > 0 and assume
that ¢ is surjective and satisfies (10.47) and (10.48). Then we have

W Lo fllizarro@) < Cop. @MWy possmrme ) | flLarr o), 1 <p <pa< oo,

provided that W &€ LMP2:9""2 (G).

Let T, be the generalized fractional integral operator defined in (10.54). Let
p and ¢ satisfy the doubling condition (10.28). Let 1 < p < g < oo. Assume
that ¢ is surjective and satisfies

[ <o,

and

o(r) /0 Pt / O < eafotmyer,
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9.

10.

11.

for all r > 0. Then we have
1o f agaeria ) < Cras@lfllLamo)

Let p and ¢ satisfy the doubling condition (10.28). Assume that ¢ is surjective
and satisfies (10.56) and (10.57). Then we have

IWT, fllLarre@) < Coo.Q W L ppoasvre2 gy | flLarro(@)s 1 <p <p2 < oo,

provided that W € LMP2#"'" (G).

Let w : RT — RT satisfy the doubling condition and assume that 0 < w(r) <
Cr=% for all v > 0, so that K~ € LMP>*(G) for Q+3*O< < p2 < Q?a
and py > 1, where 0 < o < Q, 1 < p < 00, q = 5+5pr& and v > 0. If
0 < ¢(r) <COrP for all v > 0, where 3 < —a < —Q — f3, then we have

IWlay fllaro@) < Cp6.@IMWI Ly srrv2 1 | Latro (),

provided that W € LMP2¢" " (G), where p12 = 11) - (1],

Let the generalized local Campanato space LMPV(G) and operator fp be
defined in (10.67) and (10.70), respectively. Let p satisfy (10.55), (10.28),
(10.68), (10.69), and let ¢ satisfy the doubling condition (10.28) and

oo @(t
< oo If

/TOO (bgf) dt /OT p(tt) dt + r/roo PS(?) dt < Csip(r)  for all >0,

t2
then we have

ITpfll et ) < Crp.@ll fllmre), 1<p<oo.

10.4 Besov type space:

Gagliardo—Nirenberg inequalities

Now we discuss a family of Gagliardo—Nirenberg type inequalities on homogeneous
groups. The formulation is based on the Besov type space B*(R x ), which we
define as the space of all tempered distributions f on R X g with the norm

2
9]l Bo(rx ) = igg{t‘“/zllFe‘“ F7 f|| o) } < 00, (10.64)

where the operators F' and A are defined in Section 1.3.4, and g is the quasi-sphere
from the polar decomposition in Proposition 1.2.10.

Now we state the Gagliardo—Nirenberg type inequalities:
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Theorem 10.4.1 (Gagliardo—Nirenberg type inequalities with Besov norms). Let G
be a homogeneous group of homogeneous dimension Q. Let 1 < p < q < oo. Then
there exists a positive constant C' = C(p,q) > 0 such that we have

1—
1l o@xey < CIRFIE S g )1 D mt o it (10.65)

for all f € BP/P=D(R x @) such that Rf € LP(R x p).
The following one-dimensional result will be useful for the proof:

Theorem 10.4.2 ([Led03, Theorem 1]). Let 1 < p < ¢ < oo. Then for every
function f € LY(R™) there exists a positive constant C = C(p,q,n) > 0 such that

1
1 Lagny < CIVAI 2y ||f||Bj{,? o (gny’ (10.66)
where
Ifllpe _my = sup qt7/? ' Fy)e vl /atgy 4
>0, z€R" (4mt) /2 Jgn

Proof of Theorem 10.4.1. Using Theorem 10.4.2 with n = 1 and Theorem 1.3.5,
we obtain

p
/\f(r,y)lqdrg()q of(ry) 0
# R or
x( } tp/ﬁ(qp))’ 1 /f(rfs)"’/(u)f( )d >‘”’
¥ ¢ S, S
o Vart Jr y

q—p
—cr | Rf(ny)l”dr( sup tp/<2<q-p>>\Fe-tAQF-lfmy)\)
t>0,reR

q—p
/ ‘Rf Yy |pd7’ (Suptl’/(2 q—p)) HFe—tAZF_lfH >
Lo (Rx )
= C [ R )Pl FII% 0 ) s
R (Rxp)

for any y € p, in view of (10.64). One obtains (10.65) after integrating the above
inequality with respect to y over p. 0
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10.5 Generalized Campanato spaces

In this section we show the boundedness of the extended version of fractional
integral operators in Campanato spaces on homogeneous groups.

As before, throughout this section G is a homogeneous group of homogeneous
dimension @) with a homogeneous quasi-norm | - |.

Definition 10.5.1 (Generalized local Campanato spaces). Assume that the function

d’(:) is nonincreasing. Denote

1
/B = fBor) = Q /B(O )f(l/)dy,

where B(0,7) := {z € G : || < r}. We define the generalized local Campanato
space by
LMP?(G) = {f € L,o(G) « | fll aaros) < o0} (10.67)

where

1/p
1 1
”f”LMPv‘f’((G) = ig%’ (r) (rQ /B(o,r) |f(z) - prdI> .

Sometimes these spaces are called central Camponato spaces in the literature.

Definition 10.5.2 (Modified generalized fractional integral operators). Let p : RT —
RT satisfy (10.55), (10.28) and the following conditions:

< p(t
/ pt(Q)dt <" for all 1> 0, (10.68)
- r
L_r p(r)  p(s) p(s)
§s§2:> @ T s §02|T—S\SQH. (10.69)

We define the modified version of the generalized fractional integral operator T}, by

o (el a0~ X ()
Tor)= [ (M0 b )iwar. 070

where xp(o,1) is the characteristic function of B(0,1).

For instance, the function p(r) = r® satisfies (10.55), (10.28) and (10.69) for
0 < a < @, and also satisfies (10.68) for 0 < o < 1.

Theorem 10.5.3 (Fractional integral operators on Camponato spaces). Let G be a
homogeneous group of homogeneous dimension @ with a homogeneous quasi-norm
| -|. Let p satisfy (10.55), (10.28), (10.68), (10.69), and let ¢ satisfy the doubling

condition (10.28) and [ ¢(tt)dt < oo. If

/roo ¢§t) dt /OT pgtt) dt + r/:o PO g < Csy(r)  for allr >0, (10.71)

12
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then we have
||Tpf||£MPr¢(G) < Cp g0l fllzprsc)y, 1 <p<oo. (10.72)
Proof of Theorem 10.5.3. For every z € B(0,r) and f € LMP?(G), let us write
T,f in the form
T,f(x) = Tm(@) + Chom + Chiom
= Té(o,r)(l’) + Té(om)(ﬂf) + C}-}(o,r) + C%(O,r)’

where

8 0 .
Toon (@)= [ ()~ Fswan) (110 )= Iy jg(m)( >>) 0"

Cg(w);:/(f( )~ o )< Py (1 =xB(0,2r) () p(yl)(le(o,n(y)))d%

ly|? ly|@

G
cg(07r);_/(}f3(072T)<p(:vy ) ey XB(O,l)(y))>dy’

lwy =1 ly|@
B(0,r) : 0.2 Y B(0,2r) |33y—1|Q Y,

i -1
Thonte)= [, G =mas) (107 =00 ay

Since
‘p(ly)(l = xB0.2)¥) Py = XB0,1)(¥)) ’

ly|@ ; ly|?
_ J0.ly] < min(1,2r) or [y] > max(1, 2r);
= p|§JI|yQI) = const, otherwise,

we have that 0119(0 is finite.

Now let us show that C’B(O
following integral is finite:

plley=) Pl = X501 1Y)
| ( e ) W

vy ly|@
p(lzy =) p(yl)) / p(ly])
= - dy + dy.
/«;( lzy=1e [yl B,y Y9
) e(lyl)
4 / ( plzy~ )dy.
y=1@  Jyl@
For large R > 0, we write A in the form
A=A+ Ay + As,

is finite. For this it is enough to prove that the

Let us denote
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where

T —1
A, :/ o] %1 Cl)dy_/ P(\Zg)d%
B(z,R) lzy =1 B(0,R) Yl
P
A, :/ o] 3_/1 QDdy—/ P(\Zg)dy’
B(e,R4r)\B(z,R) 1Ty B(a,R+r)\B(0,R) |Vl

plzy=')  p(lyl)
A3 :/ ( ‘ —11Q — Q dy
B¢ (xz,R+r) Yy | |y‘

Since we have fol p(tt) dt < +o0, it follows that

plzy=') p(lyl) _ 4
|$y_1‘Q7 ‘y|Q GLIOC(G)’

and hence A; = 0.
For As, we have

-1
‘AQ‘S/ (p(@l Q|>+p<|%>>dy
B(z,R+r)\B(z,R—r) 2y~ |yl

(R4 1)@ — (R—r)@)PB) o P

RQ R
In view of conditions (10.28) and (10.68) we have that

| As| SC’rp(}?) —0 as R — +o0.

By (10.69) we have

|43 < /
Be(x,R+r)

<C ey~ = lyll
Be(xz,R+T) ‘

p(lzy =) pOy)‘d
lzy=1Q  [y|@

-1
x
o y I)dy
zy et
By using the triangle inequality from Proposition 1.2.4 and the symmetric property
of homogeneous quasi-norms, we get

Al < Clll+ -l [ [ e o< clol [
Rtr Jo't Rtr t

The inequality (10.68) implies that the last integral is integrable and |A3| — 0 as
R — +o0.

Summarizing these properties of A;, Ao, A3 we have that A — 0 as R — +o0,
so that A = 0 and hence

p(lzy=') Py = X501 (")) _ p(lyl) -
/G( >dy_/B(0,1 <o

lzy =19 y|? y lyl@

which implies that 0129(0 " is finite.
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Now before estimating Té(o ) let us denote

f:: (f = fB(o,zr))XB(0,2r) and a(r) ::/ ¢§ft) .

Then we have

Thon@ < [ Fa 1= Dy

B(0,2r) |y =19
0

-> e Jifwian

b —oo Y 2|y Tt [<2k 1y ‘ny

By using (10.28) and (10.59) we get

0

~ 0 2’“1") ~

Tt z) <C E ( / J(y)ldy
| B(O,r)( )‘ . (2kT)Q |a:y*1|<2"~'+1r| ( )‘

0 0

<CHf) Y p@Fr)<Ctflx) D p(2"'r)

k=—o0 k=—o0

0 by r
<cuf@) Y /2 Y0 o i /0 ”Ef)dt.

o 21 t

Now using (10.71) we have

1T 0 ()] < Cg((g ().

Using (10.33) we have

1 (1 e
Tl 2)|Pdx
o (rQ / o Tl @ )

1/p
! ry 1 .

C~ ! C~ P .

<O e (/B(O’T) | A f(z)| dm) < ¢(r)rQ/P”fHL @)

By the Minkowski inequality, we have

- 1
Sy I fllzrc) = Syl I(f = fB(0,2r))XB(0.2r) | Lr (@)
1
< C%(r)rQ/P(H(f — 0 (MNxsoom o) + 2r) P f0.20) — o (£)]),

where o(f) = TILH;ofB(O,r)~
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Moreover, we obtain the following inequalities exactly in the same way as in
the standard Euclidean case (see [EN04, Section 6]):

1f = o)l agmice) < CrllFllenao),

and
|fB0.r) — a(F) < Coll fll carwo ) B(7)-

Finally, using these inequalities we get the estimate for T é(o ) a8

|Té(o,r)(l’)\ < Clifllemr e c)- (10.73)

Now let us estimate /’fé(o,r)' By (10.28) and (10.69) we have

1
2o (@ S/ f F300.8m ’ \w‘y ~ p(lyl) dy
‘ B(0, )( )| BC(O,2T)‘ ( ) B(0,2 | | ‘Q ‘y|Q
_ p(lyl)
<Clloy 1=yl [ 1500 = fmoan] s
ly|>2r

By using the triangle inequality from Proposition 1.2.4 and symmetric property
of homogeneous quasi-norms we get

. - p(lyl)
T30 (@) < Cllz + 1y~ = |yl [f W) = Feoenl| o4y
ly|>2r ly
p(lyl)
< C|$| |f(y) - fB(O,QT’)‘ | ‘Q+1 dy
|y|>2T
p(lyNIf(y) — fB(o 2r)|
=Clx / o dy.
| |Z k=1p<|y|<2kr y|@+t Y

By using (10.28) and Holder’s inequality we obtain

= p(25r
T (@) <RI Y 11 B [ 150 = foanldy
ly|<2kr

- 1/p
p(2Fr) 1 /

< E - b '

= k=2 28r (2kr)@ ly|<2kr ) fB(Oer” W

As in the Abelian case ([EN04]) we have
ok+1,

1/p

1 ¢

. Pd 3. , ds,
((ri)Q /B(o,zkr) |f(y) — [B(o,2r)| y) < Ol fll zpmeo () /QT s

for every k > 2. The inequality (10.59) implies that

ok+1 ok+1

Was LA oo
dt > dt > C .
/Zkr 12 T 2kt oy t = 2kr
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By using the last two inequalities we get
okt
oy

S

S
T

) o p(257)
IT50,m@)] < Clalll flleameqe) Y 2 J
k=2

2k+1,y

N - P(t)< " o(s) 5)
<C| |“f”‘CMP'¢(G)kZ_2/m 42 LT g )t

[e’e) t s
< Clallfllere) | "’(’”( ¢()ds)dt

2

2r or S
o] 00 t

= Clellfll cawr s / < / o0 dt) o) g,
2r s

Using (10.68) and then (10.71), it implies that

T2 0.0y (@)] < CF fl cpprt e / p(3)o(s)

2r 52

ds < CY(MI fll caar-o(c)-

Finally, it follows that

1/p
1 (1 -
() (rQ /B(O,r) TB(O,T)(x)|pdx> < Ol fllepmeo (@) (10.74)
Combining estimates (10.73) and (10.74) we obtain (10.72). O
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