
Chapter 9

Uncertainty Relations

on Homogeneous Groups

In this chapter we discuss relations between main operators of quantum mechanics,
that is, relations between momentum and position operators as well as Euler and
Coulomb potential operators on homogeneous groups as well as their consequences.
Since in most uncertainty relations and in these operators the appearing weights
are radially symmetric, it turns out that these relations can be extended to also
hold on general homogeneous groups. In particular, we obtain both isotropic and
anisotropic uncertainty principles in a refined form, where the radial derivative
operators are used instead of the elliptic or hypoelliptic differential operators.

Throughout this book, most of the inequalities imply the corresponding un-
certainty principles. An example of such an uncertainty principle was given, for
example, in Corollary 2.1.3 as a consequence of the Hardy inequality, and also
in Corollary 3.3.5. However, in this chapter we aim at presenting an independent
treatment of inequalities following from certain identities involving the appearing
operators. In this respect such uncertainty relations can be sometimes obtained
independently from Hardy inequalities in alternative ways, see, e.g., also Ciatti,
Ricci and Sundari [CRS07].

In general, the uncertainty principles in different form have attracted a lot of
attention due to their physical applications. For example, a fundamental element of
the quantum mechanics is the uncertainty principle of Werner Heisenberg [Hei27].
It is worth observing that his original argument, while conceptually enlightening,
was experiential.

Then Wolfgang Pauli and Hermann Weyl provided the mathematical aspects
of uncertainty relations involving position and momentum operators, but the first
rigorous proof was given by Earle Kennard [Ken27]. Charles Fefferman’s work
[Fef83] and [FP81] was a starting point of studies to widely present the interpre-
tation of uncertainty inequalities as spectral properties of differential operators.
Nowadays there is vast literature on uncertainty relations and their applications.
Since we do not aim here at presenting a survey of the uncertainty relations on the
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Euclidean space Rn, we only refer to relevant works. In general, we can refer to a
recent survey [CBTW15] for further discussions and references on this subject in
the Euclidean setting, as well as to [FS97] for an overview of the history and the
relevance of this type of inequalities from a purely mathematical point of view. The
link between the uncertainty principles and the adapted Fourier analysis has been
explored in [Tha04]. The exposition of the present chapter is based on [RS17f].

9.1 Abstract position and momentum operators

The idea for our presentation is to introduce abstract position and momentum op-
erators P and M that satisfy certain relations. In particular, the classical position
and momentum operators of quantum physics satisfy these assumptions. How-
ever, this abstract point of view allows one to take different versions of position-
momentum pairs depending on the setting. We will exemplify such a possibility of
different choices in the case of the Heisenberg group, see Example 9.1.4.

9.1.1 Definition and assumptions

Throughout this chapter, the abstract position and momentum operators P and
M will be assumed to satisfy the following properties.

Definition 9.1.1 (Abstract position and momentum operators). Let P and M
be linear operators which are densely defined from L2(G) to L2(G), with their
domains containing C∞

0 (G), and such that C∞
0 (G) is an invariant subspace for

them, that is,

P(C∞
0 (G)) ⊂ C∞

0 (G) and M(C∞
0 (G)) ⊂ C∞

0 (G).

We will say that such operators P and M are abstract position and momentum
operators if they satisfy the relations

2Re
(
Pf(iM)f

)
= (P ◦ (iM))|f |2 = E|f |2 (9.1)

for all f ∈ C∞
0 (G). We will denote by D(P) and D(M) the domains of operators

P and M, respectively.

Before giving examples, let us make some remarks concerning the meaning
of the equalities in (9.1).

Remark 9.1.2.

1. The first equality in (9.1) gives a relation between the position and mo-
mentum operator; it will be clear from Example 9.1.3 that it is satisfied
by the classical position and momentum operators of the Euclidean quan-
tum mechanics. This condition is instrumental in establishing several further
properties of these operators.
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2. The second equality in (9.1) relates to position and momentum operators to
the Euler operator E on G, which was defined by

E := |x|R, (9.2)

where R is the radial derivative operator, see Section 1.3.2 for a discussion
of its properties. The main characterizing feature of the Euler operator is its
responsibility for the homogeneity property on G given in Proposition 1.3.1,
namely, that

f(λx) = λνf(x) for all λ > 0 if and only if Ef = νf,

for any differentiable function f on G. Thus, the assumption (9.1) for the
abstract position and momentum operators says that they have to give the
factorisation of the Euler operator E as in the second equality in (9.1). In this
sense, the second equality in (9.1) relates position and momentum operators
to the homogeneous structure of the group G.

3. We can note that already in the anisotropic and even isotropic Rn the results
of this chapter give some new insights in view of an arbitrary choice of a
homogeneous quasi-norm | · | and the abstract nature of these operators.

4. It is rather curious that equalities (9.1) already imply uncertainty relations of
several types, such as the Heisenberg–Kennard and Heisenberg–Pauli–Weyl
type uncertainty inequalities. Moreover, the property that the operators P
and iM factorise the Euler operator allows one to establish further relations
between them and other operators such as the radial operator, the dilations
generating operator, and the Coulomb potential operator, and prove some
equalities and inequalities among them. Such relations are presented in this
chapter.

9.1.2 Examples

If the group G is the Euclidean R
n with isotropic (standard) dilations and the

usual Abelian structure, then the operators

P := x and M := −i∇, (9.3)

i.e., the multiplication and the gradient (multiplied by −i), satisfy assumptions
(9.1). The same will hold on general homogeneous groups, as we show in Example
9.1.3. Thus, we now give several other examples extending this to general homo-
geneous groups. In particular, we give an example of a choice of abstract position
and momentum operators on general homogeneous groups. Furthermore, we show
that other choices are possible, which we exemplify in the case of the Heisenberg
group.
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Example 9.1.3 (Position and momentum on general homogeneous groups). Let G
be a homogeneous group. Let us define the operators

P := x, x ∈ G, and M := −i∇E , (9.4)

where

∇E =

(
∂

∂x1
, . . . ,

∂

∂xn

)
is an anisotropic gradient on G consisting of partial derivatives with respect to
coordinate functions. We understand the operator P as the scalar multiplication
operator by the coordinates of the variable x, i.e.,

Pv =
∑

xjvj ,

where xj are the coordinate functions of x ∈ G, see Section 1.2.4 for a discussion
of these functions on homogeneous groups.

These operators P and M are the position and momentum operators in the
sense of Definition 9.1.1. Indeed, first we observe that by elementary properties of
derivatives the first equality in the following relations is satisfied:

2Re (xf · ∇Ef) = x · ∇E |f |2 = E|f |2. (9.5)

The second equality in (9.5) follows if we recall that E is the Euler operator from
(1.37), that is, we have the relations

E = x · ∇E and R =
x · ∇E

|x| =
d

d|x| ,

see (1.35). In the notation (9.4) the relations (9.5) can be expressed as

2Re
(PfiMf

)
= (P ◦ (iM))|f |2 = E|f |2, (9.6)

showing that (9.1) is satisfied.

We note that the left invariant gradient ∇ = ∇X = (X1, . . . , Xn) and the
anisotropic (Euclidean) gradient ∇E are related and can be expressed in terms of
each other. For example, we can recall the relations

∂

∂xj
= Xj +

∑
1≤k≤n
νj<νk

pj,kXk,

for some homogeneous polynomials pj,k on G of homogeneous degree νk − νj > 0,
see Section 1.2.4.
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Example 9.1.4 (Another choice of position and momentum operators on the Heisen-
berg group). Let us consider the Heisenberg group H = H1, topologically equiva-
lent to R3. As for general nilpotent Lie groups (see Proposition 1.1.1), the expo-
nential map of H is globally invertible and its inverse map is given by the formula

exp−1
H

(x) = e(x) · ∇X ≡
3∑

j=1

ej(x)Xj , (9.7)

where ∇X = (X1, X2, X3) is the full gradient of H with

X1 =
∂

∂x1
+ 2x2

∂

∂x3
,

X2 =
∂

∂x2
− 2x1

∂

∂x3
,

X3 = −4
∂

∂x3
,

as well as
e(x) = (e1(x), e2(x), e3(x)),

where

e1(x) = x1,

e2(x) = x2,

e3(x) = −1

4
x3.

We define the position and momentum operators for this case to be

P := e(x), x ∈ G, and M := −i∇X . (9.8)

One can readily see that these operators satisfy the relations (9.6). Now let us
check the relation (1.37) between the Euler operator EH := e(x) · ∇X and the
radial operator RH = d

d|x| :

EH = e(x) · ∇X

= x1

(
∂

∂x1
+ 2x2

∂

∂x3

)
+ x2

(
∂

∂x2
− 2x1

∂

∂x3

)
− 1

4
x3

(
−4

∂

∂x3

)
= x1

∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3

= |x|
(
x1

|x|
∂

∂x1
+

x2

|x|
∂

∂x2
+

x3

|x|
∂

∂x3

)
= |x| d

d|x| = |x|RH.
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9.2 Position-momentum relations

In this section, we show further relations between abstract position P and mo-
mentum M operators on homogeneous groups. The obtained relations are the
consequences of the homogeneous group’s structure and the equalities (9.1).

9.2.1 Further position-momentum identities

We start with certain further identities involving the abstract position and mo-
mentum operators as a consequence of equalities (9.1).

Theorem 9.2.1 (Position-momentum identities). Let G be a homogeneous group of
homogeneous dimension Q ≥ 2. Then for every f ∈ D(P)

⋂
D(M) with Pf �≡ 0

and Mf �≡ 0, we have the identity

‖Pf‖2L2(G) + ‖Mf‖2L2(G) = Q‖f‖2L2(G) + ‖Pf − iMf‖2L2(G)

= ‖Pf‖L2(G)‖Mf‖L2(G)

(
2−

∥∥∥∥ Pf

‖Pf‖L2(G)
+

iMf

‖Mf‖L2(G)

∥∥∥∥2
L2(G)

)
+ ‖Pf + iMf‖2L2(G). (9.9)

Proof of Theorem 9.2.1. It is enough to show (9.9) for functions f ∈ C∞
0 (G).

Indeed, in this case, because C∞
0 (G) is dense in L2(G), it is also true on D(P)

⋂
D(M) by density. Using the polar decomposition from Proposition 1.2.10, the
definition (1.30) of the radial operator, and equality (9.1), we calculate

−2Re

∫
G

PfiMfdx = −
∫
G

PiM|f |2dx

= −
∫ ∞

0

∫
℘

rQ
1

r
E|f |2dσ(y)dr

= −
∫ ∞

0

∫
℘

rQ
d|f |2
dr

dσ(y)dr

= Q

∫ ∞

0

∫
℘

rQ−1|f |2dσ(y)dr

= Q

∫
G

|f |2dx

= Q‖f‖2L2(G).

Combining this with the equality

‖Pf‖2L2(G) + ‖Mf‖2L2(G) = ‖Pf + iMf‖2L2(G) − 2Re

∫
G

PfiMfdx
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we obtain the first equality in (9.9). On the other hand, we have

− 2Re

∫
G

PfiMfdx

= ‖Mf‖L2(G)‖Pf‖L2(G)

(
2−

∥∥∥∥ Pf

‖Pf‖L2(G)
+

iMf

‖Mf‖L2(G)

∥∥∥∥2
L2(G)

)
,

yielding the second equality in (9.9). �

9.2.2 Heisenberg–Kennard and Pythagorean inequalities

Immediately from (9.9) we observe the Heisenberg–Kennard type inequality as its
consequence. In the Abelian case (see, e.g., [SZ97] and [WM08]) it is also sometimes
called the Kennard uncertainty inequality.

Corollary 9.2.2 (Heisenberg–Kennard uncertainty principle). We have

Q

2
‖f‖2L2(G) ≤ ‖Pf‖L2(G)‖Mf‖L2(G). (9.10)

The first equality in (9.9) also implies the following Pythagorean type in-
equality:

Corollary 9.2.3 (Pythagorean type inequality). We have

‖
√
Qf‖2L2(G) ≤ ‖Pf‖2L2(G) + ‖Mf‖2L2(G). (9.11)

Equalities (9.9) also imply the following conditions for reaching the equalities
in Heisenberg–Kennard and Pythagorean inequalities:

Corollary 9.2.4 (Equalities in Heisenberg–Kennard and Pythagorean inequalities).
Let f ∈ D(P)

⋂
D(M) be such that Pf �≡ 0 and Mf �≡ 0.

(i) The equality case in the Heisenberg–Kennard uncertainty inequality (9.10)
holds, that is,

Q

2
‖f‖2L2(G) = ‖Pf‖L2(G)‖Mf‖L2(G)

if and only if

‖Pf‖L2(G)iMf = ‖Mf‖L2(G)Pf.

(ii) For f ∈ D(P)
⋂
D(M) we have the Pythagorean equality

‖
√
Qf‖2L2(G) = ‖Pf‖2L2(G) + ‖Mf‖2L2(G)

if and only if

Pf = iMf.
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9.3 Euler–Coulomb relations

In addition to the Euler operator that was defined by

Ef := |x|Rf, (9.12)

we also define the Coulomb potential operator as

Cf :=
1

|x|f. (9.13)

The domains of these operators are given, respectively, by

D(E) = {f ∈ L2(G) : Ef ∈ L2(G)} (9.14)

and

D(C) = {f ∈ L2(G) :
1

|x|f ∈ L2(G)}. (9.15)

It is also immediate to observe from (1.30) that the composition of the Euler
operator and Coulomb operators gives the radial derivative operator R:

R := CE. (9.16)

Recall that in Theorem 2.1.5 it was shown that for each f ∈ C∞
0 (G\{0}) one has

the identity∥∥∥∥ 1

|x|αRf

∥∥∥∥2
L2(G)

=

(
Q− 2

2
− α

)2 ∥∥∥∥ f

|x|α+1

∥∥∥∥2
L2(G)

+

∥∥∥∥ 1

|x|αRf +
Q− 2− 2α

2|x|α+1
f

∥∥∥∥2
L2(G)

,

(9.17)
for all α ∈ R. If α = 0 from (9.17) we obtain the equality

‖Rf‖2L2(G) =

(
Q− 2

2

)2 ∥∥∥∥ 1

|x|f
∥∥∥∥2
L2(G)

+

∥∥∥∥Rf +
Q− 2

2|x| f

∥∥∥∥2
L2(G)

. (9.18)

As it was already shown before, by dropping the non-negative last term in (9.18)
we immediately obtain a version of L2-Hardy’s inequality on G:∥∥∥∥ f

|x|
∥∥∥∥
L2(G)

≤ 2

Q− 2
‖Rf‖L2(G) , Q ≥ 3, (9.19)

with the constant being sharp for any quasi-norm | · |.

9.3.1 Heisenberg–Pauli–Weyl uncertainty principle

An Lp-version of the Heisenberg–Pauli–Weyl uncertainty principle was given in
Corollary 3.3.5 for a particular choice of position and momentum operators. In
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this section we show its abstract version for abstract position and momentum
operators, although restricting the consideration, as usual in this chapter, to the
case of L2-spaces.

Thus, by a standard argument the inequality (9.19) implies the following
Heisenberg–Pauli–Weyl type uncertainty principle on homogeneous groups:

Proposition 9.3.1 (Heisenberg–Pauli–Weyl type uncertainty principle). Let G be
a homogeneous group of homogeneous dimension Q ≥ 3. Then for each f ∈
C∞

0 (G\{0}) and any homogeneous quasi-norm | · | on G we have

‖f‖2L2(G) ≤
2

Q− 2
‖Rf‖L2(G) ‖|x|f‖L2(G) . (9.20)

Proof of Corollary 9.3.1. From the inequality (9.19) we get(∫
G

|Rf |2 dx
) 1/2 (∫

G

|x|2|f |2dx
) 1/2

≥ Q − 2

2

(∫
G

|f |2
|x|2 dx

) 1/2 (∫
G

|x|2|f |2dx
) 1/2

≥ Q− 2

2

∫
G

|f |2dx,

where we have used the Hölder inequality in the last line. This shows (9.20). �

Remark 9.3.2.

1. In the Abelian case G = (Rn,+), we have Q = n, so that (9.20) implies the
uncertainty principle with any homogeneous quasi-norm | · |:(∫

Rn

|f(x)|2dx
)2

≤
(

2

n− 2

)2 ∫
Rn

∣∣∣∣ x|x| · ∇f(x)

∣∣∣∣2 dx∫
Rn

|x|2|f(x)|2dx,
(9.21)

which in turn implies the classical uncertainty principle for G ≡ Rn with the
standard Euclidean distance |x|E :(∫

Rn

|f(x)|2dx
)2

≤
(

2

n− 2

)2 ∫
Rn

|∇f(x)|2dx
∫
Rn

|x|2E |f(x)|2dx, (9.22)

which is the classical Heisenberg–Pauli–Weyl uncertainty principle on Rn.
For the improved constant in (9.22) see (9.39).

2. Different versions of this uncertainty principle have been considered in differ-
ent settings, for example in those of stratified groups. We can refer to [GL90],
[CRS07], [CCR15] for some results, and further estimates will be shown in
Section 12.4.

Moreover, we have the following Pythagorean relation for the Euler operator:
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Proposition 9.3.3 (Pythagorean relation for Euler operator). Let G be a homoge-
neous group of homogeneous dimension Q ≥ 3. Then we have

‖Ef‖2L2(G) =

∥∥∥∥Q2 f

∥∥∥∥2
L2(G)

+

∥∥∥∥Ef +
Q

2
f

∥∥∥∥2
L2(G)

(9.23)

for any f ∈ D(E).

Proof of Proposition 9.3.3. Taking α = −1, from (9.17) we obtain (9.23) for any
f ∈ C∞

0 (G\{0}). Since D(E) ⊂ L2(G) and C∞
0 (G\{0}) is dense in L2(G), this

implies that (9.23) is also true on D(E) by density. �

Simply by dropping the positive term in the right-hand side, (9.23) implies

Corollary 9.3.4 (Lower bound for Euler operator). Let G be a homogeneous group
of homogeneous dimension Q ≥ 3. Then we have

‖f‖L2(G) ≤
2

Q
‖Ef‖L2(G) , (9.24)

for any f ∈ D(E).

9.4 Radial dilations – Coulomb relations

Using the radial derivative and Coulomb operators we can define the generator of
dilations operator by

Rg := −i

(
R+

Q− 1

2
C
)

(9.25)

with the domain

D(Rg) = {f ∈ L2(G) : Rf ∈ L2(G), Cf ∈ L2(G)}. (9.26)

First we record a commutator relation between this generator of dilations operator
Rg and the Coulomb potential operator:

Lemma 9.4.1 (Commutator relation between generator of dilations and Coulomb
operators). Let G be a homogeneous group of dimension Q ≥ 1. Then for any
f ∈ C∞

0 (G\{0}) we have
[Rg, C]f = iC2f, (9.27)

where [Rg, C] = RgC − CRg.

Proof of Lemma 9.4.1. Denoting r := |x| we have C = 1
r , and from (1.30) it follows

that Rg = −i
(

d
dr + Q−1

2r

)
. Thus, a direct calculation shows

Rg, Ctf = RgCf − CRgf

= −i

(
− 1

r2
+

1

r

d

dr
+

Q− 1

2r2
− 1

r

d

dr
− Q− 1

2r2

)
f = i

1

r2
f = iC2f,

establishing (9.27). �
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We now analyse further properties of these operators.

Lemma 9.4.2 (Operators Rg and C are symmetric). Operators Rg and C are sym-
metric.

Proof of Lemma 9.4.2. It is a straightforward to see that C is symmetric, that is,∫
G

(Cf)fdx =

∫
G

f(Cf)dx.

Now we need to show that∫
G

(Rgf)fdx =

∫
G

f(Rgf)dx (9.28)

for any f ∈ C∞
0 (G\{0}). Since D(Rg) ⊂ L2(G) and C∞

0 (G\{0}) are dense in
L2(G) it follows that it is enough to show (9.28) on C∞

0 (G\{0}) since it then
follows also on D(Rg) by density. Using the polar decomposition from Proposition

1.2.10 and the expression Rg = −i
(

d
dr + Q−1

2r

)
we can calculate

∫
G

(Rgf)fdx = − i

∫ ∞

0

∫
℘

rQ−1

(
df

dr
+

Q− 1

2r
f

)
fdσ(y)dr

= − i

∫ ∞

0

∫
℘

df

dr
frQ−1dσ(y)dr − i

Q− 1

2

∫ ∞

0

∫
℘

rQ−1 f

r
fdσ(y)dr

= i

∫ ∞

0

∫
℘

f
df

dr
rQ−1dσ(y)dr + i(Q− 1)

∫ ∞

0

∫
℘

rQ−1 f

r
fdσ(y)dr

− i
Q− 1

2

∫ ∞

0

∫
℘

rQ−1 f

r
fdσ(y)dr

=

∫ ∞

0

∫
℘

rQ−1f

(
−i

df

dr
− i

Q− 1

2r
f

)
dσ(y)dr =

∫
G

fRgfdν,

proving that Rg is also symmetric. �

For any symmetric operators A and B in L2 with domains D(A) and D(B),
respectively, a straightforward calculation (see, e.g., [OY17, Theorem 2.1]) shows
the equality

− i

∫
G

([A,B]f)fdν

= ‖Af‖L2(G)‖Bf‖L2(G)

(
2−

∥∥∥∥ Af

‖Af‖L2(G)
+ i

Bf

‖Bf‖L2(G)

∥∥∥∥2
L2(G)

)
,

(9.29)

for f ∈ D(A) ∩D(B) with Af �≡ 0 and Bf �≡ 0, which will be useful in our next
proof.
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Theorem 9.4.3 (Identities involving R, Rg, and C). Let G be a homogeneous group
of homogeneous dimension Q ≥ 3. Then for every f ∈ D(R) ∩ D(C) such that
f �≡ 0 and Rgf �≡ 0 we have

‖Rf‖2L2(G) = ‖Rgf‖2L2(G) +
(Q− 1)(Q− 3)

4
‖Cf‖2L2(G), (9.30)

and

‖Cf‖L2(G) = ‖Rgf‖L2(G)

(
2−

∥∥∥∥ Rgf

‖Rgf‖L2(G)
+ i

Cf
‖Cf‖L2(G)

∥∥∥∥2
L2(G)

)
. (9.31)

Proof of Theorem 9.4.3. As in the proof of Theorem 9.2.1 we can calculate

‖Rgf‖2L2(G)

=

∥∥∥∥Rf +
Q− 1

2|x| f

∥∥∥∥2
L2(G)

= ‖Rf‖2L2(G) + (Q − 1)Re

∫
G

(Rf)
1

|x|fdx+

∥∥∥∥Q− 1

2|x| f

∥∥∥∥2
L2(G)

= ‖Rf‖2L2(G) + (Q − 1)Re

∫ ∞

0

∫
℘

rQ−1

(
d

dr
f

)
1

r
fdσ(y)dr +

∥∥∥∥Q− 1

2|x| f

∥∥∥∥2
L2(G)

= ‖Rf‖2L2(G) +
Q− 1

2

∫ ∞

0

∫
℘

rQ−2 d

dr
|f |2dσ(y)dr + (Q− 1)2

4
‖Cf‖2L2(G)

= ‖Rf‖2L2(G) −
(Q− 1)(Q− 2)

2

∫ ∞

0

∫
℘

rQ−1 1

r2
|f |2dσ(y)dr + (Q− 1)2

4
‖Cf‖2L2(G)

= ‖Rf‖2L2(G) −
(Q− 1)(Q− 2)

2

∫
G

|Cf |2dx+
(Q − 1)2

4
‖Cf‖2L2(G)

= ‖Rf‖2L2(G) −
(Q− 1)(Q− 3)

4
‖Cf‖2L2(G) .

This proves (9.30). Using (9.27) and Lemma 9.4.2, in view of (9.29) we obtain

‖Cf‖2L2(G) = −i

∫
G

[Rg, C]ffdx

= ‖Rgf‖L2(G)‖Cf‖L2(G)

(
2−

∥∥∥∥ Rgf

‖Rgf‖L2(G)
+ i

Cf
‖Cf‖L2(G)

∥∥∥∥2
L2(G)

)
.

Since C∞
0 (G) is dense in L2(G), it implies that this equality is also true on

D(R) ∩D(C) by density. �

The equality (9.30) implies the following estimates:
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Corollary 9.4.4 (Estimates for Rg and C). Let G be a homogeneous group of ho-
mogeneous dimension Q ≥ 3. The generator of dilations and Coulomb potential
operator are bounded by the radial operator R, that is, we have the estimates

‖Rgf‖L2(G) ≤ ‖Rf‖L2(G), (9.32)

and √
(Q − 1)(Q− 3)

2
‖Cf‖L2(G) ≤ ‖Rf‖L2(G), (9.33)

for all f ∈ D(R) ∩D(C).
The equality (9.31) implies the following bound with an explicit constant,

independent on the choice of a homogeneous norm on G.

Corollary 9.4.5 (Bound of Coulomb operator by generator of dilations). Let G be
a homogeneous group of homogeneous dimension Q ≥ 3. The Coulomb potential
operator is bounded by the generator of dilations operator with relative bound 2,
that is,

‖Cf‖L2(G) ≤ 2‖Rgf‖L2(G), (9.34)

for all f ∈ D(R) ∩D(C) such that Rgf �≡ 0.

9.5 Further weighted uncertainty type inequalities

In this section, we give an overview of a number of further uncertainty type in-
equalities.

Theorem 9.5.1. For any quasi-norm | · |, all differentiable | · |-radial functions φ,
all p > 1, Q ≥ 2 with 1

p + 1
q = 1, and all f ∈ C1

0 (G) we have∫
G

φ′(|x|)
|x|Q−1

|f |pdx ≤
∫
G

|Rf |p dx+
p

q

∫
G

|φ(|x|)|q
|x|q(Q−1)

|f |pdx, (9.35)

and ∫
G

φ′(|x|)
|x|Q−1

|f |pdx ≤ p

(∫
G

|Rf |p dx
) 1/p (∫

G

|φ(|x|)|q
|x|q(Q−1)

|f |pdx
) 1/q

. (9.36)

Before proving this theorem, let us point out several of its consequences.

Remark 9.5.2.

1. In (9.35) taking φ = log |x| in the Euclidean (Abelian) case G = (Rn,+),
n ≥ 2, we have Q = n, and taking p = n ≥ 2, for any quasi-norm | · | on Rn,
it implies the new inequality

∫
Rn

|f |n
|x|n dx ≤

∫
Rn

|Rf |n dx+ (n− 1)

∫
Rn

∣∣∣log 1
|x|

∣∣∣ n
n−1

|x|n |f |n dx.
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In turn, by using Schwarz’ inequality with the standard Euclidean distance
|x|E =

√
x2
1 + · · ·+ x2

n, it implies the ‘critical’ Hardy inequality

∫
Rn

|f |n
|x|nE

dx ≤
∫
Rn

|∇f |n dx+ (n− 1)

∫
Rn

∣∣∣log 1
|x|E

∣∣∣ n
n−1

|x|nE
|f |n dx, (9.37)

where ∇ is the standard gradient on R
n. It is known that there is no positive

constant C such that ∫
Rn

|f |n
|x|nE

dx ≤ C

∫
Rn

|∇f |n dx

for all f ∈ C1
0 (R

n). Therefore, the appearance of a positive additional term
(the second term) on the right-hand side of (9.37) seems essential. Critical
inequalities for different versions of critical Hardy–Sobolev type inequalities
have been investigated in [RS16a].

2. Note that this type of inequalities (Hardy–Sobolev type inequalities with
an additional term on the right-hand side) can be applied, for example in
the Euclidean case, to establish the existence and nonexistence of positive
exponentially bounded weak solutions to a parabolic type operator perturbed
by a critical singular potential (see, e.g., [ST18b]).

3. In (9.36), taking φ = |x|n in the Euclidean (Abelian) case G = (Rn,+),
n ≥ 2, we have Q = n, so for any quasi-norm | · | on Rn it implies the
following uncertainty principle∫

Rn

|f |pdx ≤ p

n

(∫
Rn

|Rf |p dx
) 1

p
(∫

Rn

|x| p
p−1 |f |pdx

) p−1
p

. (9.38)

In turn, by using Schwarz’ inequality with the standard Euclidean distance
|x|E =

√
x2
1 + · · ·+ x2

n, it implies that∫
Rn

|f |pdx ≤ p

n

(∫
Rn

|∇f |p dx
) 1

p
(∫

Rn

|x|
p

p−1

E |f |pdx
) p−1

p

, (9.39)

where ∇ is the standard gradient on Rn. In the case when p = 2 we have(∫
Rn

|f |2dx
)2

≤
(
2

n

)2 ∫
Rn

|∇f |2 dx
∫
Rn

|x|2E |f |2dx, n ≥ 2, (9.40)

for all f ∈ C1
0 (R

n). Thus, when n = 2 inequality (9.40) gives the critical case
of the Heisenberg–Pauli–Weyl uncertainty principle (9.22). Moreover, since
2

n−2 ≥ 2
n , n ≥ 3, inequality (9.40) is an improved version of (9.22).

Note that equality case in (9.40) holds for the family of functions f =
C exp(−b|x|E), b > 0.

4. Uncertainty inequalities have been extended to many settings such as more
general Lie groups and manifolds; see Folland and Sitaram [FS97] for more
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information about older studies. On the general topic of uncertainty prin-
ciples on groups and manifolds we can refer to, e.g., [CRS07], [VSCC92],
[Tao05], among many others.

Proof of Theorem 9.5.1. By applying the polar decomposition formula in Propo-
sition 1.2.10, and integration by parts, we obtain∫

G

φ′(|x|)
|x|Q−1

|f |pdx =

∫ ∞

0

∫
℘

|f |p φ
′(r)

rQ−1
rQ−1dσ(y)dr

=

∫ ∞

0

∫
℘

|f |p d

dr
φ(r)dσ(y)dr = −

∫ ∞

0

∫
℘

φ(r)
d

dr
|f |pdσ(y)dr

= −
∫
G

φ(|x|)
|x|Q−1

R|f |pdx = −pRe

∫
G

φ(|x|)|f |p−2f

|x|Q−1
Rfdx.

Now by using Young’s inequality for p > 1 and 1
p + 1

q = 1, we arrive at∫
G

φ′(|x|)
|x|Q−1

|f |pdx = −pRe

∫
G

φ|f |p−2f

|x|Q−1
Rfdx

≤ p

∫
G

|φ||f |p−1

|x|Q−1
|Rf |dx

≤
∫
G

|Rf |p dx+
p

q

∫
G

|φ(|x|)|q
|x|q(Q−1)

|f |pdx. (9.41)

This proves inequality (9.35). Furthermore, from (9.41) by using Hölder’s inequal-
ity for p > 1 and 1

p + 1
q = 1, we establish∫

G

φ′(|x|)
|x|Q−1

|f |pdx ≤ p

∫
G

|φ||f |p−1

|x|Q−1
|Rf |dx

≤ p

(∫
G

|Rf |p dx
) 1/p (∫

G

|φ(|x|)|q
|x|q(Q−1)

|f |pdx
) 1/q

.

This completes the proof. �
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